Molecular targets and strategies in the development of nucleic acid cancer vaccines: from shared to personalized antigens.
Cancer vaccine
Clinical trial
DNA
Neoantigens
Tumor antigens
mRNA
Journal
Journal of biomedical science
ISSN: 1423-0127
Titre abrégé: J Biomed Sci
Pays: England
ID NLM: 9421567
Informations de publication
Date de publication:
09 Oct 2024
09 Oct 2024
Historique:
received:
19
07
2024
accepted:
01
09
2024
medline:
9
10
2024
pubmed:
9
10
2024
entrez:
8
10
2024
Statut:
epublish
Résumé
Recent breakthroughs in cancer immunotherapies have emphasized the importance of harnessing the immune system for treating cancer. Vaccines, which have traditionally been used to promote protective immunity against pathogens, are now being explored as a method to target cancer neoantigens. Over the past few years, extensive preclinical research and more than a hundred clinical trials have been dedicated to investigating various approaches to neoantigen discovery and vaccine formulations, encouraging development of personalized medicine. Nucleic acids (DNA and mRNA) have become particularly promising platform for the development of these cancer immunotherapies. This shift towards nucleic acid-based personalized vaccines has been facilitated by advancements in molecular techniques for identifying neoantigens, antigen prediction methodologies, and the development of new vaccine platforms. Generating these personalized vaccines involves a comprehensive pipeline that includes sequencing of patient tumor samples, data analysis for antigen prediction, and tailored vaccine manufacturing. In this review, we will discuss the various shared and personalized antigens used for cancer vaccine development and introduce strategies for identifying neoantigens through the characterization of gene mutation, transcription, translation and post translational modifications associated with oncogenesis. In addition, we will focus on the most up-to-date nucleic acid vaccine platforms, discuss the limitations of cancer vaccines as well as provide potential solutions, and raise key clinical and technical considerations in vaccine development.
Identifiants
pubmed: 39379923
doi: 10.1186/s12929-024-01082-x
pii: 10.1186/s12929-024-01082-x
doi:
Substances chimiques
Cancer Vaccines
0
Antigens, Neoplasm
0
Nucleic Acids
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
94Subventions
Organisme : Foundation for the National Institutes of Health
ID : P50CA098252
Informations de copyright
© 2024. The Author(s).
Références
Ottensmeier CHH, Delord JP, Lalanne A, Lantz O, Jamet C, Tavernaro A, et al. Safety and immunogenicity of TG4050: a personalized cancer vaccine in head and neck carcinoma. J Clin Oncol. 2023;41:6082.
doi: 10.1200/JCO.2023.41.16_suppl.6082
Aggarwal C, Ben-Shachar R, Gao Y, Hyun SW, Rivers Z, Epstein C, et al. Assessment of tumor mutational burden and outcomes in patients with diverse advanced cancers treated with immunotherapy. JAMA Netw Open. 2023;6:e2311181.
pubmed: 37129893
pmcid: 10155064
doi: 10.1001/jamanetworkopen.2023.11181
Quintanilha JCF, Storandt MH, Graf RP, Li G, Keller R, Lin DI, et al. Tumor mutational burden in real-world patients with pancreatic cancer: genomic alterations and predictive value for immune checkpoint inhibitor effectiveness. JCO Precis Oncol. 2023;7:e2300092.
pubmed: 37410975
pmcid: 10581638
doi: 10.1200/PO.23.00092
Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov. 2022;21:261–82.
pubmed: 35105974
pmcid: 7612664
doi: 10.1038/s41573-021-00387-y
Weber JS, Carlino MS, Khattak A, Meniawy T, Ansstas G, Taylor MH, et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet. 2024;403:632–44.
pubmed: 38246194
doi: 10.1016/S0140-6736(23)02268-7
Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618:144–50.
pubmed: 37165196
pmcid: 10171177
doi: 10.1038/s41586-023-06063-y
Kiyotani K, Toyoshima Y, Nakamura Y. Personalized immunotherapy in cancer precision medicine. Cancer Biol Med. 2021;18:955–65.
pubmed: 34369137
pmcid: 8610159
doi: 10.20892/j.issn.2095-3941.2021.0032
Garzia I, Nocchi L, Avalle L, Troise F, Leoni G, Seclì L, et al. Tumor burden dictates the neoantigen features required to generate an effective cancer vaccine. Cancer Immunol Res. 2024;12:440–52.
pubmed: 38331413
pmcid: 10985473
doi: 10.1158/2326-6066.CIR-23-0609
Khobragade A, Bhate S, Ramaiah V, Deshpande S, Giri K, Phophle H, et al. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet. 2022;399:1313–21.
pubmed: 35367003
pmcid: 8970574
doi: 10.1016/S0140-6736(22)00151-9
Jou J, Harrington KJ, Zocca MB, Ehrnrooth E, Cohen EEW. The changing landscape of therapeutic cancer vaccines-novel platforms and neoantigen identification. Clin Cancer Res. 2021;27:689–703.
pubmed: 33122346
doi: 10.1158/1078-0432.CCR-20-0245
Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther. 2023;8:450.
pubmed: 38086815
pmcid: 10716479
doi: 10.1038/s41392-023-01674-3
Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4:7.
pubmed: 30774998
pmcid: 6368616
doi: 10.1038/s41541-019-0103-y
Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15:5323–37.
pubmed: 19723653
pmcid: 5779623
doi: 10.1158/1078-0432.CCR-09-0737
Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, et al. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol. 2018;9:947.
pubmed: 29770138
pmcid: 5941317
doi: 10.3389/fimmu.2018.00947
Gnjatic S, Altorki NK, Tang DN, Tu SM, Kundra V, Ritter G, et al. NY-ESO-1 DNA vaccine induces T-cell responses that are suppressed by regulatory T cells. Clin Cancer Res. 2009;15:2130–9.
pubmed: 19276258
pmcid: 5806520
doi: 10.1158/1078-0432.CCR-08-2632
Xue W, Metheringham RL, Brentville VA, Gunn B, Symonds P, Yagita H, et al. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade. Oncoimmunology. 2016;5:e1169353.
pubmed: 27471648
pmcid: 4938367
doi: 10.1080/2162402X.2016.1169353
Papachristofilou A, Hipp MM, Klinkhardt U, Früh M, Sebastian M, Weiss C, et al. Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J Immunother Cancer. 2019;7:38.
pubmed: 30736848
pmcid: 6368815
doi: 10.1186/s40425-019-0520-5
Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020;585:107–12.
pubmed: 32728218
doi: 10.1038/s41586-020-2537-9
van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.
pubmed: 1840703
doi: 10.1126/science.1840703
Hannen R, Bartsch JW. Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis. FEBS Lett. 2018;592:2023–31.
pubmed: 29749098
doi: 10.1002/1873-3468.13084
Middleton G, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 2014;15:829–40.
pubmed: 24954781
doi: 10.1016/S1470-2045(14)70236-0
Jo JH, Kim YT, Choi HS, Kim HG, Lee HS, Choi YW, et al. Efficacy of GV1001 with gemcitabine/capecitabine in previously untreated patients with advanced pancreatic ductal adenocarcinoma having high serum eotaxin levels (KG4/2015): an open-label, randomised, Phase 3 trial. Br J Cancer. 2024;130:43–52.
pubmed: 37903909
doi: 10.1038/s41416-023-02474-w
Vonderheide RH, Kraynyak KA, Shields AF, McRee AJ, Johnson JM, Sun W, et al. Phase 1 study of safety, tolerability and immunogenicity of the human telomerase (hTERT)-encoded DNA plasmids INO-1400 and INO-1401 with or without IL-12 DNA plasmid INO-9012 in adult patients with solid tumors. J Immunother Cancer. 2021;9:e003019.
pubmed: 34230114
pmcid: 8261871
doi: 10.1136/jitc-2021-003019
Reardon DA, Brem S, Desai AS, Bagley SJ, Kurz SC, De La Fuente MI, et al. Intramuscular (IM) INO-5401+INO-9012 with electroporation (EP) in combination with cemiplimab (REGN2810) in newly diagnosed glioblastoma. J Clin Oncol. 2022. https://doi.org/10.1200/JCO.2022.40.16_suppl.2004 .
doi: 10.1200/JCO.2022.40.16_suppl.2004
pubmed: 36521103
pmcid: 9995096
Teixeira L, Medioni J, Garibal J, Adotevi O, Doucet L, Durey MD, et al. A first-in-human phase I study of INVAC-1, an optimized human telomerase DNA vaccine in patients with advanced solid tumors. Clin Cancer Res. 2020;26:588–97.
pubmed: 31558479
doi: 10.1158/1078-0432.CCR-19-1614
Kang J, Park H-H, Choi JH, Lim J, Jang S-Y, Kim M-A, et al. 897 AST-301, a pDNA-based cancer vaccine encoding HER2-ICD, enhances anti-tumor effect of HER2-ADC in a HER2-expressed gastric cancer xenograft model. J Immunother Cancer. 2023;11:A999.
Crosby EJ, Gwin W, Blackwell K, Marcom PK, Chang S, Maecker HT, et al. Vaccine-induced memory CD8(+) T cells provide clinical benefit in HER2 expressing breast cancer: a mouse to human translational study. Clin Cancer Res. 2019;25:2725–36.
pubmed: 30635338
pmcid: 6497539
doi: 10.1158/1078-0432.CCR-18-3102
Linch M, Papai Z, Takacs I, Imedio ER, Kühnle M-C, Derhovanessian E, et al. 421 A first-in-human (FIH) phase I/IIa clinical trial assessing a ribonucleic acid lipoplex (RNA-LPX) encoding shared tumor antigens for immunotherapy of prostate cancer; preliminary analysis of PRO-MERIT. J Immunother Cancer. 2021;9:A451.
Madan RA, Arlen PM, Mohebtash M, Hodge JW, Gulley JL. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin Investig Drugs. 2009;18:1001–11.
pubmed: 19548854
pmcid: 3449276
doi: 10.1517/13543780902997928
Gulley JL, Borre M, Vogelzang NJ, Ng S, Agarwal N, Parker CC, et al. Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol. 2019;37:1051–61.
pubmed: 30817251
pmcid: 6494360
doi: 10.1200/JCO.18.02031
Patel PH, Kockler DR. Sipuleucel-T: a vaccine for metastatic, asymptomatic, androgen-independent prostate cancer. Ann Pharmacother. 2008;42:91–8.
pubmed: 18094343
doi: 10.1345/aph.1K429
Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006;24:3089–94.
pubmed: 16809734
doi: 10.1200/JCO.2005.04.5252
Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115:3670–9.
pubmed: 19536890
doi: 10.1002/cncr.24429
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.
pubmed: 20818862
doi: 10.1056/NEJMoa1001294
Lim J, Park H-H, Choi JK, Choi JH, Kang J, Jang S-Y, et al. 817 AST-201 (pUMVC3-hIGFBP2 N-terminus) demonstrates anti-tumor effect in an ovarian cancer mouse model. J Immunother Cancer. 2023;11:A915.
Han HS, Wesolowski R, Fisher C, Gandhi S, Gwin WR, Kowzun MJ, et al. A multicenter phase II study of vaccines to prevent recurrence in patients with HER-2-positive breast cancer. J Clin Oncol. 2023;41:532.
doi: 10.1200/JCO.2023.41.16_suppl.532
Gwin WR, Kuano K, Childs J, Symonds LK, Coveler AL, Liao JB, et al. A phase II study of concurrent WOKVAC vaccination with neoadjuvant chemotherapy and HER2-targeted monoclonal antibody therapy. J Clin Oncol. 2023;41:TPS636.
doi: 10.1200/JCO.2023.41.16_suppl.TPS636
de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8:e180–90.
pubmed: 31862245
doi: 10.1016/S2214-109X(19)30488-7
Korzeniewski N, Treat B, Duensing S. The HPV-16 E7 oncoprotein induces centriole multiplication through deregulation of Polo-like kinase 4 expression. Mol Cancer. 2011;10:61.
pubmed: 21609466
pmcid: 3120798
doi: 10.1186/1476-4598-10-61
Albert E, Laimins L. Regulation of the human papillomavirus life cycle by DNA damage repair pathways and epigenetic factors. Viruses. 2020;12:744.
pubmed: 32664381
pmcid: 7412114
doi: 10.3390/v12070744
Sofiani VH, Veisi P, Rukerd MRZ, Ghazi R, Nakhaie M. The complexity of human papilloma virus in cancers: a narrative review. Infect Agent Cancer. 2023;18:13.
pubmed: 36843070
pmcid: 9969657
doi: 10.1186/s13027-023-00488-w
Hillemanns P, Denecke A, Woelber L, Böhmer G, Jentschke M, Schjetne KW, et al. A therapeutic antigen-presenting cell-targeting DNA vaccine VB10.16 in HPV16-positive high-grade cervical intraepithelial neoplasia: results from a phase I/IIa trial. Clin Cancer Res. 2022;28:4885–92.
pubmed: 36129459
doi: 10.1158/1078-0432.CCR-22-1927
Bhuyan PK, Dallas M, Kraynyak K, Herring T, Morrow M, Boyer J, et al. Durability of response to VGX-3100 treatment of HPV16/18 positive cervical HSIL. Hum Vaccin Immunother. 2021;17:1288–93.
pubmed: 33175656
doi: 10.1080/21645515.2020.1823778
Youn JW, Hur SY, Woo JW, Kim YM, Lim MC, Park SY, et al. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: interim results of a single-arm, phase 2 trial. Lancet Oncol. 2020;21:1653–60.
pubmed: 33271094
doi: 10.1016/S1470-2045(20)30486-1
Peng S, Qiu J, Yang A, Yang B, Jeang J, Wang JW, et al. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease. Cell Biosci. 2016;6:16.
pubmed: 26918115
pmcid: 4766698
doi: 10.1186/s13578-016-0080-z
Einstein MH, Roden RBS, Ferrall L, Akin M, Blomer A, Wu TC, et al. Safety run-in of intramuscular pNGVL4a-Sig/E7(detox)/HSP70 DNA and TA-CIN protein vaccination as treatment for HPV16+ ASC-US, ASC-H, or LSIL/CIN1. Cancer Prev Res (Phila). 2023;16:219–27.
pubmed: 36607735
pmcid: 10068439
doi: 10.1158/1940-6207.CAPR-22-0413
Klinghammer K, Saba NF, Castelluci E, Colevas AD, Rutkowski T, Greil R, et al. 155P BNT113 + pembrolizumab as first-line treatment in patients with unresectable recurrent/metastatic HNSCC: Preliminary safety data from AHEAD-MERIT. Immuno-Oncol Technol. 2022; 16. https://www.esmoiotech.org/article/S2590-0188(22)00198-8/fulltext .
Gibson MK, Savvides P, Worden F, Heimann-Nichols E, Wu T, Roden R, et al. 677 Phase II trial assessing safety, efficacy and immune correlates of heterologous prime-boost with pBI-11 (IM) and TA-HPV (IM) plus pembrolizumab for advanced, PD-L1 CPS≥1, hrHPV+ Oropharyngeal cancer. J Immunother Cancer. 2023;11:A768.
Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 2016;16:789–802.
pubmed: 27687982
doi: 10.1038/nrc.2016.92
Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther. 2021;6:386.
pubmed: 34776511
pmcid: 8591115
doi: 10.1038/s41392-021-00780-4
Rappaport AR, Kyi C, Lane M, Hart MG, Johnson ML, Henick BS, et al. A shared neoantigen vaccine combined with immune checkpoint blockade for advanced metastatic solid tumors: phase 1 trial interim results. Nat Med. 2024;30:1013–22.
pubmed: 38538867
doi: 10.1038/s41591-024-02851-9
Pan RY, Chung WH, Chu MT, Chen SJ, Chen HC, Zheng L, et al. Recent development and clinical application of cancer vaccine: targeting neoantigens. J Immunol Res. 2018;2018:4325874.
pubmed: 30662919
pmcid: 6313977
doi: 10.1155/2018/4325874
Romero P, Banchereau J, Bhardwaj N, Cockett M, Disis ML, Dranoff G, et al. The Human Vaccines Project: A roadmap for cancer vaccine development. Sci Transl Med. 2016;8:334ps9.
pubmed: 27075624
doi: 10.1126/scitranslmed.aaf0685
Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. Febs j. 2013;280:5350–70.
pubmed: 23777544
doi: 10.1111/febs.12393
An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene. 2018;37:1561–75.
pubmed: 29321659
pmcid: 5860944
doi: 10.1038/s41388-017-0045-7
Elsamadicy AA, Chongsathidkiet P, Desai R, Woroniecka K, Farber SH, Fecci PE, et al. Prospect of rindopepimut in the treatment of glioblastoma. Expert Opin Biol Ther. 2017;17:507–13.
pubmed: 28274144
pmcid: 5787389
doi: 10.1080/14712598.2017.1299705
Sadeghi Najafabadi SA, Bolhassani A, Aghasadeghi MR. Tumor cell-based vaccine: an effective strategy for eradication of cancer cells. Immunotherapy. 2022;14:639–54.
pubmed: 35481358
doi: 10.2217/imt-2022-0036
Berd D. M-Vax: an autologous, hapten-modified vaccine for human cancer. Expert Opin Biol Ther. 2002;2:335–42.
pubmed: 11890872
doi: 10.1517/14712598.2.3.335
Sosman JA, Sondak VK. Melacine: an allogeneic melanoma tumor cell lysate vaccine. Expert Rev Vaccines. 2003;2:353–68.
pubmed: 12903801
doi: 10.1586/14760584.2.3.353
Ogi C, Aruga A. Clinical evaluation of therapeutic cancer vaccines. Hum Vaccin Immunother. 2013;9:1049–57.
pubmed: 23454867
pmcid: 3899139
doi: 10.4161/hv.23917
Gupta RG, Li F, Roszik J, Lizée G. Exploiting tumor neoantigens to target cancer evolution: current challenges and promising therapeutic approaches. Cancer Discov. 2021;11:1024–39.
pubmed: 33722796
pmcid: 8102318
doi: 10.1158/2159-8290.CD-20-1575
Measuring VT, Sequencing T-E. Measuring tumor mutational burden using whole-exome sequencing. Methods Mol Biol. 2020;2055:63–91.
doi: 10.1007/978-1-4939-9773-2_3
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.
pubmed: 25765070
pmcid: 4993154
doi: 10.1126/science.aaa1348
Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51:202–6.
pubmed: 30643254
pmcid: 6365097
doi: 10.1038/s41588-018-0312-8
Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18:248–62.
pubmed: 28052254
doi: 10.1016/j.celrep.2016.12.019
De Mattos-Arruda L, Vazquez M, Finotello F, Lepore R, Porta E, Hundal J, et al. Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group. Ann Oncol. 2020;31:978–90.
pubmed: 32610166
doi: 10.1016/j.annonc.2020.05.008
Shi Y, Jing B, Xi R. Comprehensive analysis of neoantigens derived from structural variation across whole genomes from 2528 tumors. Genome Biol. 2023;24:169.
pubmed: 37461029
pmcid: 10351168
doi: 10.1186/s13059-023-03005-9
Yewdell JW, Antón LC, Bennink JR. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol. 1996;157:1823–6.
pubmed: 8757297
doi: 10.4049/jimmunol.157.5.1823
Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017;18:1009–21.
pubmed: 28694034
doi: 10.1016/S1470-2045(17)30516-8
Hansen UK, Ramskov S, Bjerregaard AM, Borch A, Andersen R, Draghi A, et al. Tumor-infiltrating T cells from clear cell renal cell carcinoma patients recognize neoepitopes derived from point and frameshift mutations. Front Immunol. 2020;11:373.
pubmed: 32226429
pmcid: 7080703
doi: 10.3389/fimmu.2020.00373
Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25:767–75.
pubmed: 31011208
pmcid: 6558662
doi: 10.1038/s41591-019-0434-2
Wei Z, Zhou C, Zhang Z, Guan M, Zhang C, Liu Z, et al. The landscape of tumor fusion neoantigens: a pan-cancer analysis. iScience. 2019;21:249–60.
pubmed: 31677477
pmcid: 6838548
doi: 10.1016/j.isci.2019.10.028
Romanish MT, Cohen CJ, Mager DL. Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol. 2010;20:246–53.
pubmed: 20685251
doi: 10.1016/j.semcancer.2010.05.005
Schliehe C, Bitzer A, van den Broek M, Groettrup M. Stable antigen is most effective for eliciting CD8+ T-cell responses after DNA vaccination and infection with recombinant vaccinia virus in vivo. J Virol. 2012;86:9782–93.
pubmed: 22761378
pmcid: 3446605
doi: 10.1128/JVI.00694-12
Westcott PMK, Sacks NJ, Schenkel JM, Ely ZA, Smith O, Hauck H, et al. Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal cancer. Nat Cancer. 2021;2:1071–85.
pubmed: 34738089
pmcid: 8562866
doi: 10.1038/s43018-021-00247-z
Castro A, Zanetti M, Carter H. Neoantigen controversies. Annu Rev Biomed Data Sci. 2021;4:227–53.
pubmed: 34465181
pmcid: 10146390
doi: 10.1146/annurev-biodatasci-092820-112713
Black JRM, McGranahan N. Genetic and non-genetic clonal diversity in cancer evolution. Nat Rev Cancer. 2021;21:379–92.
pubmed: 33727690
doi: 10.1038/s41568-021-00336-2
Wright BW, Yi Z, Weissman JS, Chen J. The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol. 2022;32:243–58.
pubmed: 34844857
doi: 10.1016/j.tcb.2021.10.010
Starck SR, Shastri N. Nowhere to hide: unconventional translation yields cryptic peptides for immune surveillance. Immunol Rev. 2016;272:8–16.
pubmed: 27319338
pmcid: 4916849
doi: 10.1111/imr.12434
Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018;34:211-24.e6.
pubmed: 30078747
pmcid: 9844097
doi: 10.1016/j.ccell.2018.07.001
Schwab SR, Shugart JA, Horng T, Malarkannan S, Shastri N. Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol. 2004;2:e366.
pubmed: 15510226
pmcid: 524250
doi: 10.1371/journal.pbio.0020366
Malarkannan S, Horng T, Shih PP, Schwab S, Shastri N. Presentation of out-of-frame peptide/MHC class I complexes by a novel translation initiation mechanism. Immunity. 1999;10:681–90.
pubmed: 10403643
doi: 10.1016/S1074-7613(00)80067-9
Bullock TN, Eisenlohr LC. Ribosomal scanning past the primary initiation codon as a mechanism for expression of CTL epitopes encoded in alternative reading frames. J Exp Med. 1996;184:1319–29.
pubmed: 8879204
doi: 10.1084/jem.184.4.1319
Saulquin X, Scotet E, Trautmann L, Peyrat MA, Halary F, Bonneville M, et al. +1 Frameshifting as a novel mechanism to generate a cryptic cytotoxic T lymphocyte epitope derived from human interleukin 10. J Exp Med. 2002;195:353–8.
pubmed: 11828010
pmcid: 2193594
doi: 10.1084/jem.20011399
Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ, Jackson SE, et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 2014;8:1365–79.
pubmed: 25159147
pmcid: 4216110
doi: 10.1016/j.celrep.2014.07.045
Goodenough E, Robinson TM, Zook MB, Flanigan KM, Atkins JF, Howard MT, et al. Cryptic MHC class I-binding peptides are revealed by aminoglycoside-induced stop codon read-through into the 3’ UTR. Proc Natl Acad Sci U S A. 2014;111:5670–5.
pubmed: 24706797
pmcid: 3992684
doi: 10.1073/pnas.1402670111
Jackson R, Kroehling L, Khitun A, Bailis W, Jarret A, York AG, et al. The translation of non-canonical open reading frames controls mucosal immunity. Nature. 2018;564:434–8.
pubmed: 30542152
pmcid: 6939389
doi: 10.1038/s41586-018-0794-7
Chong C, Coukos G, Bassani-Sternberg M. Identification of tumor antigens with immunopeptidomics. Nat Biotechnol. 2022;40:175–88.
pubmed: 34635837
doi: 10.1038/s41587-021-01038-8
Ouspenskaia T, Law T, Clauser KR, Klaeger S, Sarkizova S, Aguet F, et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat Biotechnol. 2022;40:209–17.
pubmed: 34663921
doi: 10.1038/s41587-021-01021-3
Malaker SA, Penny SA, Steadman LG, Myers PT, Loke JC, Raghavan M, et al. Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol Res. 2017;5:376–84.
pubmed: 28314751
pmcid: 5508727
doi: 10.1158/2326-6066.CIR-16-0280
Vigneron N, Stroobant V, Ferrari V, Abi Habib J, Van den Eynde BJ. Production of spliced peptides by the proteasome. Mol Immunol. 2019;113:93–102.
pubmed: 29650230
doi: 10.1016/j.molimm.2018.03.030
Liepe J, Ovaa H, Mishto M. Why do proteases mess up with antigen presentation by re-shuffling antigen sequences? Curr Opin Immunol. 2018;52:81–6.
pubmed: 29723668
doi: 10.1016/j.coi.2018.04.016
Ruiz Cuevas MV, Hardy MP, Hollý J, Bonneil É, Durette C, Courcelles M, et al. Most non-canonical proteins uniquely populate the proteome or immunopeptidome. Cell Rep. 2021;34:108815.
pubmed: 33691108
doi: 10.1016/j.celrep.2021.108815
Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34.
pubmed: 28420421
pmcid: 5395719
doi: 10.1186/s13073-017-0424-2
Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23:703–13.
pubmed: 28481359
pmcid: 5461196
doi: 10.1038/nm.4333
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.
pubmed: 23945592
pmcid: 3776390
doi: 10.1038/nature12477
2023 Moderna And Merck Announce mRNA-4157 (V940) In Combination with Keytruda(R) (Pembrolizumab) Demonstrated Continued Improvement in Recurrence-Free Survival and Distant Metastasis-Free Survival in Patients with High-Risk Stage III/IV Melanoma Following Complete Resection Versus Keytruda at Three Years. < https://investors.modernatx.com/news/news-details/2023/Moderna-And-Merck-Announce-mRNA-4157-V940-In-Combination-with-KeytrudaR-Pembrolizumab-Demonstrated-Continued-Improvement-in-Recurrence-Free-Survival-and-Distant-Metastasis-Free-Survival-in-Patients-with-High-Risk-Stage-IIIIV-Melanoma-Following-Comple/default.aspx >. Accessed 20 June 2024.
Carvalho T. Personalized anti-cancer vaccine combining mRNA and immunotherapy tested in melanoma trial. Nat Med. 2023;29:2379–80.
pubmed: 37773210
doi: 10.1038/d41591-023-00072-0
Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–6.
pubmed: 28678784
doi: 10.1038/nature23003
Lopez JS, Camidge R, Iafolla M, Rottey S, Schuler M, Hellmann M, et al. A phase Ib study to evaluate RO7198457, an individualized Neoantigen Specific immunoTherapy (iNeST), in combination with atezolizumab in patients with locally advanced or metastatic solid tumors. Cancer Res. 2020;80:CT301.
doi: 10.1158/1538-7445.AM2020-CT301
Yarchoan M, Gane EJ, Marron TU, Perales-Linares R, Yan J, Cooch N, et al. Personalized neoantigen vaccine and pembrolizumab in advanced hepatocellular carcinoma: a phase 1/2 trial. Nat Med. 2024;30:1044–53.
pubmed: 38584166
pmcid: 11031401
doi: 10.1038/s41591-024-02894-y
Krauss J, Krakhardt A, Eisenmann S, Ochsenreither S, Berg KCG, Kushekhar K, et al. Abstract CT274: Individualized APC targeting VB10.NEO cancer vaccines induce broad neoepitope-specific CD8 T cell responses in patients with advanced or metastatic solid tumors: interim results from a phase 1/2a trial. Cancer Res. 2023;83:CT274.
doi: 10.1158/1538-7445.AM2023-CT274
Bechter O, D’Alise AM, Leoni G, Cotugno G, Siani L, Vitale R, et al. Abstract LB196: NOUS-PEV, a personalized cancer immunotherapy targeting neoantigens, induces long lasting, tumor infiltrating memory T cells. Cancer Res. 2023;83:LB196.
doi: 10.1158/1538-7445.AM2023-LB196
D’Alise AM, Leoni G, Cotugno G, Siani L, Vitale R, Ruzza V, et al. Phase I trial of viral vector-based personalized vaccination elicits robust neoantigen-specific antitumor T-cell responses. Clin Cancer Res. 2024;30:2412–23.
pubmed: 38506710
pmcid: 11145154
doi: 10.1158/1078-0432.CCR-23-3940
Palmer CD, Rappaport AR, Davis MJ, Hart MG, Scallan CD, Hong SJ, et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat Med. 2022;28:1619–29.
pubmed: 35970920
doi: 10.1038/s41591-022-01937-6
Delord JP, Block MS, Ottensmeier C, Colon-Otero G, Le Tourneau C, Lalanne A, et al. Phase 1 studies of personalized neoantigen vaccine TG4050 in ovarian carcinoma (OC) and head and neck squamous cell carcinoma (HNSCC). J Clin Oncol. 2022;40:2637–37.
doi: 10.1200/JCO.2022.40.16_suppl.2637
Chen Z, Zhang S, Han N, Jiang J, Xu Y, Ma D, et al. A neoantigen-based peptide vaccine for patients with advanced pancreatic cancer refractory to standard treatment. Front Immunol. 2021;12:691605.
pubmed: 34484187
pmcid: 8414362
doi: 10.3389/fimmu.2021.691605
Mendez-Gomez HR, DeVries A, Castillo P, von Roemeling C, Qdaisat S, Stover BD, et al. RNA aggregates harness the danger response for potent cancer immunotherapy. Cell. 2024;187:2521-35.e21.
pubmed: 38697107
doi: 10.1016/j.cell.2024.04.003
Villanueva MT. RNA delivery heats up cold tumours. Nat Rev Drug Discov. 2024. https://doi.org/10.1038/d41573-024-00098-0 .
doi: 10.1038/d41573-024-00098-0
pubmed: 39251736
Richters MM, Xia H, Campbell KM, Gillanders WE, Griffith OL, Griffith M. Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med. 2019;11:56.
pubmed: 31462330
pmcid: 6714459
doi: 10.1186/s13073-019-0666-2
Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.
pubmed: 20530316
pmcid: 2943767
doi: 10.1056/NEJMoa0912217
Roudko V, Greenbaum B, Bhardwaj N. computational prediction and validation of tumor-associated neoantigens. Front Immunol. 2020;11:27.
pubmed: 32117226
pmcid: 7025577
doi: 10.3389/fimmu.2020.00027
Bohnert R, Vivas S, Jansen G. Comprehensive benchmarking of SNV callers for highly admixed tumor data. PLoS ONE. 2017;12:e0186175.
pubmed: 29020110
pmcid: 5636151
doi: 10.1371/journal.pone.0186175
Pei S, Liu T, Ren X, Li W, Chen C, Xie Z. Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief Bioinform. 2021;22(3):bbaa148.
doi: 10.1093/bib/bbaa148
pubmed: 34278426
Sarwal V, Niehus S, Ayyala R, Kim M, Sarkar A, Chang S, et al. A comprehensive benchmarking of WGS-based deletion structural variant callers. Brief Bioinform. 2022;23:bbac221.
pubmed: 35753701
pmcid: 9294411
doi: 10.1093/bib/bbac221
Gallegos Ruiz MI, Floor K, Rijmen F, Grünberg K, Rodriguez JA, Giaccone G. EGFR and K-ras mutation analysis in non-small cell lung cancer: comparison of paraffin embedded versus frozen specimens. Cell Oncol. 2007;29:257–64.
pubmed: 17452778
pmcid: 4618423
Cazzato G, Caporusso C, Arezzo F, Cimmino A, Colagrande A, Loizzi V, et al. Formalin-fixed and paraffin-embedded samples for next generation sequencing: problems and solutions. Genes. 2021;12:1472.
pubmed: 34680867
pmcid: 8535326
doi: 10.3390/genes12101472
Dodani DD, Nguyen MH, Morin RD, Marra MA, Corbett RD. Combinatorial and machine learning approaches for improved somatic variant calling from formalin-fixed paraffin-embedded genome sequence data. Front Genet. 2022;13:834764.
pubmed: 35571031
pmcid: 9092826
doi: 10.3389/fgene.2022.834764
Trevarton AJ, Chang JT, Symmans WF. Simple combination of multiple somatic variant callers to increase accuracy. Sci Rep. 2023;13:8463.
pubmed: 37231022
pmcid: 10212967
doi: 10.1038/s41598-023-34925-y
Junjun R, Zhengqian Z, Ying W, Jialiang W, Yongzhuang L. A comprehensive review of deep learning-based variant calling methods. Brief Funct Genomics. 2024;23(4):303–13.
doi: 10.1093/bfgp/elae003
pubmed: 38366908
Quinn EM, Cormican P, Kenny EM, Hill M, Anney R, Gill M, et al. Development of strategies for SNP detection in RNA-seq data: application to lymphoblastoid cell lines and evaluation using 1000 Genomes data. PLoS ONE. 2013;8:e58815.
pubmed: 23555596
pmcid: 3608647
doi: 10.1371/journal.pone.0058815
Zhao Y, Wang K, Wang WL, Yin TT, Dong WQ, Xu CJ. A high-throughput SNP discovery strategy for RNA-seq data. BMC Genomics. 2019;20:160.
pubmed: 30813897
pmcid: 6391812
doi: 10.1186/s12864-019-5533-4
Liu F, Zhang Y, Zhang L, Li Z, Fang Q, Gao R, et al. Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data. Genome Biol. 2019;20:242.
pubmed: 31744515
pmcid: 6862814
doi: 10.1186/s13059-019-1863-4
CPTAC Pan-Cancer Analysis Page. National Cancer Institute Proteomic Data Commons. https://pdc.cancer.gov/pdc/ . Accessed 20 June 2024.
Erhard F, Halenius A, Zimmermann C, L’Hernault A, Kowalewski DJ, Weekes MP, et al. Improved Ribo-seq enables identification of cryptic translation events. Nat Methods. 2018;15:363–6.
pubmed: 29529017
pmcid: 6152898
doi: 10.1038/nmeth.4631
Fedorova AD, Tierney JAS, Michel AM, Baranov PV. RiboGalaxy: a galaxy-based web platform for ribosome profiling data processing - 2023 update. J Mol Biol. 2023;435:168043.
pubmed: 37356899
doi: 10.1016/j.jmb.2023.168043
Vizcaíno JA, Kubiniok P, Kovalchik KA, Ma Q, Duquette JD, Mongrain I, et al. The human immunopeptidome project: a roadmap to predict and treat immune diseases. Mol Cell Proteomics. 2020;19:31–49.
pubmed: 31744855
doi: 10.1074/mcp.R119.001743
Di Marco M, Schuster H, Backert L, Ghosh M, Rammensee HG, Stevanović S. Unveiling the peptide motifs of HLA-C and HLA-G from naturally presented peptides and generation of binding prediction matrices. J Immunol. 2017;199:2639–51.
pubmed: 28904123
doi: 10.4049/jimmunol.1700938
Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics. 2014;30:3310–6.
pubmed: 25143287
pmcid: 4441069
doi: 10.1093/bioinformatics/btu548
Kiyotani K, Mai TH, Nakamura Y. Comparison of exome-based HLA class I genotyping tools: identification of platform-specific genotyping errors. J Hum Genet. 2017;62:397–405.
pubmed: 27881843
doi: 10.1038/jhg.2016.141
Boegel S, Löwer M, Schäfer M, Bukur T, de Graaf J, Boisguérin V, et al. HLA typing from RNA-Seq sequence reads. Genome Med. 2012;4:102.
pubmed: 23259685
pmcid: 4064318
doi: 10.1186/gm403
Orenbuch R, Filip I, Comito D, Shaman J, Pe’er I, Rabadan R. arcasHLA: high-resolution HLA typing from RNAseq. Bioinformatics. 2020;36:33–40.
pubmed: 31173059
doi: 10.1093/bioinformatics/btz474
Liu C, Yang X, Duffy B, Mohanakumar T, Mitra RD, Zody MC, et al. ATHLATES: accurate typing of human leukocyte antigen through exome sequencing. Nucleic Acids Res. 2013;41:e142.
pubmed: 23748956
pmcid: 3737559
doi: 10.1093/nar/gkt481
Profaizer T, Lázár-Molnár E, Close DW, Delgado JC, Kumánovics A. HLA genotyping in the clinical laboratory: comparison of next-generation sequencing methods. Hla. 2016;88:14–24.
pubmed: 27524804
doi: 10.1111/tan.12850
Zajonc DM. Unconventional peptide presentation by classical MHC class I and implications for T and NK cell activation. Int J Mol Sci. 2020;21:7561.
pubmed: 33066279
pmcid: 7590165
doi: 10.3390/ijms21207561
Xia H, McMichael J, Becker-Hapak M, Onyeador OC, Buchli R, McClain E, et al. Computational prediction of MHC anchor locations guides neoantigen identification and prioritization. Sci Immunol. 2023;8:eabg2200.
pubmed: 37027480
pmcid: 10450883
doi: 10.1126/sciimmunol.abg2200
Yang Y, Wei Z, Cia G, Song X, Pucci F, Rooman M, et al. MHCII-peptide presentation: an assessment of the state-of-the-art prediction methods. Front Immunol. 2024;15:1293706.
pubmed: 38646540
pmcid: 11027168
doi: 10.3389/fimmu.2024.1293706
Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics. 2016;32:511–7.
pubmed: 26515819
doi: 10.1093/bioinformatics/btv639
Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE. 2007;2:e796.
pubmed: 17726526
pmcid: 1949492
doi: 10.1371/journal.pone.0000796
Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol. 2017;199:3360–8.
pubmed: 28978689
doi: 10.4049/jimmunol.1700893
Bulik-Sullivan B, Busby J, Palmer CD, Davis MJ, Murphy T, Clark A, et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4313 .
doi: 10.1038/nbt.4313
pubmed: 30556813
Albert BA, Yang Y, Shao XM, Singh D, Smit KN, Anagnostou V, et al. Deep neural networks predict class I major histocompatibility complex epitope presentation and transfer learn neoepitope immunogenicity. Nat Mach Intell. 2023;5:861–72.
pubmed: 37829001
pmcid: 10569228
doi: 10.1038/s42256-023-00694-6
Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front Immunol. 2017;8:292.
pubmed: 28367149
pmcid: 5355494
doi: 10.3389/fimmu.2017.00292
Rock KL, Reits E, Neefjes J. Present yourself! by MHC class I and MHC class II molecules. Trends Immunol. 2016;37:724–37.
pubmed: 27614798
pmcid: 5159193
doi: 10.1016/j.it.2016.08.010
Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics. 2015;67:641–50.
pubmed: 26416257
pmcid: 4637192
doi: 10.1007/s00251-015-0873-y
Gfeller D, Bassani-Sternberg M. Predicting antigen presentation-what could we learn from a million peptides? Front Immunol. 2018;9:1716.
pubmed: 30090105
pmcid: 6068240
doi: 10.3389/fimmu.2018.01716
Epitope Prediction and Analysis Tools. IEDB Analysis Resource. http://tools.iedb.org/main/ . Accessed 20 June 2024.
Garcia KC, Adams EJ. How the T cell receptor sees antigen–a structural view. Cell. 2005;122:333–6.
pubmed: 16096054
doi: 10.1016/j.cell.2005.07.015
Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G, et al. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res. 2018;46:D419–27.
pubmed: 28977646
doi: 10.1093/nar/gkx760
Tickotsky N, Sagiv T, Prilusky J, Shifrut E, Friedman N. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics. 2017;33:2924–9.
pubmed: 28481982
doi: 10.1093/bioinformatics/btx286
Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019;47:D339–43.
pubmed: 30357391
doi: 10.1093/nar/gky1006
Zhang W, Wang L, Liu K, Wei X, Yang K, Du W, et al. PIRD: pan immune repertoire database. Bioinformatics. 2020;36:897–903.
pubmed: 31373607
doi: 10.1093/bioinformatics/btz614
Nolan S, Vignali M, Klinger M, Dines JN, Kaplan IM, Svejnoha E, et al. A large-scale database of T-cell receptor beta (TCRβ) sequences and binding associations from natural and synthetic exposure to SARS-CoV-2. Res Sq. 2020. https://doi.org/10.21203/rs.3.rs-51964/v1 .
doi: 10.21203/rs.3.rs-51964/v1
pubmed: 32793896
pmcid: 7418738
Chromium Single Cell Immune Profiling. 10x Genomics. https://www.10xgenomics.com/products/single-cell-immune-profiling . Accessed 20 June 2024.
Fischer DS, Wu Y, Schubert B, Theis FJ. Predicting antigen specificity of single T cells based on TCR CDR3 regions. Mol Syst Biol. 2020;16:e9416.
pubmed: 32779888
pmcid: 7418512
doi: 10.15252/msb.20199416
Overall SA, Toor JS, Hao S, Yarmarkovich M, Sara MOR, Morozov GI, et al. High throughput pMHC-I tetramer library production using chaperone-mediated peptide exchange. Nat Commun. 2020;11:1909.
pubmed: 32312993
pmcid: 7170893
doi: 10.1038/s41467-020-15710-1
Meysman P, Barton J, Bravi B, Cohen-Lavi L, Karnaukhov V, Lilleskov E, et al. Benchmarking solutions to the T-cell receptor epitope prediction problem: IMMREP22 workshop report. ImmunoInformatics. 2023;9:100024.
doi: 10.1016/j.immuno.2023.100024
Grazioli F, Mösch A, Machart P, Li K, Alqassem I, O’Donnell TJ, et al. On TCR binding predictors failing to generalize to unseen peptides. Front Immunol. 2022;13:1014256.
pubmed: 36341448
pmcid: 9634250
doi: 10.3389/fimmu.2022.1014256
Croce G, Bobisse S, Moreno DL, Schmidt J, Guillame P, Harari A, et al. Deep learning predictions of TCR-epitope interactions reveal epitope-specific chains in dual alpha T cells. Nat Commun. 2024;15:3211.
pubmed: 38615042
pmcid: 11016097
doi: 10.1038/s41467-024-47461-8
Habern O. 2021 A sequencing approach to T-cell receptor-antigen recognition. 10x Genomics. https://www.10xgenomics.com/blog/a-sequencing-approach-to-t-cell-receptor-antigen-recognition . Accessed 20 June 2024.
McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.
pubmed: 26940869
pmcid: 4984254
doi: 10.1126/science.aaf1490
Ragone C, Cavalluzzo B, Mauriello A, Tagliamonte M, Buonaguro L. Lack of shared neoantigens in prevalent mutations in cancer. J Transl Med. 2024;22:344.
pubmed: 38600547
pmcid: 11005154
doi: 10.1186/s12967-024-05110-0
Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.
pubmed: 28844499
doi: 10.1016/S1470-2045(17)30517-X
Bagley SJ, Binder ZA, Lamrani L, Marinari E, Desai AS, Nasrallah MP, et al. Repeated peripheral infusions of anti-EGFRvIII CAR T cells in combination with pembrolizumab show no efficacy in glioblastoma: a phase 1 trial. Nat Cancer. 2024;5:517–31.
pubmed: 38216766
doi: 10.1038/s43018-023-00709-6
Laganà A. Computational approaches for the investigation of intra-tumor heterogeneity and clonal evolution from bulk sequencing data in precision oncology applications. Adv Exp Med Biol. 2022;1361:101–18.
pubmed: 35230685
doi: 10.1007/978-3-030-91836-1_6
Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: statistical inference of clonal population structure in cancer. Nat Methods. 2014;11:396–8.
pubmed: 24633410
pmcid: 4864026
doi: 10.1038/nmeth.2883
Xiao Y, Wang X, Zhang H, Ulintz PJ, Li H, Guan Y. FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples. Nat Commun. 2020;11:4469.
pubmed: 32901013
pmcid: 7478963
doi: 10.1038/s41467-020-18169-2
Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol. 2014;10:e1003665.
pubmed: 25102416
pmcid: 4125065
doi: 10.1371/journal.pcbi.1003665
Uniprot. https://www.uniprot.org . Accessed 20 June 2024.
e!EnsemblGenomes. https://ensemblgenomes.org . Accessed 20 June 2024.
GENCODE https://www.gencodegenes.org . Accessed 20 June 2024.
HLA Ligand Atlas. https://hla-ligand-atlas.org/welcome . Accessed 20 June 2024.
Łuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551:517–20.
pubmed: 29132144
pmcid: 6137806
doi: 10.1038/nature24473
Richman LP, Vonderheide RH, Rech AJ. Neoantigen dissimilarity to the self-proteome predicts immunogenicity and response to immune checkpoint blockade. Cell Syst. 2019;9:375-82.e4.
pubmed: 31606370
pmcid: 6813910
doi: 10.1016/j.cels.2019.08.009
Hundal J, Kiwala S, McMichael J, Miller CA, Xia H, Wollam AT, et al. pVACtools: a computational toolkit to identify and visualize cancer neoantigens. Cancer Immunol Res. 2020;8:409–20.
pubmed: 31907209
pmcid: 7056579
doi: 10.1158/2326-6066.CIR-19-0401
Kodysh J, Rubinsteyn A. OpenVax: an open-source computational pipeline for cancer neoantigen prediction. Methods Mol Biol. 2020;2120:147–60.
pubmed: 32124317
doi: 10.1007/978-1-0716-0327-7_10
Li B, Jing P, Zheng G, Pi C, Zhang L, Yin Z, et al. Neo-intline: integrated pipeline enables neoantigen design through the in-silico presentation of T-cell epitope. Signal Transduct Target Ther. 2023;8:397.
pubmed: 37848417
pmcid: 10582007
doi: 10.1038/s41392-023-01644-9
Rubinsteyn A, Kodysh J, Hodes I, Mondet S, Aksoy BA, Finnigan JP, et al. Computational pipeline for the PGV-001 neoantigen vaccine trial. Front Immunol. 2017;8:1807.
pubmed: 29403468
doi: 10.3389/fimmu.2017.01807
Schmittel A, Keilholz U, Scheibenbogen C. Evaluation of the interferon-gamma ELISPOT-assay for quantification of peptide specific T lymphocytes from peripheral blood. J Immunol Methods. 1997;210:167–74.
pubmed: 9520299
doi: 10.1016/S0022-1759(97)00184-1
Godard B, Gazagne A, Gey A, Baptiste M, Vingert B, Pegaz-Fiornet B, et al. Optimization of an elispot assay to detect cytomegalovirus-specific CD8+ T lymphocytes. Hum Immunol. 2004;65:1307–18.
pubmed: 15556681
doi: 10.1016/j.humimm.2004.06.006
Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods. 1983;65:109–21.
pubmed: 6361139
doi: 10.1016/0022-1759(83)90308-3
Slota M, Lim JB, Dang Y, Disis ML. ELISpot for measuring human immune responses to vaccines. Expert Rev Vaccines. 2011;10:299–306.
pubmed: 21434798
pmcid: 3360522
doi: 10.1586/erv.10.169
Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods. 1983;64:313–20.
pubmed: 6199426
doi: 10.1016/0022-1759(83)90438-6
Weigelin B, den Boer AT, Wagena E, Broen K, Dolstra H, de Boer RJ, et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat Commun. 2021;12:5217.
pubmed: 34471116
pmcid: 8410835
doi: 10.1038/s41467-021-25282-3
Guil-Luna S, Sedlik C, Piaggio E. Humanized mouse models to evaluate cancer immunotherapeutics. Ann Rev Cancer Biol. 2021;5:119–36.
doi: 10.1146/annurev-cancerbio-050520-100526
Zhang X, Kim S, Hundal J, Herndon JM, Li S, Petti AA, et al. Breast cancer neoantigens can induce CD8(+) T-cell responses and antitumor immunity. Cancer Immunol Res. 2017;5:516–23.
pubmed: 28619968
pmcid: 5647648
doi: 10.1158/2326-6066.CIR-16-0264
Gao S, Wu Z, Arnold B, Diamond C, Batchu S, Giudice V, et al. Single-cell RNA sequencing coupled to TCR profiling of large granular lymphocyte leukemia T cells. Nat Commun. 2022;13:1982.
pubmed: 35411048
pmcid: 9001664
doi: 10.1038/s41467-022-29175-x
Frank ML, Lu K, Erdogan C, Han Y, Hu J, Wang T, et al. T-Cell receptor repertoire sequencing in the era of cancer immunotherapy. Clin Cancer Res. 2023;29:994–1008.
pubmed: 36413126
doi: 10.1158/1078-0432.CCR-22-2469
Kato T, Matsuda T, Ikeda Y, Park JH, Leisegang M, Yoshimura S, et al. Effective screening of T cells recognizing neoantigens and construction of T-cell receptor-engineered T cells. Oncotarget. 2018;9:11009–19.
pubmed: 29541393
pmcid: 5834292
doi: 10.18632/oncotarget.24232
Zong S, Mi T, Flores LG 2nd, Alpert A, Olivares S, Patel K, et al. Very rapid cloning, expression and identifying specificity of T-cell receptors for T-cell engineering. PLoS ONE. 2020;15:e0228112.
pubmed: 32040512
pmcid: 7010234
doi: 10.1371/journal.pone.0228112
Danilova L, Anagnostou V, Caushi JX, Sidhom JW, Guo H, Chan HY, et al. The mutation-associated neoantigen functional expansion of specific T cells (MANAFEST) assay: a sensitive platform for monitoring antitumor immunity. Cancer Immunol Res. 2018;6:888–99.
pubmed: 29895573
pmcid: 6072595
doi: 10.1158/2326-6066.CIR-18-0129
Vijh S, Pilip IM, Pamer EG. Effect of antigen-processing efficiency on in vivo T cell response magnitudes. J Immunol. 1998;160:3971–7.
pubmed: 9558105
doi: 10.4049/jimmunol.160.8.3971
van Pul KM, Fransen MF, van de Ven R, de Gruijl TD. Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy. Front Immunol. 2021;12:643291.
pubmed: 33732264
pmcid: 7956978
doi: 10.3389/fimmu.2021.643291
Cochran AJ, Huang RR, Lee J, Itakura E, Leong SP, Essner R. Tumour-induced immune modulation of sentinel lymph nodes. Nat Rev Immunol. 2006;6:659–70.
pubmed: 16932751
doi: 10.1038/nri1919
Norbury CC, Basta S, Donohue KB, Tscharke DC, Princiotta MF, Berglund P, et al. CD8+ T cell cross-priming via transfer of proteasome substrates. Science. 2004;304:1318–21.
pubmed: 15166379
doi: 10.1126/science.1096378
Ho NI, Veld LGMHI, Raaijmakers TK, Adema GJ. Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines? Front Immunol. 2018;9:2874.
pubmed: 30619259
pmcid: 6300500
doi: 10.3389/fimmu.2018.02874
Abd-Aziz N, Poh CL. Development of peptide-based vaccines for cancer. J Oncol. 2022;2022:9749363.
pubmed: 35342400
pmcid: 8941562
doi: 10.1155/2022/9749363
Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, Offringa R, van der Burg SH. CD8+ CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol. 2007;179:5033–40.
pubmed: 17911588
doi: 10.4049/jimmunol.179.8.5033
Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines. 2010;9:157–73.
pubmed: 20109027
pmcid: 2837080
doi: 10.1586/erv.09.160
Li YD, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci. 2020;27:104.
pubmed: 33341119
pmcid: 7749790
doi: 10.1186/s12929-020-00695-2
Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what’s important? Hum Vaccin Immunother. 2014;10:2875–84.
pubmed: 25483662
pmcid: 5443060
doi: 10.4161/hv.29594
McCann N, O’Connor D, Lambe T, Pollard AJ. Viral vector vaccines. Curr Opin Immunol. 2022;77:102210.
pubmed: 35643023
pmcid: 9612401
doi: 10.1016/j.coi.2022.102210
Bechter O, Martin-Liberal J, D’Alise A, Leoni G, Cotugno G, Siani L, et al. 706 NOUS-PEV, a novel personalized viral-based prime/boost cancer immunotherapy targeting patient-specific neoantigens: interim results from the first subjects in the phase 1b study. J Immunother Cancer. 2022;10:A739.
Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, et al. Yeast expression systems: overview and recent advances. Mol Biotechnol. 2019;61:365–84.
pubmed: 30805909
doi: 10.1007/s12033-019-00164-8
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022;15:28.
pubmed: 35303904
pmcid: 8931585
doi: 10.1186/s13045-022-01247-x
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines. Adv Drug Deliv Rev. 2024;210:115340.
pubmed: 38810703
doi: 10.1016/j.addr.2024.115340
Trombetta CM, Marchi S, Manini I, Lazzeri G, Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev Vaccines. 2019;18:737–50.
pubmed: 31265333
doi: 10.1080/14760584.2019.1639503
Hegde NR. Cell culture-based influenza vaccines: a necessary and indispensable investment for the future. Hum Vaccin Immunother. 2015;11:1223–34.
pubmed: 25875691
pmcid: 4514150
doi: 10.1080/21645515.2015.1016666
Chi WY, Li YD, Huang HC, Chan TEH, Chow SY, Su JH, et al. COVID-19 vaccine update: vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. J Biomed Sci. 2022;29:82.
pubmed: 36243868
pmcid: 9569411
doi: 10.1186/s12929-022-00853-8
Chatzikleanthous D, O’Hagan DT, Adamo R. Lipid-based nanoparticles for delivery of vaccine adjuvants and antigens: toward multicomponent vaccines. Mol Pharm. 2021;18:2867–88.
pubmed: 34264684
doi: 10.1021/acs.molpharmaceut.1c00447
Yang B, Jeang J, Yang A, Wu TC, Hung CF. DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother. 2014;10:3153–64.
pubmed: 25625927
doi: 10.4161/21645515.2014.980686
Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, et al. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol. 2023;40:200.
pubmed: 37294501
pmcid: 10251337
doi: 10.1007/s12032-023-02060-3
Barbier AJ, Jiang AY, Zhang P, Wooster R, Anderson DG. The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol. 2022;40:840–54.
pubmed: 35534554
doi: 10.1038/s41587-022-01294-2
Zhang C, Ma Y, Zhang J, Kuo JC, Zhang Z, Xie H, et al. Modification of lipid-based nanoparticles: an efficient delivery system for nucleic acid-based immunotherapy. Molecules. 2022;27:1943.
pubmed: 35335310
pmcid: 8949521
doi: 10.3390/molecules27061943
Zhang R, Tang L, Tian Y, Ji X, Hu Q, Zhou B, et al. DP7-C-modified liposomes enhance immune responses and the antitumor effect of a neoantigen-based mRNA vaccine. J Control Release. 2020;328:210–21.
pubmed: 32860927
doi: 10.1016/j.jconrel.2020.08.023
Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396–401.
pubmed: 27281205
doi: 10.1038/nature18300
Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16:1833–40.
pubmed: 18797453
doi: 10.1038/mt.2008.200
Beck JD, Reidenbach D, Salomon N, Sahin U, Türeci Ö, Vormehr M, et al. mRNA therapeutics in cancer immunotherapy. Mol Cancer. 2021;20:69.
pubmed: 33858437
pmcid: 8047518
doi: 10.1186/s12943-021-01348-0
Sloma MF, Mathews DH. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures. RNA. 2016;22:1808–18.
pubmed: 27852924
pmcid: 5113201
doi: 10.1261/rna.053694.115
Serra MJ, Baird JD, Dale T, Fey BL, Retatagos K, Westhof E. Effects of magnesium ions on the stabilization of RNA oligomers of defined structures. RNA. 2002;8:307–23.
pubmed: 12003491
pmcid: 1370253
doi: 10.1017/S1355838202024226
Sun L, Xu K, Huang W, Yang YT, Li P, Tang L, et al. Predicting dynamic cellular protein-RNA interactions by deep learning using in vivo RNA structures. Cell Res. 2021;31:495–516.
pubmed: 33623109
pmcid: 7900654
doi: 10.1038/s41422-021-00476-y
Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9:133–48.
pubmed: 6163133
pmcid: 326673
doi: 10.1093/nar/9.1.133
Li X, Quon G, Lipshitz HD, Morris Q. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA. 2010;16:1096–107.
pubmed: 20418358
pmcid: 2874161
doi: 10.1261/rna.2017210
Gerresheim GK, Dünnes N, Nieder-Röhrmann A, Shalamova LA, Fricke M, Hofacker I, et al. microRNA-122 target sites in the hepatitis C virus RNA NS5B coding region and 3’ untranslated region: function in replication and influence of RNA secondary structure. Cell Mol Life Sci. 2017;74:747–60.
pubmed: 27677491
doi: 10.1007/s00018-016-2377-9
Leppek K, Byeon GW, Kladwang W, Wayment-Steele HK, Kerr CH, Xu AF, et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat Commun. 2022;13:1536.
pubmed: 35318324
pmcid: 8940940
doi: 10.1038/s41467-022-28776-w
Owttrim GW. RNA helicases: diverse roles in prokaryotic response to abiotic stress. RNA Biol. 2013;10:96–110.
pubmed: 23093803
pmcid: 3590241
doi: 10.4161/rna.22638
Monem PC, Vidyasagar N, Piatt AL, Sehgal E, Arribere JA. Ubiquitination of stalled ribosomes enables mRNA decay via HBS-1 and NONU-1 in vivo. PLoS Genet. 2023;19:e1010577.
pubmed: 36626369
pmcid: 9870110
doi: 10.1371/journal.pgen.1010577
Lan T, Putta MR, Wang D, Dai M, Yu D, Kandimalla ER, et al. Synthetic oligoribonucleotides-containing secondary structures act as agonists of Toll-like receptors 7 and 8. Biochem Biophys Res Commun. 2009;386:443–8.
pubmed: 19523922
doi: 10.1016/j.bbrc.2009.06.036
Newman ZR, Young JM, Ingolia NT, Barton GM. Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proc Natl Acad Sci U S A. 2016;113:E1362–71.
pubmed: 26903634
pmcid: 4791032
doi: 10.1073/pnas.1518976113
Tatematsu M, Nishikawa F, Seya T, Matsumoto M. Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat Commun. 2013;4:1833.
pubmed: 23673618
doi: 10.1038/ncomms2857
Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23:165–75.
pubmed: 16111635
doi: 10.1016/j.immuni.2005.06.008
Wu G, Adachi H, Ge J, Stephenson D, Query CC, Yu YT. Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly. Embo j. 2016;35:654–67.
pubmed: 26873591
pmcid: 4801943
doi: 10.15252/embj.201593113
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.
pubmed: 29476152
pmcid: 5826585
doi: 10.1038/s41556-018-0045-z
Kierzek E, Zhang X, Watson RM, Kennedy SD, Szabat M, Kierzek R, et al. Secondary structure prediction for RNA sequences including N(6)-methyladenosine. Nat Commun. 2022;13:1271.
pubmed: 35277476
pmcid: 8917230
doi: 10.1038/s41467-022-28817-4
Varenyk Y, Spicher T, Hofacker IL, Lorenz R. Modified RNAs and predictions with the ViennaRNA Package. Bioinformatics. 2023;39:btad696.
pubmed: 37971965
pmcid: 10676514
doi: 10.1093/bioinformatics/btad696
Luz J, Antunes F, Clavijo-Salomon MA, Signori E, Tessarollo NG, Strauss BE. Clinical applications and immunological aspects of electroporation-based therapies. Vaccines (Basel). 2021;9:727.
pubmed: 34358144
doi: 10.3390/vaccines9070727
Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol. 2018;19:20–30.
pubmed: 29018283
doi: 10.1038/nrm.2017.91
Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S. Gene designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics. 2006;7:285.
pubmed: 16756672
pmcid: 1523223
doi: 10.1186/1471-2105-7-285
Richardson SM, Wheelan SJ, Yarrington RM, Boeke JD. GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res. 2006;16:550–6.
pubmed: 16481661
pmcid: 1457031
doi: 10.1101/gr.4431306
Marlatt NM, Spratt DE, Shaw GS. Codon optimization for enhanced Escherichia coli expression of human S100A11 and S100A1 proteins. Protein Expr Purif. 2010;73:58–64.
pubmed: 20347987
doi: 10.1016/j.pep.2010.03.015
Gould N, Hendy O, Papamichail D. Computational tools and algorithms for designing customized synthetic genes. Front Bioeng Biotechnol. 2014;2:41.
pubmed: 25340050
pmcid: 4186344
doi: 10.3389/fbioe.2014.00041
Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med. 2018;10:eaao5931.
pubmed: 29643231
doi: 10.1126/scitranslmed.aao5931
Lichtenegger FS, Schnorfeil FM, Rothe M, Deiser K, Altmann T, Bücklein VL, et al. Toll-like receptor 7/8-matured RNA-transduced dendritic cells as post-remission therapy in acute myeloid leukaemia: results of a phase I trial. Clin Transl Immunology. 2020;9:e1117.
pubmed: 32153780
pmcid: 7053229
doi: 10.1002/cti2.1117
Kongsted P, Borch TH, Ellebaek E, Iversen TZ, Andersen R, Met Ö, et al. Dendritic cell vaccination in combination with docetaxel for patients with metastatic castration-resistant prostate cancer: a randomized phase II study. Cytotherapy. 2017;19:500–13.
pubmed: 28215654
doi: 10.1016/j.jcyt.2017.01.007
Wiethoff CM, Middaugh CR. Barriers to nonviral gene delivery. J Pharm Sci. 2003;92:203–17.
pubmed: 12532370
doi: 10.1002/jps.10286
Hobernik D, Bros M. DNA vaccines-how far from clinical use? Int J Mol Sci. 2018;19:3605.
pubmed: 30445702
pmcid: 6274812
doi: 10.3390/ijms19113605
Disis MLN, Guthrie KA, Liu Y, Coveler AL, Higgins DM, Childs JS, et al. Safety and outcomes of a plasmid DNA vaccine encoding the ERBB2 intracellular domain in patients with advanced-stage ERBB2-positive breast cancer: a phase 1 nonrandomized clinical trial. JAMA Oncol. 2023;9:71–8.
pubmed: 36326756
doi: 10.1001/jamaoncol.2022.5143
Schalk JA, Mooi FR, Berbers GA, van Aerts LA, Ovelgönne H, Kimman TG. Preclinical and clinical safety studies on DNA vaccines. Hum Vaccin. 2006;2:45–53.
pubmed: 17012886
doi: 10.4161/hv.2.2.2620
Fioretti D, Iurescia S, Rinaldi M. Recent advances in design of immunogenic and effective naked DNA vaccines against cancer. Recent Pat Anticancer Drug Discov. 2014;9:66–82.
pubmed: 23444943
doi: 10.2174/1574891X113089990037
Faurez F, Dory D, Le Moigne V, Gravier R, Jestin A. Biosafety of DNA vaccines: new generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine. 2010;28:3888–95.
pubmed: 20371391
doi: 10.1016/j.vaccine.2010.03.040
Ndeupen S, Qin Z, Jacobsen S, Bouteau A, Estanbouli H, Igyártó BZ. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience. 2021;24:103479.
pubmed: 34841223
pmcid: 8604799
doi: 10.1016/j.isci.2021.103479
Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384:403–16.
pubmed: 33378609
doi: 10.1056/NEJMoa2035389
Liu MA. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines (Basel). 2019;7:37.
pubmed: 31022829
doi: 10.3390/vaccines7020037
Ledwith BJ, Manam S, Troilo PJ, Barnum AB, Pauley CJ, Griffiths TG 2nd, et al. Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology. 2000;43:258–72.
pubmed: 11251381
doi: 10.1159/000053993
Soltani S, Farahani A, Dastranj M, Momenifar N, Mohajeri P, Emamie AD. Dna vaccine: methods and mechanisms. Adv Hum Biol. 2018;8:132–9.
doi: 10.4103/AIHB.AIHB_74_17
Jorritsma SHT, Gowans EJ, Grubor-Bauk B, Wijesundara DK. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine. 2016;34:5488–94.
pubmed: 27742218
doi: 10.1016/j.vaccine.2016.09.062
Hauser H, Chen SY. Augmentation of DNA vaccine potency through secretory heat shock protein-mediated antigen targeting. Methods. 2003;31:225–31.
pubmed: 14511955
doi: 10.1016/S1046-2023(03)00136-1
Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, et al. A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res. 2009;15:361–7.
pubmed: 19118066
pmcid: 2865676
doi: 10.1158/1078-0432.CCR-08-1725
Hung CF, Hsu KF, Cheng WF, Chai CY, He L, Ling M, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res. 2001;61:1080–8.
pubmed: 11221836
Choi YJ, Hur SY, Kim TJ, Hong SR, Lee JK, Cho CH, et al. A phase II, prospective, randomized, multicenter, open-label study of GX-188E, an HPV DNA vaccine, in patients with cervical intraepithelial neoplasia 3. Clin Cancer Res. 2020;26:1616–23.
pubmed: 31727676
doi: 10.1158/1078-0432.CCR-19-1513
Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, et al. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest. 2001;108:669–78.
pubmed: 11544272
pmcid: 209378
doi: 10.1172/JCI200112346
Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP, et al. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol. 2004;103:317–26.
pubmed: 14754702
doi: 10.1097/01.AOG.0000110246.93627.17
Matijevic M, Hedley ML, Urban RG, Chicz RM, Lajoie C, Luby TM. Immunization with a poly (lactide co-glycolide) encapsulated plasmid DNA expressing antigenic regions of HPV 16 and 18 results in an increase in the precursor frequency of T cells that respond to epitopes from HPV 16, 18, 6 and 11. Cell Immunol. 2011;270:62–9.
pubmed: 21550027
pmcid: 7094646
doi: 10.1016/j.cellimm.2011.04.005
Kabachinski G, Schwartz TU. The nuclear pore complex–structure and function at a glance. J Cell Sci. 2015;128:423–9.
pubmed: 26046137
pmcid: 4311126
doi: 10.1242/jcs.083246
Dean DA. Cell-specific targeting strategies for electroporation-mediated gene delivery in cells and animals. J Membr Biol. 2013;246:737–44.
pubmed: 23525583
pmcid: 3726570
doi: 10.1007/s00232-013-9534-y
Cervia LD, Yuan F. Current progress in electrotransfection as a nonviral method for gene delivery. Mol Pharm. 2018;15:3617–24.
pubmed: 29889538
pmcid: 6123289
doi: 10.1021/acs.molpharmaceut.8b00207
Dietz WM, Skinner NE, Hamilton SE, Jund MD, Heitfeld SM, Litterman AJ, et al. Minicircle DNA is superior to plasmid DNA in eliciting antigen-specific CD8+ T-cell responses. Mol Ther. 2013;21:1526–35.
pubmed: 23689601
pmcid: 3734653
doi: 10.1038/mt.2013.85
Chen ZY, He CY, Ehrhardt A, Kay MA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther. 2003;8:495–500.
pubmed: 12946323
doi: 10.1016/S1525-0016(03)00168-0
Boye C, Arpag S, Francis M, DeClemente S, West A, Heller R, et al. Reduction of plasmid vector backbone length enhances reporter gene expression. Bioelectrochemistry. 2022;144:107981.
pubmed: 34847374
doi: 10.1016/j.bioelechem.2021.107981
Darquet AM, Cameron B, Wils P, Scherman D, Crouzet J. A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther. 1997;4:1341–9.
pubmed: 9472558
doi: 10.1038/sj.gt.3300540
Bigger BW, Tolmachov O, Collombet JM, Fragkos M, Palaszewski I, Coutelle C. An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem. 2001;276:23018–27.
pubmed: 11304530
doi: 10.1074/jbc.M010873200
Mayrhofer P, Blaesen M, Schleef M, Jechlinger W. Minicircle-DNA production by site specific recombination and protein-DNA interaction chromatography. J Gene Med. 2008;10:1253–69.
pubmed: 18767031
doi: 10.1002/jgm.1243
Williams JA, Luke J, Johnson L, Hodgson C. pDNAVACCultra vector family: high throughput intracellular targeting DNA vaccine plasmids. Vaccine. 2006;24:4671–6.
pubmed: 16448726
doi: 10.1016/j.vaccine.2005.08.033
Luke J, Carnes AE, Hodgson CP, Williams JA. Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system. Vaccine. 2009;27:6454–9.
pubmed: 19559109
pmcid: 2767433
doi: 10.1016/j.vaccine.2009.06.017
Williams JA, Paez PA. Improving cell and gene therapy safety and performance using next-generation Nanoplasmid vectors. Mol Ther Nucleic Acids. 2023;32:494–503.
pubmed: 37346980
pmcid: 10280095
doi: 10.1016/j.omtn.2023.04.003
Adie T, Orefo I, Kysh D, Kondas K, Thapa S, Extance J, et al. dbDNA™: an advanced platform for genetic medicines. Drug Discov Today. 2022;27:374–7.
pubmed: 34601125
doi: 10.1016/j.drudis.2021.09.018
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol. 2021;12:636568.
pubmed: 33767702
pmcid: 7986854
doi: 10.3389/fimmu.2021.636568
Cornel AM, Mimpen IL, Nierkens S. MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers (Basel). 2020;12:1760.
pubmed: 32630675
doi: 10.3390/cancers12071760
Propper DJ, Chao D, Braybrooke JP, Bahl P, Thavasu P, Balkwill F, et al. Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clin Cancer Res. 2003;9:84–92.
pubmed: 12538455
Parikh F, Duluc D, Imai N, Clark A, Misiukiewicz K, Bonomi M, et al. Chemoradiotherapy-induced upregulation of PD-1 antagonizes immunity to HPV-related oropharyngeal cancer. Cancer Res. 2014;74:7205–16.
pubmed: 25320012
pmcid: 4498250
doi: 10.1158/0008-5472.CAN-14-1913
Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15:409–25.
pubmed: 26105538
pmcid: 4896389
doi: 10.1038/nrc3958
van Meir H, Nout RA, Welters MJ, Loof NM, de Kam ML, van Ham JJ, et al. Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology. 2017;6:e1267095.
pubmed: 28344877
doi: 10.1080/2162402X.2016.1267095
Dersh D, Phelan JD, Gumina ME, Wang B, Arbuckle JH, Holly J, et al. Genome-wide screens identify lineage- and tumor-specific genes modulating MHC-I- and MHC-II-restricted immunosurveillance of human lymphomas. Immunity. 2021;54:116-31.e10.
pubmed: 33271120
doi: 10.1016/j.immuni.2020.11.002
Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM, Janiszewska M, et al. Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer. 2017;17:605–19.
pubmed: 28912577
pmcid: 5811185
doi: 10.1038/nrc.2017.69
Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006;6:924–35.
pubmed: 17109012
doi: 10.1038/nrc2013
Thomas D, Radhakrishnan P. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol Cancer. 2019;18:14.
pubmed: 30665410
pmcid: 6341551
doi: 10.1186/s12943-018-0927-5
Yamamoto K, Iwadate D, Kato H, Nakai Y, Tateishi K, Fujishiro M. Targeting the metabolic rewiring in pancreatic cancer and its tumor microenvironment. Cancers (Basel). 2022;14:4351.
pubmed: 36139512
doi: 10.3390/cancers14184351
Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 2020;19:480–94.
pubmed: 32555376
pmcid: 7880238
doi: 10.1038/s41573-020-0070-z
Lee JH, Massagué J. TGF-β in developmental and fibrogenic EMTs. Semin Cancer Biol. 2022;86:136–45.
pubmed: 36183999
pmcid: 10155902
doi: 10.1016/j.semcancer.2022.09.004
Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7:re8.
pubmed: 25249658
pmcid: 4372086
doi: 10.1126/scisignal.2005189
Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6:583–92.
pubmed: 16862189
doi: 10.1038/nrc1893
Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 2022;29:10–21.
pubmed: 33603130
doi: 10.1038/s41417-021-00303-x
Furumoto K, Soares L, Engleman EG, Merad M. Induction of potent antitumor immunity by in situ targeting of intratumoral DCs. J Clin Invest. 2004;113:774–83.
pubmed: 14991076
pmcid: 351319
doi: 10.1172/JCI200419762
Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324:1457–61.
pubmed: 19460966
pmcid: 2998180
doi: 10.1126/science.1171362
Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front Immunol. 2020;11:940.
pubmed: 32499786
pmcid: 7243284
doi: 10.3389/fimmu.2020.00940
Gabai Y, Assouline B, Ben-Porath I. Senescent stromal cells: roles in the tumor microenvironment. Trends Cancer. 2023;9:28–41.
pubmed: 36208990
doi: 10.1016/j.trecan.2022.09.002
Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275–87.
pubmed: 27079802
pmcid: 5381938
doi: 10.1038/nrc.2016.36
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.
pubmed: 12091876
doi: 10.1038/nm730
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18:9–34.
pubmed: 32710082
doi: 10.1038/s41571-020-0403-1
Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007;117:1147–54.
pubmed: 17476344
pmcid: 1857253
doi: 10.1172/JCI31178
Saraiva M, Vieira P, O’Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med. 2020;217:e20190418.
pubmed: 31611251
doi: 10.1084/jem.20190418
Hauge A, Rofstad EK. Antifibrotic therapy to normalize the tumor microenvironment. J Transl Med. 2020;18:207.
pubmed: 32434573
pmcid: 7240990
doi: 10.1186/s12967-020-02376-y
Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76:359–70.
pubmed: 31668929
pmcid: 6981282
doi: 10.1016/j.molcel.2019.09.030
Lee NY, Sherman EJ, Schöder H, Wray R, Boyle JO, Singh B, et al. Hypoxia-directed treatment of human papillomavirus-related oropharyngeal carcinoma. J Clin Oncol. 2024;42:940–50.
pubmed: 38241600
doi: 10.1200/JCO.23.01308
Leone RD, Powell JD. Fueling the revolution: targeting metabolism to enhance immunotherapy. Cancer Immunol Res. 2021;9:255–60.
pubmed: 33648947
pmcid: 8240594
doi: 10.1158/2326-6066.CIR-20-0791
McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 2019;37:457–95.
pubmed: 30676822
doi: 10.1146/annurev-immunol-041015-055318
Cafri G, Gartner JJ, Zaks T, Hopson K, Levin N, Paria BC, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest. 2020;130:5976–88.
pubmed: 33016924
pmcid: 7598064
doi: 10.1172/JCI134915
Zhang Z, Liu S, Zhang B, Qiao L, Zhang Y, Zhang Y. T cell dysfunction and exhaustion in cancer. Front Cell Dev Biol. 2020;8:17.
pubmed: 32117960
pmcid: 7027373
doi: 10.3389/fcell.2020.00017
de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41:374–403.
pubmed: 36917948
doi: 10.1016/j.ccell.2023.02.016
2024 Gritstone bio Announces Positive Preliminary Progression-free Survival and Long-term Circulating Tumor DNA (ctDNA) Data from Phase 2 Portion of Ongoing Phase 2/3 Study of its Personalized Cancer Vaccine, GRANITE, in Front-line Metastatic Microsatellite Stable Colorectal Cancer (MSS-CRC). https://ir.gritstonebio.com/news-releases/news-release-details/gritstone-bio-announces-positive-preliminary-progression-free . Accessed 20 June 2024.
Koup RA, Douek DC. Vaccine design for CD8 T lymphocyte responses. Cold Spring Harb Perspect Med. 2011;1:a007252.
pubmed: 22229122
pmcid: 3234456
doi: 10.1101/cshperspect.a007252
Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017;171:934-49.e16.
pubmed: 29033130
pmcid: 5685550
doi: 10.1016/j.cell.2017.09.028