Molecular targets and strategies in the development of nucleic acid cancer vaccines: from shared to personalized antigens.


Journal

Journal of biomedical science
ISSN: 1423-0127
Titre abrégé: J Biomed Sci
Pays: England
ID NLM: 9421567

Informations de publication

Date de publication:
09 Oct 2024
Historique:
received: 19 07 2024
accepted: 01 09 2024
medline: 9 10 2024
pubmed: 9 10 2024
entrez: 8 10 2024
Statut: epublish

Résumé

Recent breakthroughs in cancer immunotherapies have emphasized the importance of harnessing the immune system for treating cancer. Vaccines, which have traditionally been used to promote protective immunity against pathogens, are now being explored as a method to target cancer neoantigens. Over the past few years, extensive preclinical research and more than a hundred clinical trials have been dedicated to investigating various approaches to neoantigen discovery and vaccine formulations, encouraging development of personalized medicine. Nucleic acids (DNA and mRNA) have become particularly promising platform for the development of these cancer immunotherapies. This shift towards nucleic acid-based personalized vaccines has been facilitated by advancements in molecular techniques for identifying neoantigens, antigen prediction methodologies, and the development of new vaccine platforms. Generating these personalized vaccines involves a comprehensive pipeline that includes sequencing of patient tumor samples, data analysis for antigen prediction, and tailored vaccine manufacturing. In this review, we will discuss the various shared and personalized antigens used for cancer vaccine development and introduce strategies for identifying neoantigens through the characterization of gene mutation, transcription, translation and post translational modifications associated with oncogenesis. In addition, we will focus on the most up-to-date nucleic acid vaccine platforms, discuss the limitations of cancer vaccines as well as provide potential solutions, and raise key clinical and technical considerations in vaccine development.

Identifiants

pubmed: 39379923
doi: 10.1186/s12929-024-01082-x
pii: 10.1186/s12929-024-01082-x
doi:

Substances chimiques

Cancer Vaccines 0
Antigens, Neoplasm 0
Nucleic Acids 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

94

Subventions

Organisme : Foundation for the National Institutes of Health
ID : P50CA098252

Informations de copyright

© 2024. The Author(s).

Références

Ottensmeier CHH, Delord JP, Lalanne A, Lantz O, Jamet C, Tavernaro A, et al. Safety and immunogenicity of TG4050: a personalized cancer vaccine in head and neck carcinoma. J Clin Oncol. 2023;41:6082.
doi: 10.1200/JCO.2023.41.16_suppl.6082
Aggarwal C, Ben-Shachar R, Gao Y, Hyun SW, Rivers Z, Epstein C, et al. Assessment of tumor mutational burden and outcomes in patients with diverse advanced cancers treated with immunotherapy. JAMA Netw Open. 2023;6:e2311181.
pubmed: 37129893 pmcid: 10155064 doi: 10.1001/jamanetworkopen.2023.11181
Quintanilha JCF, Storandt MH, Graf RP, Li G, Keller R, Lin DI, et al. Tumor mutational burden in real-world patients with pancreatic cancer: genomic alterations and predictive value for immune checkpoint inhibitor effectiveness. JCO Precis Oncol. 2023;7:e2300092.
pubmed: 37410975 pmcid: 10581638 doi: 10.1200/PO.23.00092
Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov. 2022;21:261–82.
pubmed: 35105974 pmcid: 7612664 doi: 10.1038/s41573-021-00387-y
Weber JS, Carlino MS, Khattak A, Meniawy T, Ansstas G, Taylor MH, et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet. 2024;403:632–44.
pubmed: 38246194 doi: 10.1016/S0140-6736(23)02268-7
Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618:144–50.
pubmed: 37165196 pmcid: 10171177 doi: 10.1038/s41586-023-06063-y
Kiyotani K, Toyoshima Y, Nakamura Y. Personalized immunotherapy in cancer precision medicine. Cancer Biol Med. 2021;18:955–65.
pubmed: 34369137 pmcid: 8610159 doi: 10.20892/j.issn.2095-3941.2021.0032
Garzia I, Nocchi L, Avalle L, Troise F, Leoni G, Seclì L, et al. Tumor burden dictates the neoantigen features required to generate an effective cancer vaccine. Cancer Immunol Res. 2024;12:440–52.
pubmed: 38331413 pmcid: 10985473 doi: 10.1158/2326-6066.CIR-23-0609
Khobragade A, Bhate S, Ramaiah V, Deshpande S, Giri K, Phophle H, et al. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet. 2022;399:1313–21.
pubmed: 35367003 pmcid: 8970574 doi: 10.1016/S0140-6736(22)00151-9
Jou J, Harrington KJ, Zocca MB, Ehrnrooth E, Cohen EEW. The changing landscape of therapeutic cancer vaccines-novel platforms and neoantigen identification. Clin Cancer Res. 2021;27:689–703.
pubmed: 33122346 doi: 10.1158/1078-0432.CCR-20-0245
Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther. 2023;8:450.
pubmed: 38086815 pmcid: 10716479 doi: 10.1038/s41392-023-01674-3
Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4:7.
pubmed: 30774998 pmcid: 6368616 doi: 10.1038/s41541-019-0103-y
Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15:5323–37.
pubmed: 19723653 pmcid: 5779623 doi: 10.1158/1078-0432.CCR-09-0737
Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, et al. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol. 2018;9:947.
pubmed: 29770138 pmcid: 5941317 doi: 10.3389/fimmu.2018.00947
Gnjatic S, Altorki NK, Tang DN, Tu SM, Kundra V, Ritter G, et al. NY-ESO-1 DNA vaccine induces T-cell responses that are suppressed by regulatory T cells. Clin Cancer Res. 2009;15:2130–9.
pubmed: 19276258 pmcid: 5806520 doi: 10.1158/1078-0432.CCR-08-2632
Xue W, Metheringham RL, Brentville VA, Gunn B, Symonds P, Yagita H, et al. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade. Oncoimmunology. 2016;5:e1169353.
pubmed: 27471648 pmcid: 4938367 doi: 10.1080/2162402X.2016.1169353
Papachristofilou A, Hipp MM, Klinkhardt U, Früh M, Sebastian M, Weiss C, et al. Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J Immunother Cancer. 2019;7:38.
pubmed: 30736848 pmcid: 6368815 doi: 10.1186/s40425-019-0520-5
Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020;585:107–12.
pubmed: 32728218 doi: 10.1038/s41586-020-2537-9
van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.
pubmed: 1840703 doi: 10.1126/science.1840703
Hannen R, Bartsch JW. Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis. FEBS Lett. 2018;592:2023–31.
pubmed: 29749098 doi: 10.1002/1873-3468.13084
Middleton G, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 2014;15:829–40.
pubmed: 24954781 doi: 10.1016/S1470-2045(14)70236-0
Jo JH, Kim YT, Choi HS, Kim HG, Lee HS, Choi YW, et al. Efficacy of GV1001 with gemcitabine/capecitabine in previously untreated patients with advanced pancreatic ductal adenocarcinoma having high serum eotaxin levels (KG4/2015): an open-label, randomised, Phase 3 trial. Br J Cancer. 2024;130:43–52.
pubmed: 37903909 doi: 10.1038/s41416-023-02474-w
Vonderheide RH, Kraynyak KA, Shields AF, McRee AJ, Johnson JM, Sun W, et al. Phase 1 study of safety, tolerability and immunogenicity of the human telomerase (hTERT)-encoded DNA plasmids INO-1400 and INO-1401 with or without IL-12 DNA plasmid INO-9012 in adult patients with solid tumors. J Immunother Cancer. 2021;9:e003019.
pubmed: 34230114 pmcid: 8261871 doi: 10.1136/jitc-2021-003019
Reardon DA, Brem S, Desai AS, Bagley SJ, Kurz SC, De La Fuente MI, et al. Intramuscular (IM) INO-5401+INO-9012 with electroporation (EP) in combination with cemiplimab (REGN2810) in newly diagnosed glioblastoma. J Clin Oncol. 2022. https://doi.org/10.1200/JCO.2022.40.16_suppl.2004 .
doi: 10.1200/JCO.2022.40.16_suppl.2004 pubmed: 36521103 pmcid: 9995096
Teixeira L, Medioni J, Garibal J, Adotevi O, Doucet L, Durey MD, et al. A first-in-human phase I study of INVAC-1, an optimized human telomerase DNA vaccine in patients with advanced solid tumors. Clin Cancer Res. 2020;26:588–97.
pubmed: 31558479 doi: 10.1158/1078-0432.CCR-19-1614
Kang J, Park H-H, Choi JH, Lim J, Jang S-Y, Kim M-A, et al. 897 AST-301, a pDNA-based cancer vaccine encoding HER2-ICD, enhances anti-tumor effect of HER2-ADC in a HER2-expressed gastric cancer xenograft model. J Immunother Cancer. 2023;11:A999.
Crosby EJ, Gwin W, Blackwell K, Marcom PK, Chang S, Maecker HT, et al. Vaccine-induced memory CD8(+) T cells provide clinical benefit in HER2 expressing breast cancer: a mouse to human translational study. Clin Cancer Res. 2019;25:2725–36.
pubmed: 30635338 pmcid: 6497539 doi: 10.1158/1078-0432.CCR-18-3102
Linch M, Papai Z, Takacs I, Imedio ER, Kühnle M-C, Derhovanessian E, et al. 421 A first-in-human (FIH) phase I/IIa clinical trial assessing a ribonucleic acid lipoplex (RNA-LPX) encoding shared tumor antigens for immunotherapy of prostate cancer; preliminary analysis of PRO-MERIT. J Immunother Cancer. 2021;9:A451.
Madan RA, Arlen PM, Mohebtash M, Hodge JW, Gulley JL. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin Investig Drugs. 2009;18:1001–11.
pubmed: 19548854 pmcid: 3449276 doi: 10.1517/13543780902997928
Gulley JL, Borre M, Vogelzang NJ, Ng S, Agarwal N, Parker CC, et al. Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol. 2019;37:1051–61.
pubmed: 30817251 pmcid: 6494360 doi: 10.1200/JCO.18.02031
Patel PH, Kockler DR. Sipuleucel-T: a vaccine for metastatic, asymptomatic, androgen-independent prostate cancer. Ann Pharmacother. 2008;42:91–8.
pubmed: 18094343 doi: 10.1345/aph.1K429
Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006;24:3089–94.
pubmed: 16809734 doi: 10.1200/JCO.2005.04.5252
Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115:3670–9.
pubmed: 19536890 doi: 10.1002/cncr.24429
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.
pubmed: 20818862 doi: 10.1056/NEJMoa1001294
Lim J, Park H-H, Choi JK, Choi JH, Kang J, Jang S-Y, et al. 817 AST-201 (pUMVC3-hIGFBP2 N-terminus) demonstrates anti-tumor effect in an ovarian cancer mouse model. J Immunother Cancer. 2023;11:A915.
Han HS, Wesolowski R, Fisher C, Gandhi S, Gwin WR, Kowzun MJ, et al. A multicenter phase II study of vaccines to prevent recurrence in patients with HER-2-positive breast cancer. J Clin Oncol. 2023;41:532.
doi: 10.1200/JCO.2023.41.16_suppl.532
Gwin WR, Kuano K, Childs J, Symonds LK, Coveler AL, Liao JB, et al. A phase II study of concurrent WOKVAC vaccination with neoadjuvant chemotherapy and HER2-targeted monoclonal antibody therapy. J Clin Oncol. 2023;41:TPS636.
doi: 10.1200/JCO.2023.41.16_suppl.TPS636
de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8:e180–90.
pubmed: 31862245 doi: 10.1016/S2214-109X(19)30488-7
Korzeniewski N, Treat B, Duensing S. The HPV-16 E7 oncoprotein induces centriole multiplication through deregulation of Polo-like kinase 4 expression. Mol Cancer. 2011;10:61.
pubmed: 21609466 pmcid: 3120798 doi: 10.1186/1476-4598-10-61
Albert E, Laimins L. Regulation of the human papillomavirus life cycle by DNA damage repair pathways and epigenetic factors. Viruses. 2020;12:744.
pubmed: 32664381 pmcid: 7412114 doi: 10.3390/v12070744
Sofiani VH, Veisi P, Rukerd MRZ, Ghazi R, Nakhaie M. The complexity of human papilloma virus in cancers: a narrative review. Infect Agent Cancer. 2023;18:13.
pubmed: 36843070 pmcid: 9969657 doi: 10.1186/s13027-023-00488-w
Hillemanns P, Denecke A, Woelber L, Böhmer G, Jentschke M, Schjetne KW, et al. A therapeutic antigen-presenting cell-targeting DNA vaccine VB10.16 in HPV16-positive high-grade cervical intraepithelial neoplasia: results from a phase I/IIa trial. Clin Cancer Res. 2022;28:4885–92.
pubmed: 36129459 doi: 10.1158/1078-0432.CCR-22-1927
Bhuyan PK, Dallas M, Kraynyak K, Herring T, Morrow M, Boyer J, et al. Durability of response to VGX-3100 treatment of HPV16/18 positive cervical HSIL. Hum Vaccin Immunother. 2021;17:1288–93.
pubmed: 33175656 doi: 10.1080/21645515.2020.1823778
Youn JW, Hur SY, Woo JW, Kim YM, Lim MC, Park SY, et al. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: interim results of a single-arm, phase 2 trial. Lancet Oncol. 2020;21:1653–60.
pubmed: 33271094 doi: 10.1016/S1470-2045(20)30486-1
Peng S, Qiu J, Yang A, Yang B, Jeang J, Wang JW, et al. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease. Cell Biosci. 2016;6:16.
pubmed: 26918115 pmcid: 4766698 doi: 10.1186/s13578-016-0080-z
Einstein MH, Roden RBS, Ferrall L, Akin M, Blomer A, Wu TC, et al. Safety run-in of intramuscular pNGVL4a-Sig/E7(detox)/HSP70 DNA and TA-CIN protein vaccination as treatment for HPV16+ ASC-US, ASC-H, or LSIL/CIN1. Cancer Prev Res (Phila). 2023;16:219–27.
pubmed: 36607735 pmcid: 10068439 doi: 10.1158/1940-6207.CAPR-22-0413
Klinghammer K, Saba NF, Castelluci E, Colevas AD, Rutkowski T, Greil R, et al. 155P BNT113 + pembrolizumab as first-line treatment in patients with unresectable recurrent/metastatic HNSCC: Preliminary safety data from AHEAD-MERIT. Immuno-Oncol Technol. 2022; 16. https://www.esmoiotech.org/article/S2590-0188(22)00198-8/fulltext .
Gibson MK, Savvides P, Worden F, Heimann-Nichols E, Wu T, Roden R, et al. 677 Phase II trial assessing safety, efficacy and immune correlates of heterologous prime-boost with pBI-11 (IM) and TA-HPV (IM) plus pembrolizumab for advanced, PD-L1 CPS≥1, hrHPV+ Oropharyngeal cancer. J Immunother Cancer. 2023;11:A768.
Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 2016;16:789–802.
pubmed: 27687982 doi: 10.1038/nrc.2016.92
Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther. 2021;6:386.
pubmed: 34776511 pmcid: 8591115 doi: 10.1038/s41392-021-00780-4
Rappaport AR, Kyi C, Lane M, Hart MG, Johnson ML, Henick BS, et al. A shared neoantigen vaccine combined with immune checkpoint blockade for advanced metastatic solid tumors: phase 1 trial interim results. Nat Med. 2024;30:1013–22.
pubmed: 38538867 doi: 10.1038/s41591-024-02851-9
Pan RY, Chung WH, Chu MT, Chen SJ, Chen HC, Zheng L, et al. Recent development and clinical application of cancer vaccine: targeting neoantigens. J Immunol Res. 2018;2018:4325874.
pubmed: 30662919 pmcid: 6313977 doi: 10.1155/2018/4325874
Romero P, Banchereau J, Bhardwaj N, Cockett M, Disis ML, Dranoff G, et al. The Human Vaccines Project: A roadmap for cancer vaccine development. Sci Transl Med. 2016;8:334ps9.
pubmed: 27075624 doi: 10.1126/scitranslmed.aaf0685
Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. Febs j. 2013;280:5350–70.
pubmed: 23777544 doi: 10.1111/febs.12393
An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene. 2018;37:1561–75.
pubmed: 29321659 pmcid: 5860944 doi: 10.1038/s41388-017-0045-7
Elsamadicy AA, Chongsathidkiet P, Desai R, Woroniecka K, Farber SH, Fecci PE, et al. Prospect of rindopepimut in the treatment of glioblastoma. Expert Opin Biol Ther. 2017;17:507–13.
pubmed: 28274144 pmcid: 5787389 doi: 10.1080/14712598.2017.1299705
Sadeghi Najafabadi SA, Bolhassani A, Aghasadeghi MR. Tumor cell-based vaccine: an effective strategy for eradication of cancer cells. Immunotherapy. 2022;14:639–54.
pubmed: 35481358 doi: 10.2217/imt-2022-0036
Berd D. M-Vax: an autologous, hapten-modified vaccine for human cancer. Expert Opin Biol Ther. 2002;2:335–42.
pubmed: 11890872 doi: 10.1517/14712598.2.3.335
Sosman JA, Sondak VK. Melacine: an allogeneic melanoma tumor cell lysate vaccine. Expert Rev Vaccines. 2003;2:353–68.
pubmed: 12903801 doi: 10.1586/14760584.2.3.353
Ogi C, Aruga A. Clinical evaluation of therapeutic cancer vaccines. Hum Vaccin Immunother. 2013;9:1049–57.
pubmed: 23454867 pmcid: 3899139 doi: 10.4161/hv.23917
Gupta RG, Li F, Roszik J, Lizée G. Exploiting tumor neoantigens to target cancer evolution: current challenges and promising therapeutic approaches. Cancer Discov. 2021;11:1024–39.
pubmed: 33722796 pmcid: 8102318 doi: 10.1158/2159-8290.CD-20-1575
Measuring VT, Sequencing T-E. Measuring tumor mutational burden using whole-exome sequencing. Methods Mol Biol. 2020;2055:63–91.
doi: 10.1007/978-1-4939-9773-2_3
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.
pubmed: 25765070 pmcid: 4993154 doi: 10.1126/science.aaa1348
Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51:202–6.
pubmed: 30643254 pmcid: 6365097 doi: 10.1038/s41588-018-0312-8
Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18:248–62.
pubmed: 28052254 doi: 10.1016/j.celrep.2016.12.019
De Mattos-Arruda L, Vazquez M, Finotello F, Lepore R, Porta E, Hundal J, et al. Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group. Ann Oncol. 2020;31:978–90.
pubmed: 32610166 doi: 10.1016/j.annonc.2020.05.008
Shi Y, Jing B, Xi R. Comprehensive analysis of neoantigens derived from structural variation across whole genomes from 2528 tumors. Genome Biol. 2023;24:169.
pubmed: 37461029 pmcid: 10351168 doi: 10.1186/s13059-023-03005-9
Yewdell JW, Antón LC, Bennink JR. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol. 1996;157:1823–6.
pubmed: 8757297 doi: 10.4049/jimmunol.157.5.1823
Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017;18:1009–21.
pubmed: 28694034 doi: 10.1016/S1470-2045(17)30516-8
Hansen UK, Ramskov S, Bjerregaard AM, Borch A, Andersen R, Draghi A, et al. Tumor-infiltrating T cells from clear cell renal cell carcinoma patients recognize neoepitopes derived from point and frameshift mutations. Front Immunol. 2020;11:373.
pubmed: 32226429 pmcid: 7080703 doi: 10.3389/fimmu.2020.00373
Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25:767–75.
pubmed: 31011208 pmcid: 6558662 doi: 10.1038/s41591-019-0434-2
Wei Z, Zhou C, Zhang Z, Guan M, Zhang C, Liu Z, et al. The landscape of tumor fusion neoantigens: a pan-cancer analysis. iScience. 2019;21:249–60.
pubmed: 31677477 pmcid: 6838548 doi: 10.1016/j.isci.2019.10.028
Romanish MT, Cohen CJ, Mager DL. Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol. 2010;20:246–53.
pubmed: 20685251 doi: 10.1016/j.semcancer.2010.05.005
Schliehe C, Bitzer A, van den Broek M, Groettrup M. Stable antigen is most effective for eliciting CD8+ T-cell responses after DNA vaccination and infection with recombinant vaccinia virus in vivo. J Virol. 2012;86:9782–93.
pubmed: 22761378 pmcid: 3446605 doi: 10.1128/JVI.00694-12
Westcott PMK, Sacks NJ, Schenkel JM, Ely ZA, Smith O, Hauck H, et al. Low neoantigen expression and poor T-cell priming underlie early immune escape in colorectal cancer. Nat Cancer. 2021;2:1071–85.
pubmed: 34738089 pmcid: 8562866 doi: 10.1038/s43018-021-00247-z
Castro A, Zanetti M, Carter H. Neoantigen controversies. Annu Rev Biomed Data Sci. 2021;4:227–53.
pubmed: 34465181 pmcid: 10146390 doi: 10.1146/annurev-biodatasci-092820-112713
Black JRM, McGranahan N. Genetic and non-genetic clonal diversity in cancer evolution. Nat Rev Cancer. 2021;21:379–92.
pubmed: 33727690 doi: 10.1038/s41568-021-00336-2
Wright BW, Yi Z, Weissman JS, Chen J. The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol. 2022;32:243–58.
pubmed: 34844857 doi: 10.1016/j.tcb.2021.10.010
Starck SR, Shastri N. Nowhere to hide: unconventional translation yields cryptic peptides for immune surveillance. Immunol Rev. 2016;272:8–16.
pubmed: 27319338 pmcid: 4916849 doi: 10.1111/imr.12434
Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018;34:211-24.e6.
pubmed: 30078747 pmcid: 9844097 doi: 10.1016/j.ccell.2018.07.001
Schwab SR, Shugart JA, Horng T, Malarkannan S, Shastri N. Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol. 2004;2:e366.
pubmed: 15510226 pmcid: 524250 doi: 10.1371/journal.pbio.0020366
Malarkannan S, Horng T, Shih PP, Schwab S, Shastri N. Presentation of out-of-frame peptide/MHC class I complexes by a novel translation initiation mechanism. Immunity. 1999;10:681–90.
pubmed: 10403643 doi: 10.1016/S1074-7613(00)80067-9
Bullock TN, Eisenlohr LC. Ribosomal scanning past the primary initiation codon as a mechanism for expression of CTL epitopes encoded in alternative reading frames. J Exp Med. 1996;184:1319–29.
pubmed: 8879204 doi: 10.1084/jem.184.4.1319
Saulquin X, Scotet E, Trautmann L, Peyrat MA, Halary F, Bonneville M, et al. +1 Frameshifting as a novel mechanism to generate a cryptic cytotoxic T lymphocyte epitope derived from human interleukin 10. J Exp Med. 2002;195:353–8.
pubmed: 11828010 pmcid: 2193594 doi: 10.1084/jem.20011399
Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ, Jackson SE, et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep. 2014;8:1365–79.
pubmed: 25159147 pmcid: 4216110 doi: 10.1016/j.celrep.2014.07.045
Goodenough E, Robinson TM, Zook MB, Flanigan KM, Atkins JF, Howard MT, et al. Cryptic MHC class I-binding peptides are revealed by aminoglycoside-induced stop codon read-through into the 3’ UTR. Proc Natl Acad Sci U S A. 2014;111:5670–5.
pubmed: 24706797 pmcid: 3992684 doi: 10.1073/pnas.1402670111
Jackson R, Kroehling L, Khitun A, Bailis W, Jarret A, York AG, et al. The translation of non-canonical open reading frames controls mucosal immunity. Nature. 2018;564:434–8.
pubmed: 30542152 pmcid: 6939389 doi: 10.1038/s41586-018-0794-7
Chong C, Coukos G, Bassani-Sternberg M. Identification of tumor antigens with immunopeptidomics. Nat Biotechnol. 2022;40:175–88.
pubmed: 34635837 doi: 10.1038/s41587-021-01038-8
Ouspenskaia T, Law T, Clauser KR, Klaeger S, Sarkizova S, Aguet F, et al. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat Biotechnol. 2022;40:209–17.
pubmed: 34663921 doi: 10.1038/s41587-021-01021-3
Malaker SA, Penny SA, Steadman LG, Myers PT, Loke JC, Raghavan M, et al. Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol Res. 2017;5:376–84.
pubmed: 28314751 pmcid: 5508727 doi: 10.1158/2326-6066.CIR-16-0280
Vigneron N, Stroobant V, Ferrari V, Abi Habib J, Van den Eynde BJ. Production of spliced peptides by the proteasome. Mol Immunol. 2019;113:93–102.
pubmed: 29650230 doi: 10.1016/j.molimm.2018.03.030
Liepe J, Ovaa H, Mishto M. Why do proteases mess up with antigen presentation by re-shuffling antigen sequences? Curr Opin Immunol. 2018;52:81–6.
pubmed: 29723668 doi: 10.1016/j.coi.2018.04.016
Ruiz Cuevas MV, Hardy MP, Hollý J, Bonneil É, Durette C, Courcelles M, et al. Most non-canonical proteins uniquely populate the proteome or immunopeptidome. Cell Rep. 2021;34:108815.
pubmed: 33691108 doi: 10.1016/j.celrep.2021.108815
Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34.
pubmed: 28420421 pmcid: 5395719 doi: 10.1186/s13073-017-0424-2
Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23:703–13.
pubmed: 28481359 pmcid: 5461196 doi: 10.1038/nm.4333
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.
pubmed: 23945592 pmcid: 3776390 doi: 10.1038/nature12477
2023 Moderna And Merck Announce mRNA-4157 (V940) In Combination with Keytruda(R) (Pembrolizumab) Demonstrated Continued Improvement in Recurrence-Free Survival and Distant Metastasis-Free Survival in Patients with High-Risk Stage III/IV Melanoma Following Complete Resection Versus Keytruda at Three Years. < https://investors.modernatx.com/news/news-details/2023/Moderna-And-Merck-Announce-mRNA-4157-V940-In-Combination-with-KeytrudaR-Pembrolizumab-Demonstrated-Continued-Improvement-in-Recurrence-Free-Survival-and-Distant-Metastasis-Free-Survival-in-Patients-with-High-Risk-Stage-IIIIV-Melanoma-Following-Comple/default.aspx >. Accessed 20 June 2024.
Carvalho T. Personalized anti-cancer vaccine combining mRNA and immunotherapy tested in melanoma trial. Nat Med. 2023;29:2379–80.
pubmed: 37773210 doi: 10.1038/d41591-023-00072-0
Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–6.
pubmed: 28678784 doi: 10.1038/nature23003
Lopez JS, Camidge R, Iafolla M, Rottey S, Schuler M, Hellmann M, et al. A phase Ib study to evaluate RO7198457, an individualized Neoantigen Specific immunoTherapy (iNeST), in combination with atezolizumab in patients with locally advanced or metastatic solid tumors. Cancer Res. 2020;80:CT301.
doi: 10.1158/1538-7445.AM2020-CT301
Yarchoan M, Gane EJ, Marron TU, Perales-Linares R, Yan J, Cooch N, et al. Personalized neoantigen vaccine and pembrolizumab in advanced hepatocellular carcinoma: a phase 1/2 trial. Nat Med. 2024;30:1044–53.
pubmed: 38584166 pmcid: 11031401 doi: 10.1038/s41591-024-02894-y
Krauss J, Krakhardt A, Eisenmann S, Ochsenreither S, Berg KCG, Kushekhar K, et al. Abstract CT274: Individualized APC targeting VB10.NEO cancer vaccines induce broad neoepitope-specific CD8 T cell responses in patients with advanced or metastatic solid tumors: interim results from a phase 1/2a trial. Cancer Res. 2023;83:CT274.
doi: 10.1158/1538-7445.AM2023-CT274
Bechter O, D’Alise AM, Leoni G, Cotugno G, Siani L, Vitale R, et al. Abstract LB196: NOUS-PEV, a personalized cancer immunotherapy targeting neoantigens, induces long lasting, tumor infiltrating memory T cells. Cancer Res. 2023;83:LB196.
doi: 10.1158/1538-7445.AM2023-LB196
D’Alise AM, Leoni G, Cotugno G, Siani L, Vitale R, Ruzza V, et al. Phase I trial of viral vector-based personalized vaccination elicits robust neoantigen-specific antitumor T-cell responses. Clin Cancer Res. 2024;30:2412–23.
pubmed: 38506710 pmcid: 11145154 doi: 10.1158/1078-0432.CCR-23-3940
Palmer CD, Rappaport AR, Davis MJ, Hart MG, Scallan CD, Hong SJ, et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat Med. 2022;28:1619–29.
pubmed: 35970920 doi: 10.1038/s41591-022-01937-6
Delord JP, Block MS, Ottensmeier C, Colon-Otero G, Le Tourneau C, Lalanne A, et al. Phase 1 studies of personalized neoantigen vaccine TG4050 in ovarian carcinoma (OC) and head and neck squamous cell carcinoma (HNSCC). J Clin Oncol. 2022;40:2637–37.
doi: 10.1200/JCO.2022.40.16_suppl.2637
Chen Z, Zhang S, Han N, Jiang J, Xu Y, Ma D, et al. A neoantigen-based peptide vaccine for patients with advanced pancreatic cancer refractory to standard treatment. Front Immunol. 2021;12:691605.
pubmed: 34484187 pmcid: 8414362 doi: 10.3389/fimmu.2021.691605
Mendez-Gomez HR, DeVries A, Castillo P, von Roemeling C, Qdaisat S, Stover BD, et al. RNA aggregates harness the danger response for potent cancer immunotherapy. Cell. 2024;187:2521-35.e21.
pubmed: 38697107 doi: 10.1016/j.cell.2024.04.003
Villanueva MT. RNA delivery heats up cold tumours. Nat Rev Drug Discov. 2024. https://doi.org/10.1038/d41573-024-00098-0 .
doi: 10.1038/d41573-024-00098-0 pubmed: 39251736
Richters MM, Xia H, Campbell KM, Gillanders WE, Griffith OL, Griffith M. Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med. 2019;11:56.
pubmed: 31462330 pmcid: 6714459 doi: 10.1186/s13073-019-0666-2
Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.
pubmed: 20530316 pmcid: 2943767 doi: 10.1056/NEJMoa0912217
Roudko V, Greenbaum B, Bhardwaj N. computational prediction and validation of tumor-associated neoantigens. Front Immunol. 2020;11:27.
pubmed: 32117226 pmcid: 7025577 doi: 10.3389/fimmu.2020.00027
Bohnert R, Vivas S, Jansen G. Comprehensive benchmarking of SNV callers for highly admixed tumor data. PLoS ONE. 2017;12:e0186175.
pubmed: 29020110 pmcid: 5636151 doi: 10.1371/journal.pone.0186175
Pei S, Liu T, Ren X, Li W, Chen C, Xie Z. Benchmarking variant callers in next-generation and third-generation sequencing analysis. Brief Bioinform. 2021;22(3):bbaa148.
doi: 10.1093/bib/bbaa148 pubmed: 34278426
Sarwal V, Niehus S, Ayyala R, Kim M, Sarkar A, Chang S, et al. A comprehensive benchmarking of WGS-based deletion structural variant callers. Brief Bioinform. 2022;23:bbac221.
pubmed: 35753701 pmcid: 9294411 doi: 10.1093/bib/bbac221
Gallegos Ruiz MI, Floor K, Rijmen F, Grünberg K, Rodriguez JA, Giaccone G. EGFR and K-ras mutation analysis in non-small cell lung cancer: comparison of paraffin embedded versus frozen specimens. Cell Oncol. 2007;29:257–64.
pubmed: 17452778 pmcid: 4618423
Cazzato G, Caporusso C, Arezzo F, Cimmino A, Colagrande A, Loizzi V, et al. Formalin-fixed and paraffin-embedded samples for next generation sequencing: problems and solutions. Genes. 2021;12:1472.
pubmed: 34680867 pmcid: 8535326 doi: 10.3390/genes12101472
Dodani DD, Nguyen MH, Morin RD, Marra MA, Corbett RD. Combinatorial and machine learning approaches for improved somatic variant calling from formalin-fixed paraffin-embedded genome sequence data. Front Genet. 2022;13:834764.
pubmed: 35571031 pmcid: 9092826 doi: 10.3389/fgene.2022.834764
Trevarton AJ, Chang JT, Symmans WF. Simple combination of multiple somatic variant callers to increase accuracy. Sci Rep. 2023;13:8463.
pubmed: 37231022 pmcid: 10212967 doi: 10.1038/s41598-023-34925-y
Junjun R, Zhengqian Z, Ying W, Jialiang W, Yongzhuang L. A comprehensive review of deep learning-based variant calling methods. Brief Funct Genomics. 2024;23(4):303–13.
doi: 10.1093/bfgp/elae003 pubmed: 38366908
Quinn EM, Cormican P, Kenny EM, Hill M, Anney R, Gill M, et al. Development of strategies for SNP detection in RNA-seq data: application to lymphoblastoid cell lines and evaluation using 1000 Genomes data. PLoS ONE. 2013;8:e58815.
pubmed: 23555596 pmcid: 3608647 doi: 10.1371/journal.pone.0058815
Zhao Y, Wang K, Wang WL, Yin TT, Dong WQ, Xu CJ. A high-throughput SNP discovery strategy for RNA-seq data. BMC Genomics. 2019;20:160.
pubmed: 30813897 pmcid: 6391812 doi: 10.1186/s12864-019-5533-4
Liu F, Zhang Y, Zhang L, Li Z, Fang Q, Gao R, et al. Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data. Genome Biol. 2019;20:242.
pubmed: 31744515 pmcid: 6862814 doi: 10.1186/s13059-019-1863-4
CPTAC Pan-Cancer Analysis Page. National Cancer Institute Proteomic Data Commons. https://pdc.cancer.gov/pdc/ . Accessed 20 June 2024.
Erhard F, Halenius A, Zimmermann C, L’Hernault A, Kowalewski DJ, Weekes MP, et al. Improved Ribo-seq enables identification of cryptic translation events. Nat Methods. 2018;15:363–6.
pubmed: 29529017 pmcid: 6152898 doi: 10.1038/nmeth.4631
Fedorova AD, Tierney JAS, Michel AM, Baranov PV. RiboGalaxy: a galaxy-based web platform for ribosome profiling data processing - 2023 update. J Mol Biol. 2023;435:168043.
pubmed: 37356899 doi: 10.1016/j.jmb.2023.168043
Vizcaíno JA, Kubiniok P, Kovalchik KA, Ma Q, Duquette JD, Mongrain I, et al. The human immunopeptidome project: a roadmap to predict and treat immune diseases. Mol Cell Proteomics. 2020;19:31–49.
pubmed: 31744855 doi: 10.1074/mcp.R119.001743
Di Marco M, Schuster H, Backert L, Ghosh M, Rammensee HG, Stevanović S. Unveiling the peptide motifs of HLA-C and HLA-G from naturally presented peptides and generation of binding prediction matrices. J Immunol. 2017;199:2639–51.
pubmed: 28904123 doi: 10.4049/jimmunol.1700938
Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics. 2014;30:3310–6.
pubmed: 25143287 pmcid: 4441069 doi: 10.1093/bioinformatics/btu548
Kiyotani K, Mai TH, Nakamura Y. Comparison of exome-based HLA class I genotyping tools: identification of platform-specific genotyping errors. J Hum Genet. 2017;62:397–405.
pubmed: 27881843 doi: 10.1038/jhg.2016.141
Boegel S, Löwer M, Schäfer M, Bukur T, de Graaf J, Boisguérin V, et al. HLA typing from RNA-Seq sequence reads. Genome Med. 2012;4:102.
pubmed: 23259685 pmcid: 4064318 doi: 10.1186/gm403
Orenbuch R, Filip I, Comito D, Shaman J, Pe’er I, Rabadan R. arcasHLA: high-resolution HLA typing from RNAseq. Bioinformatics. 2020;36:33–40.
pubmed: 31173059 doi: 10.1093/bioinformatics/btz474
Liu C, Yang X, Duffy B, Mohanakumar T, Mitra RD, Zody MC, et al. ATHLATES: accurate typing of human leukocyte antigen through exome sequencing. Nucleic Acids Res. 2013;41:e142.
pubmed: 23748956 pmcid: 3737559 doi: 10.1093/nar/gkt481
Profaizer T, Lázár-Molnár E, Close DW, Delgado JC, Kumánovics A. HLA genotyping in the clinical laboratory: comparison of next-generation sequencing methods. Hla. 2016;88:14–24.
pubmed: 27524804 doi: 10.1111/tan.12850
Zajonc DM. Unconventional peptide presentation by classical MHC class I and implications for T and NK cell activation. Int J Mol Sci. 2020;21:7561.
pubmed: 33066279 pmcid: 7590165 doi: 10.3390/ijms21207561
Xia H, McMichael J, Becker-Hapak M, Onyeador OC, Buchli R, McClain E, et al. Computational prediction of MHC anchor locations guides neoantigen identification and prioritization. Sci Immunol. 2023;8:eabg2200.
pubmed: 37027480 pmcid: 10450883 doi: 10.1126/sciimmunol.abg2200
Yang Y, Wei Z, Cia G, Song X, Pucci F, Rooman M, et al. MHCII-peptide presentation: an assessment of the state-of-the-art prediction methods. Front Immunol. 2024;15:1293706.
pubmed: 38646540 pmcid: 11027168 doi: 10.3389/fimmu.2024.1293706
Andreatta M, Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics. 2016;32:511–7.
pubmed: 26515819 doi: 10.1093/bioinformatics/btv639
Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE. 2007;2:e796.
pubmed: 17726526 pmcid: 1949492 doi: 10.1371/journal.pone.0000796
Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol. 2017;199:3360–8.
pubmed: 28978689 doi: 10.4049/jimmunol.1700893
Bulik-Sullivan B, Busby J, Palmer CD, Davis MJ, Murphy T, Clark A, et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4313 .
doi: 10.1038/nbt.4313 pubmed: 30556813
Albert BA, Yang Y, Shao XM, Singh D, Smit KN, Anagnostou V, et al. Deep neural networks predict class I major histocompatibility complex epitope presentation and transfer learn neoepitope immunogenicity. Nat Mach Intell. 2023;5:861–72.
pubmed: 37829001 pmcid: 10569228 doi: 10.1038/s42256-023-00694-6
Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front Immunol. 2017;8:292.
pubmed: 28367149 pmcid: 5355494 doi: 10.3389/fimmu.2017.00292
Rock KL, Reits E, Neefjes J. Present yourself! by MHC class I and MHC class II molecules. Trends Immunol. 2016;37:724–37.
pubmed: 27614798 pmcid: 5159193 doi: 10.1016/j.it.2016.08.010
Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics. 2015;67:641–50.
pubmed: 26416257 pmcid: 4637192 doi: 10.1007/s00251-015-0873-y
Gfeller D, Bassani-Sternberg M. Predicting antigen presentation-what could we learn from a million peptides? Front Immunol. 2018;9:1716.
pubmed: 30090105 pmcid: 6068240 doi: 10.3389/fimmu.2018.01716
Epitope Prediction and Analysis Tools. IEDB Analysis Resource. http://tools.iedb.org/main/ . Accessed 20 June 2024.
Garcia KC, Adams EJ. How the T cell receptor sees antigen–a structural view. Cell. 2005;122:333–6.
pubmed: 16096054 doi: 10.1016/j.cell.2005.07.015
Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G, et al. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res. 2018;46:D419–27.
pubmed: 28977646 doi: 10.1093/nar/gkx760
Tickotsky N, Sagiv T, Prilusky J, Shifrut E, Friedman N. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics. 2017;33:2924–9.
pubmed: 28481982 doi: 10.1093/bioinformatics/btx286
Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019;47:D339–43.
pubmed: 30357391 doi: 10.1093/nar/gky1006
Zhang W, Wang L, Liu K, Wei X, Yang K, Du W, et al. PIRD: pan immune repertoire database. Bioinformatics. 2020;36:897–903.
pubmed: 31373607 doi: 10.1093/bioinformatics/btz614
Nolan S, Vignali M, Klinger M, Dines JN, Kaplan IM, Svejnoha E, et al. A large-scale database of T-cell receptor beta (TCRβ) sequences and binding associations from natural and synthetic exposure to SARS-CoV-2. Res Sq. 2020. https://doi.org/10.21203/rs.3.rs-51964/v1 .
doi: 10.21203/rs.3.rs-51964/v1 pubmed: 32793896 pmcid: 7418738
Chromium Single Cell Immune Profiling. 10x Genomics. https://www.10xgenomics.com/products/single-cell-immune-profiling . Accessed 20 June 2024.
Fischer DS, Wu Y, Schubert B, Theis FJ. Predicting antigen specificity of single T cells based on TCR CDR3 regions. Mol Syst Biol. 2020;16:e9416.
pubmed: 32779888 pmcid: 7418512 doi: 10.15252/msb.20199416
Overall SA, Toor JS, Hao S, Yarmarkovich M, Sara MOR, Morozov GI, et al. High throughput pMHC-I tetramer library production using chaperone-mediated peptide exchange. Nat Commun. 2020;11:1909.
pubmed: 32312993 pmcid: 7170893 doi: 10.1038/s41467-020-15710-1
Meysman P, Barton J, Bravi B, Cohen-Lavi L, Karnaukhov V, Lilleskov E, et al. Benchmarking solutions to the T-cell receptor epitope prediction problem: IMMREP22 workshop report. ImmunoInformatics. 2023;9:100024.
doi: 10.1016/j.immuno.2023.100024
Grazioli F, Mösch A, Machart P, Li K, Alqassem I, O’Donnell TJ, et al. On TCR binding predictors failing to generalize to unseen peptides. Front Immunol. 2022;13:1014256.
pubmed: 36341448 pmcid: 9634250 doi: 10.3389/fimmu.2022.1014256
Croce G, Bobisse S, Moreno DL, Schmidt J, Guillame P, Harari A, et al. Deep learning predictions of TCR-epitope interactions reveal epitope-specific chains in dual alpha T cells. Nat Commun. 2024;15:3211.
pubmed: 38615042 pmcid: 11016097 doi: 10.1038/s41467-024-47461-8
Habern O. 2021 A sequencing approach to T-cell receptor-antigen recognition. 10x Genomics. https://www.10xgenomics.com/blog/a-sequencing-approach-to-t-cell-receptor-antigen-recognition . Accessed 20 June 2024.
McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.
pubmed: 26940869 pmcid: 4984254 doi: 10.1126/science.aaf1490
Ragone C, Cavalluzzo B, Mauriello A, Tagliamonte M, Buonaguro L. Lack of shared neoantigens in prevalent mutations in cancer. J Transl Med. 2024;22:344.
pubmed: 38600547 pmcid: 11005154 doi: 10.1186/s12967-024-05110-0
Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–85.
pubmed: 28844499 doi: 10.1016/S1470-2045(17)30517-X
Bagley SJ, Binder ZA, Lamrani L, Marinari E, Desai AS, Nasrallah MP, et al. Repeated peripheral infusions of anti-EGFRvIII CAR T cells in combination with pembrolizumab show no efficacy in glioblastoma: a phase 1 trial. Nat Cancer. 2024;5:517–31.
pubmed: 38216766 doi: 10.1038/s43018-023-00709-6
Laganà A. Computational approaches for the investigation of intra-tumor heterogeneity and clonal evolution from bulk sequencing data in precision oncology applications. Adv Exp Med Biol. 2022;1361:101–18.
pubmed: 35230685 doi: 10.1007/978-3-030-91836-1_6
Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: statistical inference of clonal population structure in cancer. Nat Methods. 2014;11:396–8.
pubmed: 24633410 pmcid: 4864026 doi: 10.1038/nmeth.2883
Xiao Y, Wang X, Zhang H, Ulintz PJ, Li H, Guan Y. FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples. Nat Commun. 2020;11:4469.
pubmed: 32901013 pmcid: 7478963 doi: 10.1038/s41467-020-18169-2
Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol. 2014;10:e1003665.
pubmed: 25102416 pmcid: 4125065 doi: 10.1371/journal.pcbi.1003665
Uniprot. https://www.uniprot.org . Accessed 20 June 2024.
e!EnsemblGenomes. https://ensemblgenomes.org . Accessed 20 June 2024.
GENCODE https://www.gencodegenes.org . Accessed 20 June 2024.
HLA Ligand Atlas. https://hla-ligand-atlas.org/welcome . Accessed 20 June 2024.
Łuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551:517–20.
pubmed: 29132144 pmcid: 6137806 doi: 10.1038/nature24473
Richman LP, Vonderheide RH, Rech AJ. Neoantigen dissimilarity to the self-proteome predicts immunogenicity and response to immune checkpoint blockade. Cell Syst. 2019;9:375-82.e4.
pubmed: 31606370 pmcid: 6813910 doi: 10.1016/j.cels.2019.08.009
Hundal J, Kiwala S, McMichael J, Miller CA, Xia H, Wollam AT, et al. pVACtools: a computational toolkit to identify and visualize cancer neoantigens. Cancer Immunol Res. 2020;8:409–20.
pubmed: 31907209 pmcid: 7056579 doi: 10.1158/2326-6066.CIR-19-0401
Kodysh J, Rubinsteyn A. OpenVax: an open-source computational pipeline for cancer neoantigen prediction. Methods Mol Biol. 2020;2120:147–60.
pubmed: 32124317 doi: 10.1007/978-1-0716-0327-7_10
Li B, Jing P, Zheng G, Pi C, Zhang L, Yin Z, et al. Neo-intline: integrated pipeline enables neoantigen design through the in-silico presentation of T-cell epitope. Signal Transduct Target Ther. 2023;8:397.
pubmed: 37848417 pmcid: 10582007 doi: 10.1038/s41392-023-01644-9
Rubinsteyn A, Kodysh J, Hodes I, Mondet S, Aksoy BA, Finnigan JP, et al. Computational pipeline for the PGV-001 neoantigen vaccine trial. Front Immunol. 2017;8:1807.
pubmed: 29403468 doi: 10.3389/fimmu.2017.01807
Schmittel A, Keilholz U, Scheibenbogen C. Evaluation of the interferon-gamma ELISPOT-assay for quantification of peptide specific T lymphocytes from peripheral blood. J Immunol Methods. 1997;210:167–74.
pubmed: 9520299 doi: 10.1016/S0022-1759(97)00184-1
Godard B, Gazagne A, Gey A, Baptiste M, Vingert B, Pegaz-Fiornet B, et al. Optimization of an elispot assay to detect cytomegalovirus-specific CD8+ T lymphocytes. Hum Immunol. 2004;65:1307–18.
pubmed: 15556681 doi: 10.1016/j.humimm.2004.06.006
Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods. 1983;65:109–21.
pubmed: 6361139 doi: 10.1016/0022-1759(83)90308-3
Slota M, Lim JB, Dang Y, Disis ML. ELISpot for measuring human immune responses to vaccines. Expert Rev Vaccines. 2011;10:299–306.
pubmed: 21434798 pmcid: 3360522 doi: 10.1586/erv.10.169
Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods. 1983;64:313–20.
pubmed: 6199426 doi: 10.1016/0022-1759(83)90438-6
Weigelin B, den Boer AT, Wagena E, Broen K, Dolstra H, de Boer RJ, et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat Commun. 2021;12:5217.
pubmed: 34471116 pmcid: 8410835 doi: 10.1038/s41467-021-25282-3
Guil-Luna S, Sedlik C, Piaggio E. Humanized mouse models to evaluate cancer immunotherapeutics. Ann Rev Cancer Biol. 2021;5:119–36.
doi: 10.1146/annurev-cancerbio-050520-100526
Zhang X, Kim S, Hundal J, Herndon JM, Li S, Petti AA, et al. Breast cancer neoantigens can induce CD8(+) T-cell responses and antitumor immunity. Cancer Immunol Res. 2017;5:516–23.
pubmed: 28619968 pmcid: 5647648 doi: 10.1158/2326-6066.CIR-16-0264
Gao S, Wu Z, Arnold B, Diamond C, Batchu S, Giudice V, et al. Single-cell RNA sequencing coupled to TCR profiling of large granular lymphocyte leukemia T cells. Nat Commun. 2022;13:1982.
pubmed: 35411048 pmcid: 9001664 doi: 10.1038/s41467-022-29175-x
Frank ML, Lu K, Erdogan C, Han Y, Hu J, Wang T, et al. T-Cell receptor repertoire sequencing in the era of cancer immunotherapy. Clin Cancer Res. 2023;29:994–1008.
pubmed: 36413126 doi: 10.1158/1078-0432.CCR-22-2469
Kato T, Matsuda T, Ikeda Y, Park JH, Leisegang M, Yoshimura S, et al. Effective screening of T cells recognizing neoantigens and construction of T-cell receptor-engineered T cells. Oncotarget. 2018;9:11009–19.
pubmed: 29541393 pmcid: 5834292 doi: 10.18632/oncotarget.24232
Zong S, Mi T, Flores LG 2nd, Alpert A, Olivares S, Patel K, et al. Very rapid cloning, expression and identifying specificity of T-cell receptors for T-cell engineering. PLoS ONE. 2020;15:e0228112.
pubmed: 32040512 pmcid: 7010234 doi: 10.1371/journal.pone.0228112
Danilova L, Anagnostou V, Caushi JX, Sidhom JW, Guo H, Chan HY, et al. The mutation-associated neoantigen functional expansion of specific T cells (MANAFEST) assay: a sensitive platform for monitoring antitumor immunity. Cancer Immunol Res. 2018;6:888–99.
pubmed: 29895573 pmcid: 6072595 doi: 10.1158/2326-6066.CIR-18-0129
Vijh S, Pilip IM, Pamer EG. Effect of antigen-processing efficiency on in vivo T cell response magnitudes. J Immunol. 1998;160:3971–7.
pubmed: 9558105 doi: 10.4049/jimmunol.160.8.3971
van Pul KM, Fransen MF, van de Ven R, de Gruijl TD. Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy. Front Immunol. 2021;12:643291.
pubmed: 33732264 pmcid: 7956978 doi: 10.3389/fimmu.2021.643291
Cochran AJ, Huang RR, Lee J, Itakura E, Leong SP, Essner R. Tumour-induced immune modulation of sentinel lymph nodes. Nat Rev Immunol. 2006;6:659–70.
pubmed: 16932751 doi: 10.1038/nri1919
Norbury CC, Basta S, Donohue KB, Tscharke DC, Princiotta MF, Berglund P, et al. CD8+ T cell cross-priming via transfer of proteasome substrates. Science. 2004;304:1318–21.
pubmed: 15166379 doi: 10.1126/science.1096378
Ho NI, Veld LGMHI, Raaijmakers TK, Adema GJ. Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines? Front Immunol. 2018;9:2874.
pubmed: 30619259 pmcid: 6300500 doi: 10.3389/fimmu.2018.02874
Abd-Aziz N, Poh CL. Development of peptide-based vaccines for cancer. J Oncol. 2022;2022:9749363.
pubmed: 35342400 pmcid: 8941562 doi: 10.1155/2022/9749363
Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, Offringa R, van der Burg SH. CD8+ CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol. 2007;179:5033–40.
pubmed: 17911588 doi: 10.4049/jimmunol.179.8.5033
Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines. 2010;9:157–73.
pubmed: 20109027 pmcid: 2837080 doi: 10.1586/erv.09.160
Li YD, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci. 2020;27:104.
pubmed: 33341119 pmcid: 7749790 doi: 10.1186/s12929-020-00695-2
Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what’s important? Hum Vaccin Immunother. 2014;10:2875–84.
pubmed: 25483662 pmcid: 5443060 doi: 10.4161/hv.29594
McCann N, O’Connor D, Lambe T, Pollard AJ. Viral vector vaccines. Curr Opin Immunol. 2022;77:102210.
pubmed: 35643023 pmcid: 9612401 doi: 10.1016/j.coi.2022.102210
Bechter O, Martin-Liberal J, D’Alise A, Leoni G, Cotugno G, Siani L, et al. 706 NOUS-PEV, a novel personalized viral-based prime/boost cancer immunotherapy targeting patient-specific neoantigens: interim results from the first subjects in the phase 1b study. J Immunother Cancer. 2022;10:A739.
Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, et al. Yeast expression systems: overview and recent advances. Mol Biotechnol. 2019;61:365–84.
pubmed: 30805909 doi: 10.1007/s12033-019-00164-8
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022;15:28.
pubmed: 35303904 pmcid: 8931585 doi: 10.1186/s13045-022-01247-x
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines. Adv Drug Deliv Rev. 2024;210:115340.
pubmed: 38810703 doi: 10.1016/j.addr.2024.115340
Trombetta CM, Marchi S, Manini I, Lazzeri G, Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev Vaccines. 2019;18:737–50.
pubmed: 31265333 doi: 10.1080/14760584.2019.1639503
Hegde NR. Cell culture-based influenza vaccines: a necessary and indispensable investment for the future. Hum Vaccin Immunother. 2015;11:1223–34.
pubmed: 25875691 pmcid: 4514150 doi: 10.1080/21645515.2015.1016666
Chi WY, Li YD, Huang HC, Chan TEH, Chow SY, Su JH, et al. COVID-19 vaccine update: vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. J Biomed Sci. 2022;29:82.
pubmed: 36243868 pmcid: 9569411 doi: 10.1186/s12929-022-00853-8
Chatzikleanthous D, O’Hagan DT, Adamo R. Lipid-based nanoparticles for delivery of vaccine adjuvants and antigens: toward multicomponent vaccines. Mol Pharm. 2021;18:2867–88.
pubmed: 34264684 doi: 10.1021/acs.molpharmaceut.1c00447
Yang B, Jeang J, Yang A, Wu TC, Hung CF. DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother. 2014;10:3153–64.
pubmed: 25625927 doi: 10.4161/21645515.2014.980686
Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, et al. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol. 2023;40:200.
pubmed: 37294501 pmcid: 10251337 doi: 10.1007/s12032-023-02060-3
Barbier AJ, Jiang AY, Zhang P, Wooster R, Anderson DG. The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol. 2022;40:840–54.
pubmed: 35534554 doi: 10.1038/s41587-022-01294-2
Zhang C, Ma Y, Zhang J, Kuo JC, Zhang Z, Xie H, et al. Modification of lipid-based nanoparticles: an efficient delivery system for nucleic acid-based immunotherapy. Molecules. 2022;27:1943.
pubmed: 35335310 pmcid: 8949521 doi: 10.3390/molecules27061943
Zhang R, Tang L, Tian Y, Ji X, Hu Q, Zhou B, et al. DP7-C-modified liposomes enhance immune responses and the antitumor effect of a neoantigen-based mRNA vaccine. J Control Release. 2020;328:210–21.
pubmed: 32860927 doi: 10.1016/j.jconrel.2020.08.023
Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396–401.
pubmed: 27281205 doi: 10.1038/nature18300
Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16:1833–40.
pubmed: 18797453 doi: 10.1038/mt.2008.200
Beck JD, Reidenbach D, Salomon N, Sahin U, Türeci Ö, Vormehr M, et al. mRNA therapeutics in cancer immunotherapy. Mol Cancer. 2021;20:69.
pubmed: 33858437 pmcid: 8047518 doi: 10.1186/s12943-021-01348-0
Sloma MF, Mathews DH. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures. RNA. 2016;22:1808–18.
pubmed: 27852924 pmcid: 5113201 doi: 10.1261/rna.053694.115
Serra MJ, Baird JD, Dale T, Fey BL, Retatagos K, Westhof E. Effects of magnesium ions on the stabilization of RNA oligomers of defined structures. RNA. 2002;8:307–23.
pubmed: 12003491 pmcid: 1370253 doi: 10.1017/S1355838202024226
Sun L, Xu K, Huang W, Yang YT, Li P, Tang L, et al. Predicting dynamic cellular protein-RNA interactions by deep learning using in vivo RNA structures. Cell Res. 2021;31:495–516.
pubmed: 33623109 pmcid: 7900654 doi: 10.1038/s41422-021-00476-y
Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9:133–48.
pubmed: 6163133 pmcid: 326673 doi: 10.1093/nar/9.1.133
Li X, Quon G, Lipshitz HD, Morris Q. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA. 2010;16:1096–107.
pubmed: 20418358 pmcid: 2874161 doi: 10.1261/rna.2017210
Gerresheim GK, Dünnes N, Nieder-Röhrmann A, Shalamova LA, Fricke M, Hofacker I, et al. microRNA-122 target sites in the hepatitis C virus RNA NS5B coding region and 3’ untranslated region: function in replication and influence of RNA secondary structure. Cell Mol Life Sci. 2017;74:747–60.
pubmed: 27677491 doi: 10.1007/s00018-016-2377-9
Leppek K, Byeon GW, Kladwang W, Wayment-Steele HK, Kerr CH, Xu AF, et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat Commun. 2022;13:1536.
pubmed: 35318324 pmcid: 8940940 doi: 10.1038/s41467-022-28776-w
Owttrim GW. RNA helicases: diverse roles in prokaryotic response to abiotic stress. RNA Biol. 2013;10:96–110.
pubmed: 23093803 pmcid: 3590241 doi: 10.4161/rna.22638
Monem PC, Vidyasagar N, Piatt AL, Sehgal E, Arribere JA. Ubiquitination of stalled ribosomes enables mRNA decay via HBS-1 and NONU-1 in vivo. PLoS Genet. 2023;19:e1010577.
pubmed: 36626369 pmcid: 9870110 doi: 10.1371/journal.pgen.1010577
Lan T, Putta MR, Wang D, Dai M, Yu D, Kandimalla ER, et al. Synthetic oligoribonucleotides-containing secondary structures act as agonists of Toll-like receptors 7 and 8. Biochem Biophys Res Commun. 2009;386:443–8.
pubmed: 19523922 doi: 10.1016/j.bbrc.2009.06.036
Newman ZR, Young JM, Ingolia NT, Barton GM. Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proc Natl Acad Sci U S A. 2016;113:E1362–71.
pubmed: 26903634 pmcid: 4791032 doi: 10.1073/pnas.1518976113
Tatematsu M, Nishikawa F, Seya T, Matsumoto M. Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat Commun. 2013;4:1833.
pubmed: 23673618 doi: 10.1038/ncomms2857
Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23:165–75.
pubmed: 16111635 doi: 10.1016/j.immuni.2005.06.008
Wu G, Adachi H, Ge J, Stephenson D, Query CC, Yu YT. Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly. Embo j. 2016;35:654–67.
pubmed: 26873591 pmcid: 4801943 doi: 10.15252/embj.201593113
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.
pubmed: 29476152 pmcid: 5826585 doi: 10.1038/s41556-018-0045-z
Kierzek E, Zhang X, Watson RM, Kennedy SD, Szabat M, Kierzek R, et al. Secondary structure prediction for RNA sequences including N(6)-methyladenosine. Nat Commun. 2022;13:1271.
pubmed: 35277476 pmcid: 8917230 doi: 10.1038/s41467-022-28817-4
Varenyk Y, Spicher T, Hofacker IL, Lorenz R. Modified RNAs and predictions with the ViennaRNA Package. Bioinformatics. 2023;39:btad696.
pubmed: 37971965 pmcid: 10676514 doi: 10.1093/bioinformatics/btad696
Luz J, Antunes F, Clavijo-Salomon MA, Signori E, Tessarollo NG, Strauss BE. Clinical applications and immunological aspects of electroporation-based therapies. Vaccines (Basel). 2021;9:727.
pubmed: 34358144 doi: 10.3390/vaccines9070727
Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol. 2018;19:20–30.
pubmed: 29018283 doi: 10.1038/nrm.2017.91
Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S. Gene designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics. 2006;7:285.
pubmed: 16756672 pmcid: 1523223 doi: 10.1186/1471-2105-7-285
Richardson SM, Wheelan SJ, Yarrington RM, Boeke JD. GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res. 2006;16:550–6.
pubmed: 16481661 pmcid: 1457031 doi: 10.1101/gr.4431306
Marlatt NM, Spratt DE, Shaw GS. Codon optimization for enhanced Escherichia coli expression of human S100A11 and S100A1 proteins. Protein Expr Purif. 2010;73:58–64.
pubmed: 20347987 doi: 10.1016/j.pep.2010.03.015
Gould N, Hendy O, Papamichail D. Computational tools and algorithms for designing customized synthetic genes. Front Bioeng Biotechnol. 2014;2:41.
pubmed: 25340050 pmcid: 4186344 doi: 10.3389/fbioe.2014.00041
Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med. 2018;10:eaao5931.
pubmed: 29643231 doi: 10.1126/scitranslmed.aao5931
Lichtenegger FS, Schnorfeil FM, Rothe M, Deiser K, Altmann T, Bücklein VL, et al. Toll-like receptor 7/8-matured RNA-transduced dendritic cells as post-remission therapy in acute myeloid leukaemia: results of a phase I trial. Clin Transl Immunology. 2020;9:e1117.
pubmed: 32153780 pmcid: 7053229 doi: 10.1002/cti2.1117
Kongsted P, Borch TH, Ellebaek E, Iversen TZ, Andersen R, Met Ö, et al. Dendritic cell vaccination in combination with docetaxel for patients with metastatic castration-resistant prostate cancer: a randomized phase II study. Cytotherapy. 2017;19:500–13.
pubmed: 28215654 doi: 10.1016/j.jcyt.2017.01.007
Wiethoff CM, Middaugh CR. Barriers to nonviral gene delivery. J Pharm Sci. 2003;92:203–17.
pubmed: 12532370 doi: 10.1002/jps.10286
Hobernik D, Bros M. DNA vaccines-how far from clinical use? Int J Mol Sci. 2018;19:3605.
pubmed: 30445702 pmcid: 6274812 doi: 10.3390/ijms19113605
Disis MLN, Guthrie KA, Liu Y, Coveler AL, Higgins DM, Childs JS, et al. Safety and outcomes of a plasmid DNA vaccine encoding the ERBB2 intracellular domain in patients with advanced-stage ERBB2-positive breast cancer: a phase 1 nonrandomized clinical trial. JAMA Oncol. 2023;9:71–8.
pubmed: 36326756 doi: 10.1001/jamaoncol.2022.5143
Schalk JA, Mooi FR, Berbers GA, van Aerts LA, Ovelgönne H, Kimman TG. Preclinical and clinical safety studies on DNA vaccines. Hum Vaccin. 2006;2:45–53.
pubmed: 17012886 doi: 10.4161/hv.2.2.2620
Fioretti D, Iurescia S, Rinaldi M. Recent advances in design of immunogenic and effective naked DNA vaccines against cancer. Recent Pat Anticancer Drug Discov. 2014;9:66–82.
pubmed: 23444943 doi: 10.2174/1574891X113089990037
Faurez F, Dory D, Le Moigne V, Gravier R, Jestin A. Biosafety of DNA vaccines: new generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine. 2010;28:3888–95.
pubmed: 20371391 doi: 10.1016/j.vaccine.2010.03.040
Ndeupen S, Qin Z, Jacobsen S, Bouteau A, Estanbouli H, Igyártó BZ. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience. 2021;24:103479.
pubmed: 34841223 pmcid: 8604799 doi: 10.1016/j.isci.2021.103479
Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384:403–16.
pubmed: 33378609 doi: 10.1056/NEJMoa2035389
Liu MA. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines (Basel). 2019;7:37.
pubmed: 31022829 doi: 10.3390/vaccines7020037
Ledwith BJ, Manam S, Troilo PJ, Barnum AB, Pauley CJ, Griffiths TG 2nd, et al. Plasmid DNA vaccines: investigation of integration into host cellular DNA following intramuscular injection in mice. Intervirology. 2000;43:258–72.
pubmed: 11251381 doi: 10.1159/000053993
Soltani S, Farahani A, Dastranj M, Momenifar N, Mohajeri P, Emamie AD. Dna vaccine: methods and mechanisms. Adv Hum Biol. 2018;8:132–9.
doi: 10.4103/AIHB.AIHB_74_17
Jorritsma SHT, Gowans EJ, Grubor-Bauk B, Wijesundara DK. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine. 2016;34:5488–94.
pubmed: 27742218 doi: 10.1016/j.vaccine.2016.09.062
Hauser H, Chen SY. Augmentation of DNA vaccine potency through secretory heat shock protein-mediated antigen targeting. Methods. 2003;31:225–31.
pubmed: 14511955 doi: 10.1016/S1046-2023(03)00136-1
Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, et al. A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res. 2009;15:361–7.
pubmed: 19118066 pmcid: 2865676 doi: 10.1158/1078-0432.CCR-08-1725
Hung CF, Hsu KF, Cheng WF, Chai CY, He L, Ling M, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res. 2001;61:1080–8.
pubmed: 11221836
Choi YJ, Hur SY, Kim TJ, Hong SR, Lee JK, Cho CH, et al. A phase II, prospective, randomized, multicenter, open-label study of GX-188E, an HPV DNA vaccine, in patients with cervical intraepithelial neoplasia 3. Clin Cancer Res. 2020;26:1616–23.
pubmed: 31727676 doi: 10.1158/1078-0432.CCR-19-1513
Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, et al. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest. 2001;108:669–78.
pubmed: 11544272 pmcid: 209378 doi: 10.1172/JCI200112346
Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP, et al. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol. 2004;103:317–26.
pubmed: 14754702 doi: 10.1097/01.AOG.0000110246.93627.17
Matijevic M, Hedley ML, Urban RG, Chicz RM, Lajoie C, Luby TM. Immunization with a poly (lactide co-glycolide) encapsulated plasmid DNA expressing antigenic regions of HPV 16 and 18 results in an increase in the precursor frequency of T cells that respond to epitopes from HPV 16, 18, 6 and 11. Cell Immunol. 2011;270:62–9.
pubmed: 21550027 pmcid: 7094646 doi: 10.1016/j.cellimm.2011.04.005
Kabachinski G, Schwartz TU. The nuclear pore complex–structure and function at a glance. J Cell Sci. 2015;128:423–9.
pubmed: 26046137 pmcid: 4311126 doi: 10.1242/jcs.083246
Dean DA. Cell-specific targeting strategies for electroporation-mediated gene delivery in cells and animals. J Membr Biol. 2013;246:737–44.
pubmed: 23525583 pmcid: 3726570 doi: 10.1007/s00232-013-9534-y
Cervia LD, Yuan F. Current progress in electrotransfection as a nonviral method for gene delivery. Mol Pharm. 2018;15:3617–24.
pubmed: 29889538 pmcid: 6123289 doi: 10.1021/acs.molpharmaceut.8b00207
Dietz WM, Skinner NE, Hamilton SE, Jund MD, Heitfeld SM, Litterman AJ, et al. Minicircle DNA is superior to plasmid DNA in eliciting antigen-specific CD8+ T-cell responses. Mol Ther. 2013;21:1526–35.
pubmed: 23689601 pmcid: 3734653 doi: 10.1038/mt.2013.85
Chen ZY, He CY, Ehrhardt A, Kay MA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther. 2003;8:495–500.
pubmed: 12946323 doi: 10.1016/S1525-0016(03)00168-0
Boye C, Arpag S, Francis M, DeClemente S, West A, Heller R, et al. Reduction of plasmid vector backbone length enhances reporter gene expression. Bioelectrochemistry. 2022;144:107981.
pubmed: 34847374 doi: 10.1016/j.bioelechem.2021.107981
Darquet AM, Cameron B, Wils P, Scherman D, Crouzet J. A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther. 1997;4:1341–9.
pubmed: 9472558 doi: 10.1038/sj.gt.3300540
Bigger BW, Tolmachov O, Collombet JM, Fragkos M, Palaszewski I, Coutelle C. An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem. 2001;276:23018–27.
pubmed: 11304530 doi: 10.1074/jbc.M010873200
Mayrhofer P, Blaesen M, Schleef M, Jechlinger W. Minicircle-DNA production by site specific recombination and protein-DNA interaction chromatography. J Gene Med. 2008;10:1253–69.
pubmed: 18767031 doi: 10.1002/jgm.1243
Williams JA, Luke J, Johnson L, Hodgson C. pDNAVACCultra vector family: high throughput intracellular targeting DNA vaccine plasmids. Vaccine. 2006;24:4671–6.
pubmed: 16448726 doi: 10.1016/j.vaccine.2005.08.033
Luke J, Carnes AE, Hodgson CP, Williams JA. Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system. Vaccine. 2009;27:6454–9.
pubmed: 19559109 pmcid: 2767433 doi: 10.1016/j.vaccine.2009.06.017
Williams JA, Paez PA. Improving cell and gene therapy safety and performance using next-generation Nanoplasmid vectors. Mol Ther Nucleic Acids. 2023;32:494–503.
pubmed: 37346980 pmcid: 10280095 doi: 10.1016/j.omtn.2023.04.003
Adie T, Orefo I, Kysh D, Kondas K, Thapa S, Extance J, et al. dbDNA™: an advanced platform for genetic medicines. Drug Discov Today. 2022;27:374–7.
pubmed: 34601125 doi: 10.1016/j.drudis.2021.09.018
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol. 2021;12:636568.
pubmed: 33767702 pmcid: 7986854 doi: 10.3389/fimmu.2021.636568
Cornel AM, Mimpen IL, Nierkens S. MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers (Basel). 2020;12:1760.
pubmed: 32630675 doi: 10.3390/cancers12071760
Propper DJ, Chao D, Braybrooke JP, Bahl P, Thavasu P, Balkwill F, et al. Low-dose IFN-gamma induces tumor MHC expression in metastatic malignant melanoma. Clin Cancer Res. 2003;9:84–92.
pubmed: 12538455
Parikh F, Duluc D, Imai N, Clark A, Misiukiewicz K, Bonomi M, et al. Chemoradiotherapy-induced upregulation of PD-1 antagonizes immunity to HPV-related oropharyngeal cancer. Cancer Res. 2014;74:7205–16.
pubmed: 25320012 pmcid: 4498250 doi: 10.1158/0008-5472.CAN-14-1913
Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15:409–25.
pubmed: 26105538 pmcid: 4896389 doi: 10.1038/nrc3958
van Meir H, Nout RA, Welters MJ, Loof NM, de Kam ML, van Ham JJ, et al. Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology. 2017;6:e1267095.
pubmed: 28344877 doi: 10.1080/2162402X.2016.1267095
Dersh D, Phelan JD, Gumina ME, Wang B, Arbuckle JH, Holly J, et al. Genome-wide screens identify lineage- and tumor-specific genes modulating MHC-I- and MHC-II-restricted immunosurveillance of human lymphomas. Immunity. 2021;54:116-31.e10.
pubmed: 33271120 doi: 10.1016/j.immuni.2020.11.002
Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM, Janiszewska M, et al. Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer. 2017;17:605–19.
pubmed: 28912577 pmcid: 5811185 doi: 10.1038/nrc.2017.69
Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006;6:924–35.
pubmed: 17109012 doi: 10.1038/nrc2013
Thomas D, Radhakrishnan P. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol Cancer. 2019;18:14.
pubmed: 30665410 pmcid: 6341551 doi: 10.1186/s12943-018-0927-5
Yamamoto K, Iwadate D, Kato H, Nakai Y, Tateishi K, Fujishiro M. Targeting the metabolic rewiring in pancreatic cancer and its tumor microenvironment. Cancers (Basel). 2022;14:4351.
pubmed: 36139512 doi: 10.3390/cancers14184351
Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 2020;19:480–94.
pubmed: 32555376 pmcid: 7880238 doi: 10.1038/s41573-020-0070-z
Lee JH, Massagué J. TGF-β in developmental and fibrogenic EMTs. Semin Cancer Biol. 2022;86:136–45.
pubmed: 36183999 pmcid: 10155902 doi: 10.1016/j.semcancer.2022.09.004
Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7:re8.
pubmed: 25249658 pmcid: 4372086 doi: 10.1126/scisignal.2005189
Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6:583–92.
pubmed: 16862189 doi: 10.1038/nrc1893
Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 2022;29:10–21.
pubmed: 33603130 doi: 10.1038/s41417-021-00303-x
Furumoto K, Soares L, Engleman EG, Merad M. Induction of potent antitumor immunity by in situ targeting of intratumoral DCs. J Clin Invest. 2004;113:774–83.
pubmed: 14991076 pmcid: 351319 doi: 10.1172/JCI200419762
Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324:1457–61.
pubmed: 19460966 pmcid: 2998180 doi: 10.1126/science.1171362
Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front Immunol. 2020;11:940.
pubmed: 32499786 pmcid: 7243284 doi: 10.3389/fimmu.2020.00940
Gabai Y, Assouline B, Ben-Porath I. Senescent stromal cells: roles in the tumor microenvironment. Trends Cancer. 2023;9:28–41.
pubmed: 36208990 doi: 10.1016/j.trecan.2022.09.002
Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275–87.
pubmed: 27079802 pmcid: 5381938 doi: 10.1038/nrc.2016.36
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.
pubmed: 12091876 doi: 10.1038/nm730
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18:9–34.
pubmed: 32710082 doi: 10.1038/s41571-020-0403-1
Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007;117:1147–54.
pubmed: 17476344 pmcid: 1857253 doi: 10.1172/JCI31178
Saraiva M, Vieira P, O’Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med. 2020;217:e20190418.
pubmed: 31611251 doi: 10.1084/jem.20190418
Hauge A, Rofstad EK. Antifibrotic therapy to normalize the tumor microenvironment. J Transl Med. 2020;18:207.
pubmed: 32434573 pmcid: 7240990 doi: 10.1186/s12967-020-02376-y
Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76:359–70.
pubmed: 31668929 pmcid: 6981282 doi: 10.1016/j.molcel.2019.09.030
Lee NY, Sherman EJ, Schöder H, Wray R, Boyle JO, Singh B, et al. Hypoxia-directed treatment of human papillomavirus-related oropharyngeal carcinoma. J Clin Oncol. 2024;42:940–50.
pubmed: 38241600 doi: 10.1200/JCO.23.01308
Leone RD, Powell JD. Fueling the revolution: targeting metabolism to enhance immunotherapy. Cancer Immunol Res. 2021;9:255–60.
pubmed: 33648947 pmcid: 8240594 doi: 10.1158/2326-6066.CIR-20-0791
McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 2019;37:457–95.
pubmed: 30676822 doi: 10.1146/annurev-immunol-041015-055318
Cafri G, Gartner JJ, Zaks T, Hopson K, Levin N, Paria BC, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest. 2020;130:5976–88.
pubmed: 33016924 pmcid: 7598064 doi: 10.1172/JCI134915
Zhang Z, Liu S, Zhang B, Qiao L, Zhang Y, Zhang Y. T cell dysfunction and exhaustion in cancer. Front Cell Dev Biol. 2020;8:17.
pubmed: 32117960 pmcid: 7027373 doi: 10.3389/fcell.2020.00017
de Visser KE, Joyce JA. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41:374–403.
pubmed: 36917948 doi: 10.1016/j.ccell.2023.02.016
2024 Gritstone bio Announces Positive Preliminary Progression-free Survival and Long-term Circulating Tumor DNA (ctDNA) Data from Phase 2 Portion of Ongoing Phase 2/3 Study of its Personalized Cancer Vaccine, GRANITE, in Front-line Metastatic Microsatellite Stable Colorectal Cancer (MSS-CRC). https://ir.gritstonebio.com/news-releases/news-release-details/gritstone-bio-announces-positive-preliminary-progression-free . Accessed 20 June 2024.
Koup RA, Douek DC. Vaccine design for CD8 T lymphocyte responses. Cold Spring Harb Perspect Med. 2011;1:a007252.
pubmed: 22229122 pmcid: 3234456 doi: 10.1101/cshperspect.a007252
Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017;171:934-49.e16.
pubmed: 29033130 pmcid: 5685550 doi: 10.1016/j.cell.2017.09.028

Auteurs

Wei-Yu Chi (WY)

Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA.

Yingying Hu (Y)

Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Hsin-Che Huang (HC)

Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Hui-Hsuan Kuo (HH)

Pharmacology PhD Program, Weill Cornell Medicine, New York, NY, USA.

Shu-Hong Lin (SH)

Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX, USA.

Chun-Tien Jimmy Kuo (CJ)

Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA.

Julia Tao (J)

Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.

Darrell Fan (D)

Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.

Yi-Min Huang (YM)

Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.

Annie A Wu (AA)

Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.

Chien-Fu Hung (CF)

Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA.
Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA.

T-C Wu (TC)

Department of Pathology, Johns Hopkins School of Medicine, 1550 Orleans St, CRB II Room 309, Baltimore, MD, 21287, USA. wutc@jhmi.edu.
Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA. wutc@jhmi.edu.
Department of Obstetrics and Gynecology, Johns Hopkins School of Medicine, Baltimore, MD, USA. wutc@jhmi.edu.
Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, MD, USA. wutc@jhmi.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH