Creation of a replicable anatomic model of terrible triad of the elbow.


Journal

Journal of orthopaedic surgery and research
ISSN: 1749-799X
Titre abrégé: J Orthop Surg Res
Pays: England
ID NLM: 101265112

Informations de publication

Date de publication:
08 Oct 2024
Historique:
received: 26 06 2024
accepted: 07 09 2024
medline: 9 10 2024
pubmed: 9 10 2024
entrez: 8 10 2024
Statut: epublish

Résumé

Terrible triad of the elbow (TTE) is a complex dislocation associating radial head (RH) and coronoid process (CP) fractures. There is at present no reproducible anatomic model for TTE, and pathophysiology is unclear. The main aim of the present study was to create and validate an anatomic model of TTE. Secondary objectives were to assess breaking forces and relative forearm rotation with respect to the humerus before dislocation. An experimental comparative study was conducted on 5 fresh human specimens aged 87.4 ± 8.6 years, testing 10 upper limbs. After dissection conserving the medial and lateral ligaments, interosseous membrane and joint capsule, elbows were reproducibly positioned in maximal pronation and 15° flexion, for axial compression on a rapid (100 mm/min) or slow (10 mm/min) protocol, applied by randomization between the two elbows of a given cadaver, measuring breaking forces and relative forearm rotation with respect to the humerus before dislocation. The rapid protocol reproduced 4 posterolateral and 1 divergent anteroposterior TTE, and the slow protocol 5 posterolateral TTE. Mean breaking forces were 3,126 ± 1,066 N for the lateral collateral ligament (LCL), 3,026 ± 1,308 N for the RH and 2,613 ± 1,120 N for the CP. Comparing mean breaking forces for all injured structures in a given elbow on the rapid protocol found a p-value of 0.033. Comparison of difference in breaking forces in the three structures (LCL, RH and CP) between the slow and rapid protocols found a mean difference of -4%. Mean relative forearm rotation with respect to the humerus before dislocation was 1.6 ± 1.2° in external rotation. We create and validate an anatomic model of TTE by exerting axial compression on an elbow in 15° flexion and maximal pronation at speeds of 100 and 10 mm/min.

Sections du résumé

BACKGROUND BACKGROUND
Terrible triad of the elbow (TTE) is a complex dislocation associating radial head (RH) and coronoid process (CP) fractures. There is at present no reproducible anatomic model for TTE, and pathophysiology is unclear. The main aim of the present study was to create and validate an anatomic model of TTE. Secondary objectives were to assess breaking forces and relative forearm rotation with respect to the humerus before dislocation.
METHODS METHODS
An experimental comparative study was conducted on 5 fresh human specimens aged 87.4 ± 8.6 years, testing 10 upper limbs. After dissection conserving the medial and lateral ligaments, interosseous membrane and joint capsule, elbows were reproducibly positioned in maximal pronation and 15° flexion, for axial compression on a rapid (100 mm/min) or slow (10 mm/min) protocol, applied by randomization between the two elbows of a given cadaver, measuring breaking forces and relative forearm rotation with respect to the humerus before dislocation.
RESULTS RESULTS
The rapid protocol reproduced 4 posterolateral and 1 divergent anteroposterior TTE, and the slow protocol 5 posterolateral TTE. Mean breaking forces were 3,126 ± 1,066 N for the lateral collateral ligament (LCL), 3,026 ± 1,308 N for the RH and 2,613 ± 1,120 N for the CP. Comparing mean breaking forces for all injured structures in a given elbow on the rapid protocol found a p-value of 0.033. Comparison of difference in breaking forces in the three structures (LCL, RH and CP) between the slow and rapid protocols found a mean difference of -4%. Mean relative forearm rotation with respect to the humerus before dislocation was 1.6 ± 1.2° in external rotation.
CONCLUSIONS CONCLUSIONS
We create and validate an anatomic model of TTE by exerting axial compression on an elbow in 15° flexion and maximal pronation at speeds of 100 and 10 mm/min.

Identifiants

pubmed: 39380019
doi: 10.1186/s13018-024-05069-0
pii: 10.1186/s13018-024-05069-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

638

Informations de copyright

© 2024. The Author(s).

Références

Rhyou IH, Kim YS. New mechanism of the posterior elbow dislocation. Knee Surg Sports Traumatol Arthrosc. 2012;20(12):2535-41. https://doi.org/10.1007/s00167-011-1872-7 . Epub 2012 Jan 7. PMID: 22228377.
Rezaie N, Gupta S, Service BC, Osbahr DC. Elbow Dislocation. Clin Sports Med. 2020;39(3):637–655. https://doi.org/10.1016/j.csm.2020.02.009 . PMID: 32446580.
Hotchkiss RN. Fractures and dislocations of the elbow. In: Rockwood CA Jr, Green DP, Bucholz RW, Heckman JD, editors. Rockwood and Green’s fractures in adults. Volume 4. Philadelphia, PA: Lippincott-Raven; 1996. pp. 929–1024. vol 1.
O’Driscoll SW, Jupiter JB, King GJ, Hotchkiss RN, Morrey BF. The unstable elbow. Instr Course Lect. 2001;50:89–102. PMID: 11372363.
pubmed: 11372363
Deutch SR, Jensen SL, Tyrdal S, Olsen BS, Sneppen O. Elbow joint stability following experimental osteoligamentous injury and reconstruction. J Shoulder Elbow Surg. 2003 Sep-Oct;12(5):466 – 71. https://doi.org/10.1016/s1058-2746(03)00062-4 . PMID: 14564269.
Deutch SR, Jensen SL, Olsen BS, Sneppen O. Elbow joint stability in relation to forced external rotation: An experimental study of the osseous constraint. J Shoulder Elbow Surg. 2003 May-Jun;12(3):287 – 92. https://doi.org/10.1016/s1058-2746(02)86814-8 . PMID: 12851584.
Fitzpatrick MJ, Diltz M, McGarry MH, Lee TQ. A new fracture model for terrible triad injuries of the elbow: influence of forearm rotation on injury patterns. Journal of Orthopaedic Trauma. 2012;26(10):591–596. https://doi.org/10.1097/bot.0b013e31824135af . PMID: 22473063.
Mathew PK, Athwal GS, King GJ. Terrible triad injury of the elbow: current concepts. J Am Acad Orthop Surg. 2009;17(3):137 – 51. https://doi.org/10.5435/00124635-200903000-00003 . PMID: 19264707.
Ohl X, Siboni R. Surgical treatment of terrible triad of the elbow. Orthop Traumatol Surg Res. 2021;107(1S):102784. https://doi.org/10.1016/j.otsr.2020.102784 . Epub 2021 Jan 9. PMID: 33333276.
doi: 10.1016/j.otsr.2020.102784 pubmed: 33333276
O’Driscoll SW, Morrey BF, Korinek S, An KN. Elbow subluxation and dislocation. A spectrum of instability. Clin Orthop Relat Res. 1992;(280):186–97. PMID: 1611741.
Sanchez-Sotelo J, Morrey M. Complex elbow instability: surgical management of elbow fracture dislocations. EFORT Open Rev. 2017;1(5):183–90. https://doi.org/10.1302/2058-5241.1.000036 . PMID: 28461946; PMCID: PMC5367531.
doi: 10.1302/2058-5241.1.000036 pubmed: 28461946
Amis AA, Miller JH. The mechanisms of elbow fractures: an investigation using impact tests in vitro. Injury. 1995;26(3):163-8. https://doi.org/10.1016/0020-1383(95)93494-3 . PMID: 7744470.
Beingessner DM, Dunning CE, Stacpoole RA, Johnson JA, King GJ. The effect of coronoid fractures on elbow kinematics and stability. Clin Biomech (Bristol, Avon). 2007;22(2):183 – 90. https://doi.org/10.1016/j.clinbiomech.2006.09.007 . PMID: 17101201.
Fern SE, Owen JR, Ordyna NJ, Wayne JS, Boardman ND 3rd. Complex varus elbow instability: a terrible triad model. J Shoulder Elbow Surg. 2009 Mar-Apr;18(2):269 – 74. https://doi.org/10.1016/j.jse.2008.10.022 . PMID: 19218051.
Wake H, Hashizume H, Nishida K, Inoue H, Nagayama N. Biomechanical analysis of the mechanism of elbow fracture-dislocations by compression force. J Orthop Sci. 2004;9(1):44–50. https://doi.org/10.1007/s00776-003-0735-6 . PMID: 14767704.
O’Driscoll SW, Bell DF, Morrey BF. Posterolateral rotatory instability of the elbow. J Bone Joint Surg Am. 1991;73(3):440–6. PMID: 2002081.
doi: 10.2106/00004623-199173030-00015 pubmed: 2002081
Schreiber JJ, Warren RF, Hotchkiss RN, Daluiski A. An online video investigation into the mechanism of elbow dislocation. J Hand Surg Am. 2013;38(3):488 – 94. https://doi.org/10.1016/j.jhsa.2012.12.017 . Epub 2013 Feb 5. PMID: 23391358.
Kushwaha NS, Verma V, Singh A, Sharma Y, Singh A. A study of factors Associated with carrying Angle of the human elbow in Pediatric Age Group. Cureus. 2022;14(5):e25478. https://doi.org/10.7759/cureus.25478 . PMID: 35800835; PMCID: PMC9246431.
doi: 10.7759/cureus.25478 pubmed: 35800835 pmcid: 9246431
Verma V, Singh A, Kushwaha NS, Sharma Y, Singh A. Correlation between morphometric measurements and carrying Angle of Human Elbow. Cureus. 2022;14(7):e27331. https://doi.org/10.7759/cureus.27331 . PMID: 36043016; PMCID: PMC9413810.
doi: 10.7759/cureus.27331 pubmed: 36043016 pmcid: 9413810
Clavert P, Kempf JF, Bonnomet F, Kahn JL. 214 Évaluation des caractéristiques mécaniques primaires de deux interventions de stabilisation antérieure de l’épaule: le Bankart et la butée coracoïdienne. Rev Chir Orthopédique Réparatrice Appar Mot. 2004;90(6):128–9. https://doi.org/10.1016/S0035-1040(04)70665-0 . Modèle cadavérique de luxation antérieure traumatique de l’épaule.
doi: 10.1016/S0035-1040(04)70665-0
DeLee JC. Transverse divergent dislocation of the elbow in a child. Case report. J Bone Joint Surg Am. 1981;63(2):322-3. PMID: 7462287.
Zaricznyj B. Transverse divergent dislocation of the elbow. Clin Orthop Relat Res. 2000;(373):146 – 52. https://doi.org/10.1097/00003086-200004000-00018 . PMID: 10810472.
Nanno M, Sawaizumi T, Ito H. Transverse divergent dislocation of the elbow with ipsilateral distal radius fracture in a child. J Orthop Trauma. 2007;21(2):145-9. https://doi.org/10.1097/BOT.0b013e318032c4be . PMID: 17304072.
Wu Y, Jiang H, Miao W. A case report of children’s divergent dislocation of the elbow and review of literature. Med (Baltim). 2016;95(44):e4772. https://doi.org/10.1097/MD.0000000000004772 . PMID: 27858838; PMCID: PMC5591086.
doi: 10.1097/MD.0000000000004772
Doornberg JN, van Duijn J, Ring D. Coronoid fracture height in terrible-triad injuries. J Hand Surg Am. 2006 May-Jun;31(5):794-7. https://doi.org/10.1016/j.jhsa.2006.01.004 . PMID: 16713844.
Osborne G, Cotterill P. Recurrent dislocation of the elbow. J Bone Joint Surg Br. 1966;48(2):340–6. PMID: 5937599.
doi: 10.1302/0301-620X.48B2.340 pubmed: 5937599
Bozon O, Chrosciany S, Loisel M, Dellestable A, Gubbiotti L, Dumartinet-Gibaud R. & al. Terrible triad injury of the elbow: a historical perspective. International Orthopaedics. 2022;46(10):2265–2272. https://doi.org/10.1007/s00264-022-05472-4 . PMID: 35725951.
Luokkala T, Temperley D, Basu S, Karjalainen TV, Watts AC. Analysis of magnetic resonance imaging-confirmed soft tissue injury pattern in simple elbow dislocations. J Shoulder Elb Surg. 2019;28(2):341–8. Epub 2018 Nov 8. PMID: 30414825.
doi: 10.1016/j.jse.2018.08.010
Ring D, Jupiter JB. Fracture-dislocation of the elbow. J Bone Joint Surg Am. 1998;80(4):566–80. PMID: 9563387.
doi: 10.2106/00004623-199804000-00014 pubmed: 9563387
Schreiber JJ, Potter HG, Warren RF, Hotchkiss RN, Daluiski A. Magnetic resonance imaging findings in acute elbow dislocation: insight into mechanism. J Hand Surg Am. 2014;39(2):199–205. doi: 10.1016/j.jhsa.2013.11.031. PMID: 24480682.
Josefsson PO, Johnell O, Wendeberg B. Ligamentous injuries in dislocations of the elbow joint. Clin Orthop Relat Res. 1987;(221):221–5. PMID: 3301144.
Regan WD, Korinek SL, Morrey BF, An KN. Biomechanical study of ligaments around the elbow joint. Clin Orthop Relat Res. 1991;(271):170-9. PMID: 1914292.
Schwab GH, Bennett JB, Woods GW, Tullos HS. Biomechanics of elbow instability: the role of the medial collateral ligament. Clin Orthop Relat Res 1980 Jan-Feb(146):42–52. PMID: 7371268.
Estermann SJ, Förster-Streffleur S, Hirtler L, Streicher J, Pahr DH, Reisinger A. Comparison of Thiel preserved, fresh human, and animal liver tissue in terms of mechanical properties. Ann Anat. 2021;236:151717. https://doi.org/10.1016/j.aanat.2021.151717 . Epub 2021 Mar 6. PMID: 33689839.
doi: 10.1016/j.aanat.2021.151717 pubmed: 33689839
Ling Y, Li C, Feng K, Duncan R, Eisma R, Huang Z, Nabi G. Effects of fixation and preservation on tissue elastic properties measured by quantitative optical coherence elastography (OCE). J Biomech. 2016;49(7):1009–15. https://doi.org/10.1016/j.jbiomech.2016.02.013 . Epub 2016 Feb 15. PMID: 26903410.
doi: 10.1016/j.jbiomech.2016.02.013 pubmed: 26903410

Auteurs

Antoine Baltassat (A)

Service de Chirurgie du Membre Supérieur, Hôpital de Hautepierre 2 - CHU Strasbourg, Avenue Molière, Strasbourg, 67000, France. antoinebaltassat@hotmail.fr.

Florent Baldairon (F)

Service de Chirurgie du Membre Supérieur, Hôpital de Hautepierre 2 - CHU Strasbourg, Avenue Molière, Strasbourg, 67000, France.

Samuel Berthe (S)

ICube laboratory, University of Strasbourg/CNRS, 2 rue Boussingault, Strasbourg, 67000, France.

Alexandre Bellier (A)

Univ. Grenoble Alpes, LADAF, CIC INSERM 1406, AGEIS, Grenoble, France.

Nadia Bahlouli (N)

ICube laboratory, University of Strasbourg/CNRS, 2 rue Boussingault, Strasbourg, 67000, France.

Philippe Clavert (P)

Service de Chirurgie du Membre Supérieur, Hôpital de Hautepierre 2 - CHU Strasbourg, Avenue Molière, Strasbourg, 67000, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH