Plasma bioactive adrenomedullin predicts mortality and need for dialysis in critical COVID-19.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
11 Oct 2024
Historique:
received: 08 03 2024
accepted: 25 09 2024
medline: 12 10 2024
pubmed: 12 10 2024
entrez: 11 10 2024
Statut: epublish

Résumé

COVID-19 is a severe respiratory disease affecting millions worldwide, causing significant morbidity and mortality. Adrenomedullin (bio-ADM) is a vasoactive hormone regulating the endothelial barrier and has been associated with COVID-19 mortality and other adverse events. This prospective cohort pilot study included 119 consecutive patients with verified SARS-CoV-2 infection admitted to two intensive care units (ICUs) in Southern Sweden. Bio-ADM was retrospectively analysed from plasma on ICU admission, and days 2 and 7. Information on comorbidities, adverse events and mortality was collected. The primary outcome was 90-day mortality, and secondary outcomes were markers of disease severity. The association between bio-ADM and outcomes was analysed using survival analysis and logistic regression. Bio-ADM on admission, day 2, and day 7 only moderately predicted 90-day mortality in univariate and multivariate Cox regression. The relative change in bio-ADM between sample times predicted 90-day mortality better even when adjusting for the SAPS3 score, with an HR of 1.09 (95% CI 1.04-1.15) and a C-index of 0.82 (95% CI 0.72-0.92) for relative change between day 2 and day 7. Bio-ADM had a good prediction of the need for renal replacement therapy in multivariate Cox regression adjusting for creatinine, where day 2 bio-ADM had an HR of 3.18 (95% CI 1.21-8.36) and C-index of 0.91 (95% CI 0.87-0.96). Relative changes did not perform better, possibly due to a small sample size. Admission and day 2 bio-ADM was associated with early acute kidney injury (AKI). Bio-ADM on ICU admission, day 2 and day 7 predicted 90-day mortality and dialysis needs, highlighting bio-ADM's importance in COVID-19 pathophysiology. Bio-ADM could be used to triage patients with a risk of adverse outcomes and as a potential target for clinical interventions.

Identifiants

pubmed: 39394248
doi: 10.1038/s41598-024-74380-x
pii: 10.1038/s41598-024-74380-x
doi:

Substances chimiques

Adrenomedullin 148498-78-6
Biomarkers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

23787

Informations de copyright

© 2024. The Author(s).

Références

Ranieri, V. M. et al. Acute respiratory distress syndrome: The Berlin definition. JAMA 307, 2526–2533 (2012).
pubmed: 22797452
Didriksson, I. et al. Intensive care unit burden is associated with increased mortality in critically ill COVID-19 patients. Acta Anaesthesiol. Scand. 67, 329–338 (2023).
doi: 10.1111/aas.14184 pubmed: 36537243
NIH. Clinical Spectrum of SARS-CoV-2 Infection (2023).
Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).
doi: 10.1016/j.cell.2020.02.052 pubmed: 32142651 pmcid: 7102627
Ferrario, C. M. et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 111, 2605–2610 (2005).
doi: 10.1161/CIRCULATIONAHA.104.510461 pubmed: 15897343
Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418 (2020).
doi: 10.1016/S0140-6736(20)30937-5 pubmed: 32325026 pmcid: 7172722
Dirican, A., Ildir, S., Uzar, T., Karaman, I. & Ozkaya, S. 190 patients and literature review for a pathophysiological map to clinical categorisation. Int. J. Clin. Pract. 75, e14843 (2021).
doi: 10.1111/ijcp.14843 pubmed: 34519155
Flaumenhaft, R., Enjyoji, K. & Schmaier, A. A. Vasculopathy in COVID-19. Blood 140, 222–235 (2022).
doi: 10.1182/blood.2021012250 pubmed: 34986238 pmcid: 8736280
Hippenstiel, S. et al. Adrenomedullin reduces endothelial hyperpermeability. Circ. Res. 91, 618–625 (2002).
doi: 10.1161/01.RES.0000036603.61868.F9 pubmed: 12364390
Kitamura, K. et al. Adrenomedullin: A novel hypotensive peptide isolated from human pheochromocytoma. 1993. Biochem. Biophys. Res. Commun. 425, 548–555 (2012).
doi: 10.1016/j.bbrc.2012.08.022 pubmed: 22925672
Jougasaki, M. & Burnett, J. C. Adrenomedullin: Potential in physiology and pathophysiology. Life Sci. 66, 855–872 (2000).
doi: 10.1016/S0024-3205(99)00358-6 pubmed: 10714887
Martinez, A., Miller, M. J., Unsworth, E. J., Siegfried, J. M. & Cuttitta, F. Expression of adrenomedullin in normal human lung and in pulmonary tumors. Endocrinology 136, 4099–4105 (1995).
doi: 10.1210/endo.136.9.7649118 pubmed: 7649118
Voors, A. A. et al. Adrenomedullin in heart failure: Pathophysiology and therapeutic application. Eur. J. Heart Fail. 21, 163–171 (2019).
doi: 10.1002/ejhf.1366 pubmed: 30592365
Cockcroft, J. R., Noon, J. P., Gardner-Medwin, J. & Bennett, T. Haemodynamic effects of adrenomedullin in human resistance and capacitance vessels. Br. J. Clin. Pharmacol. 44, 57–60 (1997).
doi: 10.1046/j.1365-2125.1997.00622.x pubmed: 9241097 pmcid: 2042810
García Ponce, A. et al. Loss of cortactin causes endothelial barrier dysfunction via disturbed adrenomedullin secretion and actomyosin contractility. Sci. Rep. 6, 29003 (2016).
doi: 10.1038/srep29003 pubmed: 27357373 pmcid: 4928053
Weber, J. et al. Sandwich immunoassay for bioactive plasma adrenomedullin. J. Appl. Lab. Med.2, 222–233. https://doi.org/10.1373/jalm.2017.023655 (2019). https://academic.oup.com/jalm/article-pdf/2/2/222/31433623/jalm0222.pdf .
Marino, R. et al. Plasma adrenomedullin is associated with short-term mortality and vasopressor requirement in patients admitted with sepsis. Crit. Care 18, R34 (2014).
doi: 10.1186/cc13731 pubmed: 24533868 pmcid: 4056312
Mebazaa, A. et al. Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: The prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study. Crit. Care 22, 354 (2018).
doi: 10.1186/s13054-018-2243-2 pubmed: 30583748 pmcid: 6305573
Lundberg, O. H. M. et al. Circulating bioactive adrenomedullin as a marker of sepsis, septic shock and critical illness. Crit. Care 24, 636 (2020).
doi: 10.1186/s13054-020-03351-1 pubmed: 33148300 pmcid: 7641835
Geven, C., Bergmann, A., Kox, M. & Pickkers, P. Vascular effects of adrenomedullin and the anti-adrenomedullin antibody Adrecizumab in Sepsis. Shock 50, 132–140 (2018).
doi: 10.1097/SHK.0000000000001103 pubmed: 29324626
de Guadiana-Romualdo, L. et al. MR-proADM as marker of endotheliitis predicts COVID-19 severity. Eur. J. Clin. Investig. 51, e13511 (2021).
doi: 10.1111/eci.13511
Gregoriano, C. et al. The vasoactive peptide MR-pro-adrenomedullin in COVID-19 patients: An observational study. Clin. Chem. Lab. Med. 59, 995–1004 (2021).
doi: 10.1515/cclm-2020-1295 pubmed: 33554516
Moore, N. et al. Mid-regional proadrenomedullin (MR-proADM), C-reactive protein (CRP) and other biomarkers in the early identification of disease progression in patients with COVID-19 in the acute NHS setting. J. Clin. Pathol. 76, 400–406 (2023).
doi: 10.1136/jclinpath-2021-207750 pubmed: 34996755
Sozio, E. et al. Identification of COVID-19 patients at risk of hospital admission and mortality: A European multicentre retrospective analysis of mid-regional pro-adrenomedullin. Respir. Res. 23, 221 (2022).
doi: 10.1186/s12931-022-02151-1 pubmed: 36031619 pmcid: 9420187
van Lier, D. et al. Circulating dipeptidyl peptidase 3 and bio-adrenomedullin levels are associated with impaired outcomes in critically ill COVID-19 patients: A prospective international multicentre study. ERJ Open Res. 9, 00342–02022 (2023).
pubmed: 36628268 pmcid: 9571166
Simon, T. P. et al. Prognostic value of bioactive adrenomedullin in critically Ill patients with COVID-19 in Germany: An observational cohort study. J. Clin. Med. 10, 1667 (2021).
doi: 10.3390/jcm10081667 pubmed: 33924637 pmcid: 8069401
Karakas, M. et al. Targeting endothelial dysfunction in eight extreme-critically Ill patients with COVID-19 using the anti-adrenomedullin antibody Adrecizumab (HAM8101). Biomolecules 10, 1171 (2020).
doi: 10.3390/biom10081171 pubmed: 32796765 pmcid: 7465983
Fialek, B. et al. Systematic review with meta-analysis of mid-regional pro-adrenomedullin (MR-proADM) as a prognostic marker in COVID-19-hospitalized patients. Ann. Med. 55, 379–387 (2023).
doi: 10.1080/07853890.2022.2162116 pubmed: 36607317 pmcid: 9828692
Sievert, T. et al. Neurofilament light chain on intensive care admission is an independent predictor of mortality in COVID-19: A prospective multicenter study. Intensive Care Med. Exp. 11, 66 (2023).
doi: 10.1186/s40635-023-00547-x pubmed: 37768470 pmcid: 10539241
von Elm, E. et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 370, 1453–1457 (2007).
doi: 10.1016/S0140-6736(07)61602-X
Charlson, M. E., Pompei, P., Ales, K. L. & MacKenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 40, 373–383 (1987).
doi: 10.1016/0021-9681(87)90171-8 pubmed: 3558716
Moreno, R. P. et al. SAPS 3–From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 31, 1345–1355 (2005).
doi: 10.1007/s00134-005-2763-5 pubmed: 16132892 pmcid: 1315315
Vincent, J. L. et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine.. Intensive Care Med. 22, 707–710 (1996).
doi: 10.1007/BF01709751 pubmed: 8844239
Kellum, J. A., Lameire, N. & Group, K. A. G. W. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 17, 1–15 (2013).
Grasselli, G. et al. ESICM guidelines on acute respiratory distress syndrome: Definition, phenotyping and respiratory support strategies. Intensive Care Med. 49, 727–759 (2023).
doi: 10.1007/s00134-023-07050-7 pubmed: 37326646 pmcid: 10354163
Xie, Z. et al. Adrenomedullin surges are linked to acute episodes of the systemic capillary leak syndrome (Clarkson disease). J. Leukoc. Biol. 103, 749–759 (2018).
doi: 10.1002/JLB.5A0817-324R pubmed: 29360169
Vieceli Dalla Sega, F. et al. ime course of endothelial dysfunction markers and mortality in COVID-19 patients: A pilot study. Clin. Transl. Med. 11, e283 (2021).
doi: 10.1002/ctm2.283 pubmed: 33784001 pmcid: 7919132
Kozhuharov, N. et al. Activity of the adrenomedullin system to personalise post-discharge diuretic treatment in acute heart failure. Clin. Res. Cardiol. 111, 627–637 (2022).
doi: 10.1007/s00392-021-01909-9 pubmed: 34302189
Roedl, K. et al. MR-proAdrenomedullin as a predictor of renal replacement therapy in a cohort of critically ill patients with COVID-19. Biomarkers 26, 417–424 (2021).
doi: 10.1080/1354750X.2021.1905067 pubmed: 33754916
Nadim, M. K. et al. COVID-19-associated acute kidney injury: Consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat. Rev. Nephrol. 16, 747–764 (2020).
doi: 10.1038/s41581-020-00356-5 pubmed: 33060844 pmcid: 7561246

Auteurs

Patrik Johnsson (P)

Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, 22185, Lund, Sweden. patrik.johnsson@med.lu.se.
Department of Intensive and Perioperative Care in Malmö, Skåne University Hospital, 20502, Malmö, Sweden. patrik.johnsson@med.lu.se.

Theodor Sievert (T)

Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, 22185, Lund, Sweden.
Department of Intensive and Perioperative Care in Malmö, Skåne University Hospital, 20502, Malmö, Sweden.

Ingrid Didriksson (I)

Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, 22185, Lund, Sweden.
Department of Intensive and Perioperative Care in Malmö, Skåne University Hospital, 20502, Malmö, Sweden.

Hans Friberg (H)

Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, 22185, Lund, Sweden.
Department of Intensive and Perioperative Care in Malmö, Skåne University Hospital, 20502, Malmö, Sweden.

Attila Frigyesi (A)

Department of Clinical Medicine, Anaesthesiology and Intensive Care, Lund University, 22185, Lund, Sweden.
Department of Intensive and Perioperative Care in Lund, Skåne University Hospital, 22185, Lund, Sweden.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH