Blood eosinophil count correlates with alveolar damage in emphysema-predominant COPD.


Journal

BMC pulmonary medicine
ISSN: 1471-2466
Titre abrégé: BMC Pulm Med
Pays: England
ID NLM: 100968563

Informations de publication

Date de publication:
13 Oct 2024
Historique:
received: 15 01 2024
accepted: 01 10 2024
medline: 14 10 2024
pubmed: 14 10 2024
entrez: 13 10 2024
Statut: epublish

Résumé

Although blood eosinophil count is recognized as a useful biomarker for the management of chronic obstructive pulmonary disease (COPD), the impact of eosinophils in COPD has not been fully elucidated. Here we aimed to investigate the relationships between the blood eosinophil count and various clinical parameters including lung structural changes. Ninety-three COPD patients without concomitant asthma were prospectively enrolled in this study. Blood eosinophil count, serum IgE level, serum periostin level, and chest computed tomography (CT) scans were evaluated. Eosinophilic COPD was defined as COPD with a blood eosinophil count ≧ 300/µL. We examined the correlation between the blood eosinophil count and structural changes graded by chest CT, focusing specifically on thin airway wall (WT The mean blood eosinophil count was 212.1/µL, and 18 patients (19.3%) were categorized as having eosinophilic COPD. In the whole group analysis, the blood eosinophil count correlated only with blood white blood cells, blood basophils, C-reactive protein level, and sputum eosinophils. However, the blood eosinophil count positively correlated with the percentage of LAA and negatively correlated with the diffusing capacity for carbon monoxide in the WT Some COPD patients without concomitant asthma showed a phenotype of high blood eosinophils. Alveolar damage may be related to eosinophilic inflammation in patients with COPD without asthma and thickening of the central airway wall.

Sections du résumé

BACKGROUND BACKGROUND
Although blood eosinophil count is recognized as a useful biomarker for the management of chronic obstructive pulmonary disease (COPD), the impact of eosinophils in COPD has not been fully elucidated. Here we aimed to investigate the relationships between the blood eosinophil count and various clinical parameters including lung structural changes.
METHODS METHODS
Ninety-three COPD patients without concomitant asthma were prospectively enrolled in this study. Blood eosinophil count, serum IgE level, serum periostin level, and chest computed tomography (CT) scans were evaluated. Eosinophilic COPD was defined as COPD with a blood eosinophil count ≧ 300/µL. We examined the correlation between the blood eosinophil count and structural changes graded by chest CT, focusing specifically on thin airway wall (WT
RESULTS RESULTS
The mean blood eosinophil count was 212.1/µL, and 18 patients (19.3%) were categorized as having eosinophilic COPD. In the whole group analysis, the blood eosinophil count correlated only with blood white blood cells, blood basophils, C-reactive protein level, and sputum eosinophils. However, the blood eosinophil count positively correlated with the percentage of LAA and negatively correlated with the diffusing capacity for carbon monoxide in the WT
CONCLUSIONS CONCLUSIONS
Some COPD patients without concomitant asthma showed a phenotype of high blood eosinophils. Alveolar damage may be related to eosinophilic inflammation in patients with COPD without asthma and thickening of the central airway wall.

Identifiants

pubmed: 39396940
doi: 10.1186/s12890-024-03320-2
pii: 10.1186/s12890-024-03320-2
doi:

Substances chimiques

Cell Adhesion Molecules 0
POSTN protein, human 0
Immunoglobulin E 37341-29-0
Biomarkers 0
C-Reactive Protein 9007-41-4

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

510

Subventions

Organisme : Japan Society for the Promotion of Science
ID : 18K08173, 21K08456

Informations de copyright

© 2024. The Author(s).

Références

Fujimoto K, Yasuo M, Urushibata K, Hanaoka M, Koizumi T, Kubo K. Airway inflammation during stable and acutely exacerbated chronic obstructive pulmonary disease. Eur Respiratory Journal: Official J Eur Soc Clin Respiratory Physiol. 2005;25(4):640–6.
doi: 10.1183/09031936.05.00047504
Brusselle G, Pavord ID, Landis S, Pascoe S, Lettis S, Morjaria N, et al. Blood eosinophil levels as a biomarker in COPD. Respir Med. 2018;138:21–31.
doi: 10.1016/j.rmed.2018.03.016 pubmed: 29724389
Pascoe S, Locantore N, Dransfield MT, Barnes NC, Pavord ID. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respiratory Med. 2015;3(6):435–42.
doi: 10.1016/S2213-2600(15)00106-X
Siddiqui SH, Guasconi A, Vestbo J, Jones P, Agusti A, Paggiaro P, et al. Blood eosinophils: a biomarker of response to Extrafine Beclomethasone/Formoterol in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2015;192(4):523–5.
doi: 10.1164/rccm.201502-0235LE pubmed: 26051430 pmcid: 4595668
Bafadhel M, Peterson S, De Blas MA, Calverley PM, Rennard SI, Richter K, Fageras M. Predictors of exacerbation risk and response to budesonide in patients with chronic obstructive pulmonary disease: a post-hoc analysis of three randomised trials. Lancet Respiratory Med. 2018;6(2):117–26.
doi: 10.1016/S2213-2600(18)30006-7
Woodruff PG, van den Berge M, Boucher RC, Brightling C, Burchard EG, Christenson SA, et al. American Thoracic Society/National Heart, Lung, and Blood Institute Asthma-Chronic Obstructive Pulmonary Disease Overlap Workshop Report. Am J Respir Crit Care Med. 2017;196(3):375–81.
doi: 10.1164/rccm.201705-0973WS pubmed: 28636425 pmcid: 5549872
Yun JH, Lamb A, Chase R, Singh D, Parker MM, Saferali A, et al. Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2018;141(6):2037–e4710.
doi: 10.1016/j.jaci.2018.04.010 pubmed: 29709670 pmcid: 5994197
Kolsum U, Ravi A, Hitchen P, Maddi S, Southworth T, Singh D. Clinical characteristics of eosinophilic COPD versus COPD patients with a history of asthma. Respir Res. 2017;18(1):73.
doi: 10.1186/s12931-017-0559-0 pubmed: 28446172 pmcid: 5405469
Barnes PJ. Inflammatory endotypes in COPD. Allergy. 2019;74(7):1249–56.
doi: 10.1111/all.13760 pubmed: 30834543
Mycroft K, Krenke R, Gorska K. Eosinophils in COPD-Current concepts and clinical implications. J Allergy Clin Immunol Pract. 2020;8(8):2565–74.
doi: 10.1016/j.jaip.2020.03.017 pubmed: 32251737
Jogdand P, Siddhuraj P, Mori M, Sanden C, Jonsson J, Walls AF et al. Eosinophils, basophils and type 2 immune microenvironments in COPD-affected lung tissue. Eur Respiratory Journal: Official J Eur Soc Clin Respiratory Physiol. 2020;55(5).
Kolsum U, Damera G, Pham TH, Southworth T, Mason S, Karur P, et al. Pulmonary inflammation in patients with chronic obstructive pulmonary disease with higher blood eosinophil counts. J Allergy Clin Immunol. 2017;140(4):1181–4. e7.
doi: 10.1016/j.jaci.2017.04.027 pubmed: 28506852
Doyle AD, Mukherjee M, LeSuer WE, Bittner TB, Pasha SM, Frere JJ et al. Eosinophil-derived IL-13 promotes emphysema. Eur Respiratory Journal: Official J Eur Soc Clin Respiratory Physiol. 2019;53(5).
Xu X, Yu T, Dong L, Glauben R, Wu S, Huang R, et al. Eosinophils promote pulmonary matrix destruction and emphysema via Cathepsin L. Signal Transduct Target Ther. 2023;8(1):390.
doi: 10.1038/s41392-023-01634-x pubmed: 37816708 pmcid: 10564720
Ostridge K, Wilkinson TM. Present and future utility of computed tomography scanning in the assessment and management of COPD. Eur Respiratory Journal: Official J Eur Soc Clin Respiratory Physiol. 2016;48(1):216–28.
doi: 10.1183/13993003.00041-2016
Martinez CH, Chen YH, Westgate PM, Liu LX, Murray S, Curtis JL, et al. Relationship between quantitative CT metrics and health status and BODE in chronic obstructive pulmonary disease. Thorax. 2012;67(5):399–406.
doi: 10.1136/thoraxjnl-2011-201185 pubmed: 22514236
Jairam PM, van der Graaf Y, Lammers JW, Mali WP, de Jong PA. group PS. Incidental findings on chest CT imaging are associated with increased COPD exacerbations and mortality. Thorax. 2015;70(8):725 – 31.
Schroeder JD, McKenzie AS, Zach JA, Wilson CG, Curran-Everett D, Stinson DS, et al. Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping, and airways in subjects with and without chronic obstructive pulmonary disease. AJR Am J Roentgenol. 2013;201(3):W460–70.
doi: 10.2214/AJR.12.10102 pubmed: 23971478 pmcid: 4067052
Majima S, Wakahara K, Nishio T, Nishio N, Teranishi M, Iwano S, et al. Bronchial wall thickening is associated with severity of chronic rhinosinusitis. Respir Med. 2020;170:106024.
doi: 10.1016/j.rmed.2020.106024 pubmed: 32843166
O’Donnell RA, Peebles C, Ward JA, Daraker A, Angco G, Broberg P, et al. Relationship between peripheral airway dysfunction, airway obstruction, and neutrophilic inflammation in COPD. Thorax. 2004;59(10):837–42.
doi: 10.1136/thx.2003.019349 pubmed: 15454648 pmcid: 1746844
Suzuki Y, Wakahara K, Nishio T, Ito S, Hasegawa Y. Airway basophils are increased and activated in eosinophilic asthma. Allergy. 2017;72(10):1532–9.
doi: 10.1111/all.13197 pubmed: 28474352
Wakahara K, Baba N, Van VQ, Begin P, Rubio M, Ferraro P, et al. Human basophils interact with memory T cells to augment Th17 responses. Blood. 2012;120(24):4761–71.
doi: 10.1182/blood-2012-04-424226 pubmed: 23071273
Niimi A, Matsumoto H, Amitani R, Nakano Y, Mishima M, Minakuchi M, et al. Airway wall thickness in asthma assessed by computed tomography. Relation to clinical indices. Am J Respir Crit Care Med. 2000;162(4 Pt 1):1518–23.
doi: 10.1164/ajrccm.162.4.9909044 pubmed: 11029371
Karayama M, Inui N, Yasui H, Kono M, Hozumi H, Suzuki Y, et al. Physiological and morphological differences of airways between COPD and asthma-COPD overlap. Sci Rep. 2019;9(1):7818.
doi: 10.1038/s41598-019-44345-6 pubmed: 31127165 pmcid: 6534606
Gorka K, Gross-Sondej I, Gorka J, Stachura T, Polok K, Celejewska-Wojcik N, et al. Assessment of Airway Remodeling using Endobronchial Ultrasound in Asthma-COPD Overlap. J Asthma Allergy. 2021;14:663–74.
doi: 10.2147/JAA.S306421 pubmed: 34163179 pmcid: 8214023
Patel BD, Coxson HO, Pillai SG, Agusti AG, Calverley PM, Donner CF, et al. Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;178(5):500–5.
doi: 10.1164/rccm.200801-059OC pubmed: 18565956
Kim V, Criner GJ. The chronic bronchitis phenotype in chronic obstructive pulmonary disease: features and implications. Curr Opin Pulm Med. 2015;21(2):133–41.
doi: 10.1097/MCP.0000000000000145 pubmed: 25575367 pmcid: 4373868
Hasegawa M, Nasuhara Y, Onodera Y, Makita H, Nagai K, Fuke S, et al. Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173(12):1309–15.
doi: 10.1164/rccm.200601-037OC pubmed: 16556695
Achenbach T, Weinheimer O, Biedermann A, Schmitt S, Freudenstein D, Goutham E, et al. MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests. Eur Radiol. 2008;18(12):2731–8.
doi: 10.1007/s00330-008-1089-4 pubmed: 18641993
Hoshino M, Matsuoka S, Handa H, Miyazawa T, Yagihashi K. Correlation between airflow limitation and airway dimensions assessed by multidetector CT in asthma. Respir Med. 2010;104(6):794–800.
doi: 10.1016/j.rmed.2009.12.005 pubmed: 20053544
Izuhara K, Nunomura S, Nanri Y, Ono J, Takai M, Kawaguchi A. Periostin: an emerging biomarker for allergic diseases. Allergy. 2019;74(11):2116–28.
doi: 10.1111/all.13814 pubmed: 30964557
Matsumoto H. Role of serum periostin in the management of asthma and its comorbidities. Respir Investig. 2020;58(3):144–54.
doi: 10.1016/j.resinv.2020.02.003 pubmed: 32205146
Carpaij OA, Muntinghe FOW, Wagenaar MB, Habing JW, Timens W, Kerstjens HAM, et al. Serum periostin does not reflect type 2-driven inflammation in COPD. Respir Res. 2018;19(1):112.
doi: 10.1186/s12931-018-0818-8 pubmed: 29879994 pmcid: 5992772
Konstantelou E, Papaioannou AI, Loukides S, Bartziokas K, Papaporfyriou A, Papatheodorou G, et al. Serum periostin in patients hospitalized for COPD exacerbations. Cytokine. 2017;93:51–6.
doi: 10.1016/j.cyto.2017.05.007 pubmed: 28511944
Barnes PJ. Asthma-COPD coexistence. J Allergy Clin Immunol. 2024;154(2):275–7.
doi: 10.1016/j.jaci.2024.06.004 pubmed: 38866207
David B, Bafadhel M, Koenderman L, De Soyza A. Eosinophilic inflammation in COPD: from an inflammatory marker to a treatable trait. Thorax. 2021;76(2):188–95.
doi: 10.1136/thoraxjnl-2020-215167 pubmed: 33122447
Hastie AT, Martinez FJ, Curtis JL, Doerschuk CM, Hansel NN, Christenson S, et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. Lancet Respiratory Med. 2017;5(12):956–67.
doi: 10.1016/S2213-2600(17)30432-0
Bihlet AR, Karsdal MA, Sand JM, Leeming DJ, Roberts M, White W, Bowler R. Biomarkers of extracellular matrix turnover are associated with emphysema and eosinophilic-bronchitis in COPD. Respir Res. 2017;18(1):22.
doi: 10.1186/s12931-017-0509-x pubmed: 28103932 pmcid: 5248528
Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Investig. 2016;126(9):3279–95.
doi: 10.1172/JCI85664 pubmed: 27548519 pmcid: 5004964
Weller PF, Spencer LA. Functions of tissue-resident eosinophils. Nat Rev Immunol. 2017;17(12):746–60.
doi: 10.1038/nri.2017.95 pubmed: 28891557 pmcid: 5783317
Pavord ID, Chanez P, Criner GJ, Kerstjens HAM, Korn S, Lugogo N, et al. Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. N Engl J Med. 2017;377(17):1613–29.
doi: 10.1056/NEJMoa1708208 pubmed: 28893134
Criner GJ, Celli BR, Brightling CE, Agusti A, Papi A, Singh D, et al. Benralizumab for the Prevention of COPD exacerbations. N Engl J Med. 2019;381(11):1023–34.
doi: 10.1056/NEJMoa1905248 pubmed: 31112385
Criner GJ, Celli BR, Singh D, Agusti A, Papi A, Jison M, et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies. Lancet Respiratory Med. 2020;8(2):158–70.
doi: 10.1016/S2213-2600(19)30338-8

Auteurs

Saya Nakamura (S)

Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.

Keiko Wakahara (K)

Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan. keikowakahara284@gmail.com.

Suguru Majima (S)

Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.

Eito Yokoi (E)

Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.

Eriko Fukutani (E)

Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.

Ryo Otsuki (R)

Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.

Shingo Iwano (S)

Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Toyofumi Fengshi Chen-Yoshikawa (TF)

Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Fumie Kinoshita (F)

Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan.

Takashi Abe (T)

Department of Respiratory Medicine, Ogaki Municipal Hospital, Ogaki, Japan.

Toyokazu Sashio (T)

Department of Respiratory Medicine, Meijo Hospital, Nagoya, Japan.

Tomoki Kimura (T)

Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan.

Kenji Izuhara (K)

Division of Medicine Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.

Naozumi Hashimoto (N)

Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.

Makoto Ishii (M)

Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.

Yoshinori Hasegawa (Y)

Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
National Hospital Organization Nagoya Medical Center, Nagoya, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH