Centrioles are frequently amplified in early B cell development but dispensable for humoral immunity.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
15 Oct 2024
Historique:
received: 20 10 2023
accepted: 07 10 2024
medline: 16 10 2024
pubmed: 16 10 2024
entrez: 15 10 2024
Statut: epublish

Résumé

Centrioles define centrosome structure and function. Deregulation of centriole numbers can cause developmental defects and cancer. The p53 tumor suppressor limits the growth of cells lacking or harboring additional centrosomes and can be engaged by the "mitotic surveillance" or the "PIDDosome pathway", respectively. Here, we show that early B cell progenitors frequently present extra centrioles, ensuing their high proliferative activity and related DNA damage. Extra centrioles are efficiently cleared during B cell maturation. In contrast, centriole loss upon Polo-like kinase 4 (Plk4) deletion causes apoptosis and arrests B cell development. This defect can be rescued by co-deletion of Usp28, a critical component of the mitotic surveillance pathway, that restores cell survival and maturation. Centriole-deficient mature B cells are proliferation competent and mount a humoral immune response. Our findings imply that progenitor B cells are intolerant to centriole loss but permissive to centriole amplification, a feature potentially facilitating their malignant transformation.

Identifiants

pubmed: 39406735
doi: 10.1038/s41467-024-53222-4
pii: 10.1038/s41467-024-53222-4
doi:

Substances chimiques

Protein Serine-Threonine Kinases EC 2.7.11.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8890

Subventions

Organisme : Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
ID : 10.55776/DOC82
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : ERC_AdG_787171
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : EXC 2151 - 390873048

Informations de copyright

© 2024. The Author(s).

Références

Gönczy, P. & Hatzopoulos, G. N. Centriole assembly at a glance. J. Cell Sci. 132, jcs228833 (2019).
Nigg, E. A. & Holland, A. J. Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nat. Rev. Mol. Cell Biol. 19, 297–312 (2018).
pubmed: 29363672 pmcid: 5969912 doi: 10.1038/nrm.2017.127
Phan, T. P. & Holland, A. J. Time is of the essence: the molecular mechanisms of primary microcephaly. Genes Dev. 35, 1551–1578 (2021).
pubmed: 34862179 pmcid: 8653793 doi: 10.1101/gad.348866.121
Mansour, F., Boivin, F. J., Shaheed, I. B., Schueler, M. & Schmidt-Ott, K. M. The role of centrosome Distal appendage proteins (DAPs) in nephronophthisis and ciliogenesis. Int. J. Mol. Sci. 22, 12253 (2021).
Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).
pubmed: 19506557 pmcid: 2743290 doi: 10.1038/nature08136
Chunduri, N. K. & Storchová, Z. The diverse consequences of aneuploidy. Nat. Cell Biol. 21, 54–62 (2019).
pubmed: 30602769 doi: 10.1038/s41556-018-0243-8
Levine, M. S. & Holland, A. J. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev. 32, 620–638 (2018).
pubmed: 29802124 pmcid: 6004076 doi: 10.1101/gad.314351.118
Godinho, S. A. et al. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510, 167–171 (2014).
pubmed: 24739973 pmcid: 4061398 doi: 10.1038/nature13277
Arnandis, T. et al. Oxidative stress in cells with extra centrosomes drives non-cell-autonomous invasion. Dev. Cell 47, 409–424 (2018).
pubmed: 30458137 pmcid: 6251975 doi: 10.1016/j.devcel.2018.10.026
LoMastro, G. M. & Holland, A. J. The emerging link between centrosome aberrations and metastasis. Dev. Cell 49, 325–331 (2019).
pubmed: 31063752 pmcid: 6506172 doi: 10.1016/j.devcel.2019.04.002
Lambrus, B. G. et al. A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J. Cell Biol. 214, 143–153 (2016).
pubmed: 27432896 pmcid: 4949452 doi: 10.1083/jcb.201604054
Fong, C. S. et al. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. Elife 5, e16270 (2016).
Meitinger, F. et al. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J. Cell Biol. 214, 155–166 (2016).
pubmed: 27432897 pmcid: 4949453 doi: 10.1083/jcb.201604081
Xiao, C. et al. Gradual centriole maturation associates with the mitotic surveillance pathway in mouse development. EMBO Rep. 22, e51127 (2021).
pubmed: 33410253 pmcid: 7857428 doi: 10.15252/embr.202051127
Phan, T. P. et al. Centrosome defects cause microcephaly by activating the 53BP1-USP28-TP53 mitotic surveillance pathway. EMBO J. 40, e106118 (2021).
pubmed: 33226141 doi: 10.15252/embj.2020106118
Bazzi, H. & Anderson, K. V. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc. Natl. Acad. Sci. USA 111, E1491–E1500 (2014).
pubmed: 24706806 pmcid: 3992648 doi: 10.1073/pnas.1400568111
Fava, L. L. et al. The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev. 31, 34–45 (2017).
pubmed: 28130345 pmcid: 5287111 doi: 10.1101/gad.289728.116
Weiler, E. S., Szabo, T. G., Garcia-Carpio, I. & Villunger, A. PIDD1 in cell cycle control, sterile inflammation and cell death. Biochem. Soc. Trans. 50, 813–824 (2022).
pubmed: 35343572 pmcid: 9162469 doi: 10.1042/BST20211186
Burigotto, M. et al. Centriolar distal appendages activate the centrosome-PIDDosome-p53 signalling axis via ANKRD26. EMBO J. 40, e104844 (2021).
pubmed: 33350486 doi: 10.15252/embj.2020104844
Evans, L. T. et al. ANKRD26 recruits PIDD1 to centriolar distal appendages to activate the PIDDosome following centrosome amplification. Embo J. 40, e105106 (2021).
pubmed: 33350495 doi: 10.15252/embj.2020105106
Sladky, V. C., Eichin, F., Reiberger, T. & Villunger, A. Polyploidy control in hepatic health and disease. J. Hepatol. 75, 1177–1191 (2021).
pubmed: 34228992 doi: 10.1016/j.jhep.2021.06.030
Sladky, V. C. et al. E2F-Family members engage the PIDDosome to limit hepatocyte ploidy in liver development and regeneration. Dev. Cell 52, 335–349 (2020).
pubmed: 31983631 doi: 10.1016/j.devcel.2019.12.016
Lim, Y., Dorstyn, L. & Kumar, S. The p53-caspase-2 axis in the cell cycle and DNA damage response. Exp. Mol. Med. 53, 517–527 (2021).
pubmed: 33854186 pmcid: 8102494 doi: 10.1038/s12276-021-00590-2
Brown-Suedel, A. N. & Bouchier-Hayes, L. Caspase-2 substrates: To apoptosis, cell cycle control, and beyond. Front. Cell Dev. Biol. 8, 610022 (2020).
pubmed: 33425918 pmcid: 7785872 doi: 10.3389/fcell.2020.610022
Fava, L. L., Bock, F. J., Geley, S. & Villunger, A. Caspase-2 at a glance. J. Cell Sci. 125, 5911–5915 (2012).
pubmed: 23447670 doi: 10.1242/jcs.115105
Tátrai, P. & Gergely, F. Centrosome function is critical during terminal erythroid differentiation. Embo j. 41, e108739 (2022).
pubmed: 35678476 pmcid: 9289712 doi: 10.15252/embj.2021108739
Barnett, B. E. et al. Asymmetric B cell division in the germinal center reaction. Science 335, 342–344 (2012).
pubmed: 22174128 doi: 10.1126/science.1213495
Liedmann, S. et al. Localization of a TORC1-eIF4F translation complex during CD8(+) T cell activation drives divergent cell fate. Mol. Cell 82, 2401–2414.e2409 (2022).
pubmed: 35597236 pmcid: 9271638 doi: 10.1016/j.molcel.2022.04.016
Dieckmann, N. M., Frazer, G. L., Asano, Y., Stinchcombe, J. C. & Griffiths, G. M. The cytotoxic T lymphocyte immune synapse at a glance. J. Cell Sci. 129, 2881–2886 (2016).
pubmed: 27505426 doi: 10.1242/jcs.186205
Weier, A. K. et al. Multiple centrosomes enhance migration and immune cell effector functions of mature dendritic cells. J. Cell Biol. 221, e202107134 (2022).
pubmed: 36214847 pmcid: 9555069 doi: 10.1083/jcb.202107134
Möller, K. et al. A role for the centrosome in regulating the rate of neuronal efferocytosis by microglia in vivo. Elife 11, e82094 (2022).
pubmed: 36398880 pmcid: 9674339 doi: 10.7554/eLife.82094
Sladky, V. C. et al. Centriole signaling restricts hepatocyte ploidy to maintain liver integrity. Genes Dev. 36, 843–856 (2022).
pubmed: 35981754 pmcid: 9480857 doi: 10.1101/gad.349727.122
Philip, R., Fiorino, C. & Harrison, R. E. Terminally differentiated osteoclasts organize centrosomes into large clusters for microtubule nucleation and bone resorption. Mol. Biol. Cell 33, ar68 (2022).
pubmed: 35511803 pmcid: 9635281 doi: 10.1091/mbc.E22-03-0098
Zhang, L., Reynolds, T. L., Shan, X. & Desiderio, S. Coupling of V(D)J recombination to the cell cycle suppresses genomic instability and lymphoid tumorigenesis. Immunity 34, 163–174 (2011).
pubmed: 21349429 pmcid: 3070474 doi: 10.1016/j.immuni.2011.02.003
Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014).
pubmed: 24413735 pmcid: 3960636 doi: 10.1038/ng.2874
Kuppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001).
pubmed: 11607811 doi: 10.1038/sj.onc.1204640
Ramamoorthy, S. et al. EBF1 and Pax5 safeguard leukemic transformation by limiting IL-7 signaling, Myc expression, and folate metabolism. Genes Dev. 34, 1503–1519 (2020).
pubmed: 33004416 pmcid: 7608749 doi: 10.1101/gad.340216.120
Clark, M. R., Mandal, M., Ochiai, K. & Singh, H. Orchestrating B cell lymphopoiesisthrough interplay of IL-7 receptor and pre-B cell receptor signalling. Nat. Rev. Immunol. 14, 69–80 (2014).
Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171 (2015).
Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).
pubmed: 18267078 doi: 10.1016/j.cell.2007.12.033
Ebert, A., Hill, L. & Busslinger, M. Spatial regulation of V-(D)J recombination at antigen receptor loci. Adv. Immunol. 128, 93–121 (2015).
pubmed: 26477366 doi: 10.1016/bs.ai.2015.07.006
Dwivedi, D., Harry, D. & Meraldi, P. Mild replication stress causes premature centriole disengagement via a sub-critical Plk1 activity under the control of ATR-Chk1. Nat. Commun. 14, 6088 (2023).
pubmed: 37773176 pmcid: 10541884 doi: 10.1038/s41467-023-41753-1
Mullee, L. I. & Morrison, C. G. Centrosomes in the DNA damage response–the hub outside the centre. Chromosome Res. 24, 35–51 (2016).
pubmed: 26614090 doi: 10.1007/s10577-015-9503-7
Schuler, F. et al. Checkpoint kinase 1 is essential for normal B cell development and lymphomagenesis. Nat. Commun. 8, 1697 (2017).
pubmed: 29167438 pmcid: 5700047 doi: 10.1038/s41467-017-01850-4
Ogilvy, S. et al. Transcriptional regulation of vav, a gene expressed throughout the hematopoietic compartment. Blood 91, 419–430 (1998).
pubmed: 9427694 doi: 10.1182/blood.V91.2.419
Campbell, K. J. et al. Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance. Blood 116, 3197–3207 (2010).
pubmed: 20631380 pmcid: 2995351 doi: 10.1182/blood-2010-04-281071
O’Reilly, L. A., Harris, A. W., Tarlinton, D. M., Corcoran, L. M. & Strasser, A. Expression of a bcl-2 transgene reduces proliferation and slows turnover of developing B lymphocytes in vivo. J. Immunol. 159, 2301–2311 (1997).
pubmed: 9278319 doi: 10.4049/jimmunol.159.5.2301
Levine, M. S. et al. Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals. Dev. Cell 40, 313–322.e315 (2017).
pubmed: 28132847 pmcid: 5296221 doi: 10.1016/j.devcel.2016.12.022
Wong, Y. L. et al. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science 348, 1155–1160 (2015).
pubmed: 25931445 pmcid: 4764081 doi: 10.1126/science.aaa5111
Meitinger, F. et al. TRIM37 controls cancer-specific vulnerability to PLK4 inhibition. Nature 585, 440–446 (2020).
pubmed: 32908304 pmcid: 7501188 doi: 10.1038/s41586-020-2710-1
Yeow, Z. Y. et al. Targeting TRIM37-driven centrosome dysfunction in 17q23-amplified breast cancer. Nature 585, 447–452 (2020).
pubmed: 32908313 pmcid: 7597367 doi: 10.1038/s41586-020-2690-1
Nojima, T. et al. In-vitro derived germinal centre B cells differentially generate memory B or plasma cells in vivo. Nat. Commun. 2, 465 (2011).
pubmed: 21897376 doi: 10.1038/ncomms1475
Phan, R. T. & Dalla-Favera, R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432, 635–639 (2004).
pubmed: 15577913 doi: 10.1038/nature03147
Jackson, T. R., Ling, R. E. & Roy, A. The origin of B-cells: Human fetal B cell development and implications for the pathogenesis of childhood acute lymphoblastic leukemia. Front. Immunol. 12, 637975 (2021).
pubmed: 33679795 pmcid: 7928347 doi: 10.3389/fimmu.2021.637975
Greaves, M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer 18, 471–484 (2018).
pubmed: 29784935 pmcid: 6986894 doi: 10.1038/s41568-018-0015-6
Kerketta, L. S., Ghosh, K., Nadkarni, A., Madkaikar, M. & Vundinti, B. R. Centrosome aberration frequency and disease association in B-Acute lymphoblastic leukemia. Vivo 31, 215–220 (2017).
doi: 10.21873/invivo.11048
Guo, M. et al. Centrosome amplification is a potential molecular target in paediatric acute lymphoblastic leukemia. Cancers 15, https://doi.org/10.3390/cancers15010154 (2022).
Cantor, D. J. et al. Impaired expression of rearranged immunoglobulin genes and premature p53 activation block B cell development in BMI1 null mice. Cell Rep. 26, 108–118 (2019).
pubmed: 30605667 pmcid: 6362848 doi: 10.1016/j.celrep.2018.12.030
Kiermaier, E., Stötzel, I., Schapfl, M. A. & Villunger, A. Amplified centrosomes-morethan just a threat. EMBO Rep. 25, 4153–4167 (2024).
Ching, K. & Stearns, T. Centrioles are amplified in cycling progenitors of olfactory sensory neurons. PLoS Biol. 18, e3000852 (2020).
pubmed: 32931487 pmcid: 7518617 doi: 10.1371/journal.pbio.3000852
Braun, V. Z. et al. Extra centrosomes delay DNA damage-driven tumorigenesis. Sci. Adv. 10, eadk0564 (2024).
pubmed: 38552015 pmcid: 10980279 doi: 10.1126/sciadv.adk0564
Rizzotto, D. et al. Caspase-2 kills cells with extra centrosomes. Preprint at bioRxiv https://doi.org/10.1101/2024.02.13.580097 (2024).
Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995).
pubmed: 7834749 doi: 10.1016/0092-8674(95)90412-3
Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).
pubmed: 11463392 doi: 10.1016/S1097-2765(01)00214-3
Oda, E. et al. Noxa, a BH3-only member of the bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).
pubmed: 10807576 doi: 10.1126/science.288.5468.1053
Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302, 1036–1038 (2003).
pubmed: 14500851 doi: 10.1126/science.1090072
Xie, C., Abrams, S. R., Herranz-Pérez, V., García-Verdugo, J. M. & Reiter, J. F. Endoderm development requires centrioles to restrain p53-mediated apoptosis in the absence of ERK activity. Dev. Cell 56, 3334–3348 (2021).
pubmed: 34932949 pmcid: 8797031 doi: 10.1016/j.devcel.2021.11.020
Yuseff, M. I. et al. Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity 35, 361–374 (2011).
pubmed: 21820334 doi: 10.1016/j.immuni.2011.07.008
Hirai, M., Chen, J. & Evans, S. M. Generation and characterization of a tissue-specific centrosome indicator mouse line. Genesis 54, 286–296 (2016).
pubmed: 26990996 pmcid: 5021172 doi: 10.1002/dvg.22937
Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).
pubmed: 8479522 doi: 10.1038/362847a0
Manzl, C. et al. Caspase-2 activation in the absence of PIDDosome formation. J. Cell Biol. 185, 291–303 (2009).
pubmed: 19364921 pmcid: 2700374 doi: 10.1083/jcb.200811105
Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 68, 869–877 (1992).
Deng, C., Zhang, P., Harper, J. W., Elledge, S. J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).
pubmed: 7664346 doi: 10.1016/0092-8674(95)90039-X
Diefenbacher, M. E. et al. The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J. Clin. Invest. 124, 3407–3418 (2014).
pubmed: 24960159 pmcid: 4109555 doi: 10.1172/JCI73733
LoMastro, G. M. et al. PLK4 drives centriole amplification and apical surface area expansion in multiciliated cells. Elife 11, e80643 (2022).
pubmed: 35969030 pmcid: 9507127 doi: 10.7554/eLife.80643
Gambarotto, D., Hamel, V. & Guichard, P. Ultrastructure expansion microscopy (U-ExM). Methods Cell Biol. 161, 57–81 (2021).
pubmed: 33478697 doi: 10.1016/bs.mcb.2020.05.006
Moyer, T. C. & Holland, A. J. PLK4 promotes centriole duplication by phosphorylating STIL to link the procentriole cartwheel to the microtubule wall. Elife 8, e46054 (2019).
Schapfl, M., Braun, V. & Villunger, A. Centrioles are frequently amplified in early B cell development but dispensable for humoral immunity. Dataset on Zenodo, https://doi.org/10.5281/zenodo.10987588 (2024).

Auteurs

Marina A Schapfl (MA)

Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.

Gina M LoMastro (GM)

Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Vincent Z Braun (VZ)

Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.

Maretoshi Hirai (M)

Department of Pharmacology, Kansai Medical University, Hirakata, Osaka, Japan.

Michelle S Levine (MS)

Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Eva Kiermaier (E)

Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany.

Verena Labi (V)

Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.

Andrew J Holland (AJ)

Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Andreas Villunger (A)

Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria. andreas.villunger@i-med.ac.at.
The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria. andreas.villunger@i-med.ac.at.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH