Metabolic pathways for removing reactive aldehydes are diminished in the skeletal muscle during heart failure.
Anserine
Atrophy
Autophagy
Heart failure
Muscle wasting
Ubiquitin‒proteasome pathway
Journal
Skeletal muscle
ISSN: 2044-5040
Titre abrégé: Skelet Muscle
Pays: England
ID NLM: 101561193
Informations de publication
Date de publication:
18 Oct 2024
18 Oct 2024
Historique:
received:
16
11
2023
accepted:
25
09
2024
medline:
19
10
2024
pubmed:
19
10
2024
entrez:
18
10
2024
Statut:
epublish
Résumé
Muscle wasting is a serious complication in heart failure patients. Oxidative stress and inflammation are implicated in the pathogenesis of muscle wasting. Oxidative stress leads to the formation of toxic lipid peroxidation products, such as 4-hydroxy-2-nonenal (HNE), which covalently bind with proteins and DNA and activate atrophic pathways. Whether the formation of lipid peroxidation products and metabolic pathways that remove these toxic products are affected during heart failure-associated skeletal muscle wasting has never been studied. Male C57BL/6J mice were subjected to sham and transverse aortic constriction (TAC) surgeries for 4, 8 or 14 weeks. Different skeletal muscle beds were weighed, and the total cross-sectional area of the gastrocnemius muscle was measured via immunohistochemistry. Muscle function and muscle stiffness were measured by a grip strength meter and atomic force microscope, respectively. Atrophic and inflammatory marker levels were measured via qRT‒PCR. The levels of acrolein and HNE-protein adducts, aldehyde-removing enzymes, the histidyl dipeptide-synthesizing enzyme carnosine synthase (CARNS), and amino acid transporters in the gastrocnemius muscle were measured via Western blotting and qRT‒PCR. Histidyl dipeptides and histidyl dipeptide aldehyde conjugates in the Gastrocnemius and soleus muscles were analyzed by LC/MS-MS. Body weight, gastrocnemius muscle and soleus muscle weights and the total cross-sectional area of the gastrocnemius muscle were decreased after 14 weeks of TAC. Heart weight, cardiac function, grip strength and muscle stiffness were decreased in the TAC-operated mice. Expression of the atrophic and inflammatory markers Atrogin1 and TNF-α, respectively, was increased ~ 1.5-2fold in the gastrocnemius muscle after 14 weeks of TAC (p < 0.05 and p = 0.004 vs sham). The formation of HNE and acrolein protein adducts was increased, and the expression of the aldehyde-removing enzyme aldehyde dehydrogenase (ALDH2) was decreased in the gastrocnemius muscle of TAC mice. Carnosine (sham: 5.76 ± 1.3 vs TAC: 4.72 ± 0.7 nmol/mg tissue, p = 0.04) and total histidyl dipeptide levels (carnosine and anserine; sham: 11.97 ± 1.5 vs TAC: 10.13 ± 1.4 nmol/mg tissue, p < 0.05) were decreased in the gastrocnemius muscle of TAC mice. Depletion of histidyl dipeptides diminished the aldehyde removal capacity of the atrophic gastrocnemius muscle. Furthermore, CARNS and TAUT protein expression were decreased in the atrophic gastrocnemius muscle. Our data reveals that reduced expression of ALDH2 and depletion of histidyl dipeptides in the gastrocnemius muscle during heart failure leads to the accumulation of toxic aldehydes and might contribute to muscle wasting.
Identifiants
pubmed: 39425168
doi: 10.1186/s13395-024-00354-2
pii: 10.1186/s13395-024-00354-2
doi:
Substances chimiques
Aldehydes
0
Muscle Proteins
0
4-hydroxy-2-nonenal
K1CVM13F96
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
24Informations de copyright
© 2024. The Author(s).
Références
von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol. 2017;14:323–41. https://doi.org/10.1038/nrcardio.2017.51 .
doi: 10.1038/nrcardio.2017.51
Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975. https://doi.org/10.1002/ejhf.592 .
doi: 10.1002/ejhf.592
pubmed: 27207191
Bekfani T, Pellicori P, Morris DA, Ebner N, Valentova M, Steinbeck L, Wachter R, Elsner S, Sliziuk V, Schefold JC, et al. Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life. Int J Cardiol. 2016;222:41–6. https://doi.org/10.1016/j.ijcard.2016.07.135 .
doi: 10.1016/j.ijcard.2016.07.135
pubmed: 27454614
Fulster S, Tacke M, Sandek A, Ebner N, Tschope C, Doehner W, Anker SD, von Haehling S. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34:512–9. https://doi.org/10.1093/eurheartj/ehs381 .
doi: 10.1093/eurheartj/ehs381
pubmed: 23178647
Hryniewicz K, Androne AS, Hudaihed A, Katz SD. Partial reversal of cachexia by beta-adrenergic receptor blocker therapy in patients with chronic heart failure. J Card Fail. 2003;9:464–8. https://doi.org/10.1016/s1071-9164(03)00582-7 .
doi: 10.1016/s1071-9164(03)00582-7
pubmed: 14966787
Lainscak M, Keber I, Anker SD. Body composition changes in patients with systolic heart failure treated with beta blockers: a pilot study. Int J Cardiol. 2006;106:319–22. https://doi.org/10.1016/j.ijcard.2005.01.061 .
doi: 10.1016/j.ijcard.2005.01.061
pubmed: 16337039
Pugh PJ, Jones TH, Channer KS. Acute haemodynamic effects of testosterone in men with chronic heart failure. Eur Heart J. 2003;24:909–15. https://doi.org/10.1016/s0195-668x(03)00083-6 .
doi: 10.1016/s0195-668x(03)00083-6
pubmed: 12714022
Malkin CJ, Pugh PJ, West JN, van Beek EJ, Jones TH, Channer KS. Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J. 2006;27:57–64. https://doi.org/10.1093/eurheartj/ehi443 .
doi: 10.1093/eurheartj/ehi443
pubmed: 16093267
Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, Miceli M, Mammi C, Piepoli M, Fini M, Rosano GM. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol. 2009;54:919–27. https://doi.org/10.1016/j.jacc.2009.04.078 .
doi: 10.1016/j.jacc.2009.04.078
pubmed: 19712802
Okutsu M, Call JA, Lira VA, Zhang M, Donet JA, French BA, Martin KS, Peirce-Cottler SM, Rembold CM, Annex BH, et al. Extracellular superoxide dismutase ameliorates skeletal muscle abnormalities, cachexia, and exercise intolerance in mice with congestive heart failure. Circ Heart Fail. 2014;7:519–30. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000841 .
doi: 10.1161/CIRCHEARTFAILURE.113.000841
pubmed: 24523418
pmcid: 4080303
Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol. 2014;49:59–68. https://doi.org/10.3109/10409238.2013.857291 .
doi: 10.3109/10409238.2013.857291
pubmed: 24237131
Glass DJ. Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care. 2010;13:225–9. https://doi.org/10.1097/mco.0b013e32833862df .
doi: 10.1097/mco.0b013e32833862df
pubmed: 20397318
Abrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D, Estrada L, Cabello-Verrugio C. Role of oxidative stress as key regulator of muscle wasting during cachexia. Oxid Med Cell Longev. 2018;2018: 2063179. https://doi.org/10.1155/2018/2063179 .
doi: 10.1155/2018/2063179
pubmed: 29785242
pmcid: 5896211
Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013;45:2121–9. https://doi.org/10.1016/j.biocel.2013.04.023 .
doi: 10.1016/j.biocel.2013.04.023
pubmed: 23665154
pmcid: 3775123
Bilodeau PA, Coyne ES, Wing SS. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol. 2016;311:C392-403. https://doi.org/10.1152/ajpcell.00125.2016 .
doi: 10.1152/ajpcell.00125.2016
pubmed: 27510905
Dobrowolny G, Aucello M, Rizzuto E, Beccafico S, Mammucari C, Boncompagni S, Belia S, Wannenes F, Nicoletti C, Del Prete Z, et al. Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab. 2008;8:425–36. https://doi.org/10.1016/j.cmet.2008.09.002 .
doi: 10.1016/j.cmet.2008.09.002
pubmed: 19046573
Rahman M, Mofarrahi M, Kristof AS, Nkengfac B, Harel S, Hussain SN. Reactive oxygen species regulation of autophagy in skeletal muscles. Antioxid Redox Signal. 2014;20:443–59. https://doi.org/10.1089/ars.2013.5410 .
doi: 10.1089/ars.2013.5410
pubmed: 24180497
Rodney GG, Pal R, Abo-Zahrah R. Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med. 2016;98:103–12. https://doi.org/10.1016/j.freeradbiomed.2016.05.010 .
doi: 10.1016/j.freeradbiomed.2016.05.010
pubmed: 27184957
pmcid: 4975974
Cross JV, Templeton DJ. Regulation of signal transduction through protein cysteine oxidation. Antioxid Redox Signal. 2006;8:1819–27. https://doi.org/10.1089/ars.2006.8.1819 .
doi: 10.1089/ars.2006.8.1819
pubmed: 16987034
Cleland JG, Coletta AP, Freemantle N, Velavan P, Tin L, Clark AL. Clinical trials update from the American College of Cardiology meeting: CARE-HF and the remission of heart failure, Women’s Health Study, TNT, COMPASS-HF, VERITAS, CANPAP, PEECH and PREMIER. Eur J Heart Fail. 2005;7:931–6. https://doi.org/10.1016/j.ejheart.2005.04.002 .
doi: 10.1016/j.ejheart.2005.04.002
pubmed: 16087144
Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, Ross C, Arnold A, Sleight P, Probstfield J, et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA. 2005;293:1338–47. https://doi.org/10.1001/jama.293.11.1338 .
doi: 10.1001/jama.293.11.1338
pubmed: 15769967
Baba SP, Hellmann J, Srivastava S, Bhatnagar A. Aldose reductase (AKR1B3) regulates the accumulation of advanced glycosylation end products (AGEs) and the expression of AGE receptor (RAGE). Chem Biol Interact. 2011;191:357–63. https://doi.org/10.1016/j.cbi.2011.01.024 .
doi: 10.1016/j.cbi.2011.01.024
pubmed: 21276777
pmcid: 3145413
Baba SP, Hoetker JD, Merchant M, Klein JB, Cai J, Barski OA, Conklin DJ, Bhatnagar A. Role of aldose reductase in the metabolism and detoxification of carnosine-acrolein conjugates. J Biol Chem. 2013;288:28163–79. https://doi.org/10.1074/jbc.M113.504753 .
doi: 10.1074/jbc.M113.504753
pubmed: 23928303
pmcid: 3784727
Conklin DJ, Guo Y, Jagatheesan G, Kilfoil PJ, Haberzettl P, Hill BG, Baba SP, Guo L, Wetzelberger K, Obal D, et al. Genetic deficiency of glutathione S-transferase P increases myocardial sensitivity to ischemia-reperfusion injury. Circ Res. 2015;117:437–49. https://doi.org/10.1161/CIRCRESAHA.114.305518 .
doi: 10.1161/CIRCRESAHA.114.305518
pubmed: 26169370
pmcid: 4854443
Baba SP, Zhang D, Singh M, Dassanayaka S, Xie Z, Jagatheesan G, Zhao J, Schmidtke VK, Brittian KR, Merchant ML, et al. Deficiency of aldose reductase exacerbates early pressure overload-induced cardiac dysfunction and autophagy in mice. J Mol Cell Cardiol. 2018;118:183–92. https://doi.org/10.1016/j.yjmcc.2018.04.002 .
doi: 10.1016/j.yjmcc.2018.04.002
pubmed: 29627295
pmcid: 6205513
Barrera G, Pizzimenti S, Ciamporcero ES, Daga M, Ullio C, Arcaro A, Cetrangolo GP, Ferretti C, Dianzani C, Lepore A, et al. Role of 4-hydroxynonenal-protein adducts in human diseases. Antioxid Redox Signal. 2015;22:1681–702. https://doi.org/10.1089/ars.2014.6166 .
doi: 10.1089/ars.2014.6166
pubmed: 25365742
Liu X, Lovell MA, Lynn BC. Detection and quantification of endogenous cyclic DNA adducts derived from trans-4-hydroxy-2-nonenal in human brain tissue by isotope dilution capillary liquid chromatography nanoelectrospray tandem mass spectrometry. Chem Res Toxicol. 2006;19:710–8. https://doi.org/10.1021/tx0502903 .
doi: 10.1021/tx0502903
pubmed: 16696574
Barski OA, Xie Z, Baba SP, Sithu SD, Agarwal A, Cai J, Bhatnagar A, Srivastava S. Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol. 2013;33:1162–70. https://doi.org/10.1161/ATVBAHA.112.300572 .
doi: 10.1161/ATVBAHA.112.300572
pubmed: 23559625
Srivastava S, Vladykovskaya E, Barski OA, Spite M, Kaiserova K, Petrash JM, Chung SS, Hunt G, Dawn B, Bhatnagar A. Aldose reductase protects against early atherosclerotic lesion formation in apolipoprotein E-null mice. Circ Res. 2009;105:793–802. https://doi.org/10.1161/CIRCRESAHA.109.200568 .
doi: 10.1161/CIRCRESAHA.109.200568
pubmed: 19729598
pmcid: 3548455
Kaiserova K, Srivastava S, Hoetker JD, Awe SO, Tang XL, Cai J, Bhatnagar A. Redox activation of aldose reductase in the ischemic heart. J Biol Chem. 2006;281:15110–20. https://doi.org/10.1074/jbc.M600837200 .
doi: 10.1074/jbc.M600837200
pubmed: 16567803
Hill BG, Haberzettl P, Ahmed Y, Srivastava S, Bhatnagar A. Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem J. 2008;410:525–34. https://doi.org/10.1042/BJ20071063 .
doi: 10.1042/BJ20071063
pubmed: 18052926
Srivastava S, Dixit BL, Cai J, Sharma S, Hurst HE, Bhatnagar A, Srivastava SK. Metabolism of lipid peroxidation product, 4-hydroxynonenal (HNE) in rat erythrocytes: role of aldose reductase. Free Radic Biol Med. 2000;29:642–51.
doi: 10.1016/S0891-5849(00)00351-8
pubmed: 11033416
Srivastava S, Watowich SJ, Petrash JM, Srivastava SK, Bhatnagar A. Structural and kinetic determinants of aldehyde reduction by aldose reductase. Biochemistry. 1999;38:42–54. https://doi.org/10.1021/bi981794l .
doi: 10.1021/bi981794l
pubmed: 9890881
Blancquaert L, Baba SP, Kwiatkowski S, Stautemas J, Stegen S, Barbaresi S, Chung W, Boakye AA, Hoetker JD, Bhatnagar A, et al. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by beta-alanine transamination. J Physiol. 2016;594:4849–63. https://doi.org/10.1113/JP272050 .
doi: 10.1113/JP272050
pubmed: 27062388
pmcid: 5009790
Zhao J, Conklin DJ, Guo Y, Zhang X, Obal D, Guo L, Jagatheesan G, Katragadda K, He L, Yin X, et al. Cardiospecific Overexpression of ATPGD1 (Carnosine Synthase) increases histidine dipeptide levels and prevents myocardial ischemia reperfusion injury. J Am Heart Assoc. 2020;9: e015222. https://doi.org/10.1161/JAHA.119.015222 .
doi: 10.1161/JAHA.119.015222
pubmed: 32515247
pmcid: 7429021
Watson LJ, Facundo HT, Ngoh GA, Ameen M, Brainard RE, Lemma KM, Long BW, Prabhu SD, Xuan YT, Jones SP. O-linked beta-N-acetylglucosamine transferase is indispensable in the failing heart. Proc Natl Acad Sci U S A. 2010;107:17797–802. https://doi.org/10.1073/pnas.1001907107 .
doi: 10.1073/pnas.1001907107
pubmed: 20876116
pmcid: 2955091
Zelko IN, Dassanayaka S, Malovichko MV, Howard CM, Garrett LF, Uchida S, Brittian KR, Conklin DJ, Jones SP, Srivastava S. Chronic benzene exposure aggravates pressure overload-induced cardiac dysfunction. Toxicol Sci. 2021;185:64–76. https://doi.org/10.1093/toxsci/kfab125 .
doi: 10.1093/toxsci/kfab125
pubmed: 34718823
pmcid: 8714365
Gallot YS, Bohnert KR, Straughn AR, Xiong G, Hindi SM, Kumar A. PERK regulates skeletal muscle mass and contractile function in adult mice. FASEB J. 2019;33:1946–62. https://doi.org/10.1096/fj.201800683RR .
doi: 10.1096/fj.201800683RR
pubmed: 30204503
Straughn AR, Kakar SS. Withaferin A ameliorates ovarian cancer-induced cachexia and proinflammatory signaling. J Ovarian Res. 2019;12:115. https://doi.org/10.1186/s13048-019-0586-1 .
doi: 10.1186/s13048-019-0586-1
pubmed: 31767036
pmcid: 6878639
Hoetker D, Chung W, Zhang D, Zhao J, Schmidtke VK, Riggs DW, Derave W, Bhatnagar A, Bishop DJ, Baba SP. Exercise alters and beta-alanine combined with exercise augments histidyl dipeptide levels and scavenges lipid peroxidation products in human skeletal muscle. J Appl Physiol (1985). 2018. https://doi.org/10.1152/japplphysiol.00007.2018 .
Kammoun M, Ternifi R, Dupres V, Pouletaut P, Meme S, Meme W, Szeremeta F, Landoulsi J, Constans JM, Lafont F, et al. Development of a novel multiphysical approach for the characterization of mechanical properties of musculotendinous tissues. Sci Rep. 2019;9:7733. https://doi.org/10.1038/s41598-019-44053-1 .
doi: 10.1038/s41598-019-44053-1
pubmed: 31118478
pmcid: 6531478
Carvalho RF, Castan EP, Coelho CA, Lopes FS, Almeida FL, Michelin A, de Souza RW, Araujo JP Jr, Cicogna AC, Dal Pai-Silva M. Heart failure increases atrogin-1 and MuRF1 gene expression in skeletal muscle with fiber type-specific atrophy. J Mol Histol. 2010;41:81–7. https://doi.org/10.1007/s10735-010-9262-x .
doi: 10.1007/s10735-010-9262-x
pubmed: 20349269
Cunha TF, Bechara LR, Bacurau AV, Jannig PR, Voltarelli VA, Dourado PM, Vasconcelos AR, Scavone C, Ferreira JC, Brum PC. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats. J Appl Physiol. 1985;2017(122):817–27. https://doi.org/10.1152/japplphysiol.00182.2016 .
doi: 10.1152/japplphysiol.00182.2016
Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12:489–95. https://doi.org/10.1016/S1470-2045(10)70218-7 .
doi: 10.1016/S1470-2045(10)70218-7
pubmed: 21296615
Emami A, Saitoh M, Valentova M, Sandek A, Evertz R, Ebner N, Loncar G, Springer J, Doehner W, Lainscak M, et al. Comparison of sarcopenia and cachexia in men with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur J Heart Fail. 2018;20:1580–7. https://doi.org/10.1002/ejhf.1304 .
doi: 10.1002/ejhf.1304
pubmed: 30160804
Gielen S, Adams V, Mobius-Winkler S, Linke A, Erbs S, Yu J, Kempf W, Schubert A, Schuler G, Hambrecht R. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol. 2003;42:861–8. https://doi.org/10.1016/s0735-1097(03)00848-9 .
doi: 10.1016/s0735-1097(03)00848-9
pubmed: 12957433
Narumi T, Watanabe T, Kadowaki S, Takahashi T, Yokoyama M, Kinoshita D, Honda Y, Funayama A, Nishiyama S, Takahashi H, et al. Sarcopenia evaluated by fat-free mass index is an important prognostic factor in patients with chronic heart failure. Eur J Intern Med. 2015;26:118–22. https://doi.org/10.1016/j.ejim.2015.01.008 .
doi: 10.1016/j.ejim.2015.01.008
pubmed: 25657117
Linke A, Adams V, Schulze PC, Erbs S, Gielen S, Fiehn E, Mobius-Winkler S, Schubert A, Schuler G, Hambrecht R. Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation. 2005;111:1763–70. https://doi.org/10.1161/01.CIR.0000165503.08661.E5 .
doi: 10.1161/01.CIR.0000165503.08661.E5
pubmed: 15809365
Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT, Anti TNFTACHFI. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart failure (ATTACH) trial. Circulation. 2003;107:3133–40. https://doi.org/10.1161/01.CIR.0000077913.60364.D2 .
doi: 10.1161/01.CIR.0000077913.60364.D2
pubmed: 12796126
Kasai A, Jee E, Tamura Y, Kouzaki K, Kotani T, Nakazato K. Aldehyde dehydrogenase 2 deficiency promotes skeletal muscle atrophy in aged mice. Am J Physiol Regul Integr Comp Physiol. 2022;322:R511–25. https://doi.org/10.1152/ajpregu.00304.2021 .
doi: 10.1152/ajpregu.00304.2021
pubmed: 35318866
Hajahmadi M, Shemshadi S, Khalilipur E, Amin A, Taghavi S, Maleki M, Malek H, Naderi N. Muscle wasting in young patients with dilated cardiomyopathy. J Cachexia Sarcopenia Muscle. 2017;8:542–8. https://doi.org/10.1002/jcsm.12193 .
doi: 10.1002/jcsm.12193
pubmed: 28251827
pmcid: 5566643
von Haehling S, Steinbeck L, Doehner W, Springer J, Anker SD. Muscle wasting in heart failure: an overview. Int J Biochem Cell Biol. 2013;45:2257–65. https://doi.org/10.1016/j.biocel.2013.04.025 .
doi: 10.1016/j.biocel.2013.04.025
Zamboni M, Rossi AP, Corzato F, Bambace C, Mazzali G, Fantin F. Sarcopenia, cachexia and congestive heart failure in the elderly. Endocr Metab Immune Disord Drug Targets. 2013;13:58–67. https://doi.org/10.2174/1871530311313010008 .
doi: 10.2174/1871530311313010008
pubmed: 23369138
Szaroszyk M, Kattih B, Martin-Garrido A, Trogisch FA, Dittrich GM, Grund A, Abouissa A, Derlin K, Meier M, Holler T, et al. Skeletal muscle derived Musclin protects the heart during pathological overload. Nat Commun. 2022;13:149. https://doi.org/10.1038/s41467-021-27634-5 .
doi: 10.1038/s41467-021-27634-5
pubmed: 35013221
pmcid: 8748430
Anker SD, Steinborn W, Strassburg S. Cardiac cachexia. Ann Med. 2004;36:518–29. https://doi.org/10.1080/07853890410017467 .
doi: 10.1080/07853890410017467
pubmed: 15513302
Adigun AQ, Ajayi AA. The effects of enalapril-digoxin-diuretic combination therapy on nutritional and anthropometric indices in chronic congestive heart failure: preliminary findings in cardiac cachexia. Eur J Heart Fail. 2001;3:359–63. https://doi.org/10.1016/s1388-9842(00)00146-x .
doi: 10.1016/s1388-9842(00)00146-x
pubmed: 11378008
Chamberlain JS. ACE inhibitor bulks up muscle. Nat Med. 2007;13:125–6. https://doi.org/10.1038/nm0207-125 .
doi: 10.1038/nm0207-125
pubmed: 17290265
Moulin M, Ferreiro A. Muscle redox disturbances and oxidative stress as pathomechanisms and therapeutic targets in early-onset myopathies. Semin Cell Dev Biol. 2017;64:213–23. https://doi.org/10.1016/j.semcdb.2016.08.003 .
doi: 10.1016/j.semcdb.2016.08.003
pubmed: 27531051
Rom O, Kaisari S, Aizenbud D, Reznick AZ. The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes. Free Radic Biol Med. 2013;65:190–200. https://doi.org/10.1016/j.freeradbiomed.2013.06.024 .
doi: 10.1016/j.freeradbiomed.2013.06.024
pubmed: 23792774
Chen HJ, Wang CC, Chan DC, Chiu CY, Yang RS, Liu SH. Adverse effects of acrolein, a ubiquitous environmental toxicant, on muscle regeneration and mass. J Cachexia Sarcopenia Muscle. 2019;10:165–76. https://doi.org/10.1002/jcsm.12362 .
doi: 10.1002/jcsm.12362
pubmed: 30378754
Braga M, Sinha Hikim AP, Datta S, Ferrini MG, Brown D, Kovacheva EL, Gonzalez-Cadavid NF, Sinha-Hikim I. Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. Apoptosis. 2008;13:822–32. https://doi.org/10.1007/s10495-008-0216-7 .
doi: 10.1007/s10495-008-0216-7
pubmed: 18461459
pmcid: 4732709
Nakashima Y, Ohsawa I, Nishimaki K, Kumamoto S, Maruyama I, Suzuki Y, Ohta S. Preventive effects of Chlorella on skeletal muscle atrophy in muscle-specific mitochondrial aldehyde dehydrogenase 2 activity-deficient mice. BMC Complement Altern Med. 2014;14: 390. https://doi.org/10.1186/1472-6882-14-390 .
doi: 10.1186/1472-6882-14-390
pubmed: 25305781
pmcid: 4200191
Moghaddam AE, Gartlan KH, Kong L, Sattentau QJ. Reactive carbonyls are a major Th2-inducing damage-associated molecular pattern generated by oxidative stress. J Immunol. 2011;187:1626–33. https://doi.org/10.4049/jimmunol.1003906 .
doi: 10.4049/jimmunol.1003906
pubmed: 21742965
Di Gioia M, Spreafico R, Springstead JR, Mendelson MM, Joehanes R, Levy D, Zanoni I. Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nat Immunol. 2020;21:42–53. https://doi.org/10.1038/s41590-019-0539-2 .
doi: 10.1038/s41590-019-0539-2
pubmed: 31768073
Ngwenyama N, Kirabo A, Aronovitz M, Velazquez F, Carrillo-Salinas F, Salvador AM, Nevers T, Amarnath V, Tai A, Blanton RM, et al. Isolevuglandin-Modified Cardiac Proteins Drive CD4+ T-Cell Activation in the Heart and Promote Cardiac Dysfunction. Circulation. 2021;143:1242–55. https://doi.org/10.1161/CIRCULATIONAHA.120.051889 .
doi: 10.1161/CIRCULATIONAHA.120.051889
pubmed: 33463362
pmcid: 7987774
Miller YI, Choi SH, Wiesner P, Fang L, Harkewicz R, Hartvigsen K, Boullier A, Gonen A, Diehl CJ, Que X, et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res. 2011;108:235–48. https://doi.org/10.1161/CIRCRESAHA.110.223875 .
doi: 10.1161/CIRCRESAHA.110.223875
pubmed: 21252151
pmcid: 3075542
Kobayashi H, Nakamura S, Sato Y, Kobayashi T, Miyamoto K, Oya A, Matsumoto M, Nakamura M, Kanaji A, Miyamoto T. ALDH2 mutation promotes skeletal muscle atrophy in mice via accumulation of oxidative stress. Bone. 2021;142: 115739. https://doi.org/10.1016/j.bone.2020.115739 .
doi: 10.1016/j.bone.2020.115739
pubmed: 33188956
Zhang Q, Zheng J, Qiu J, Wu X, Xu Y, Shen W, Sun M. ALDH2 restores exhaustive exercise-induced mitochondrial dysfunction in skeletal muscle. Biochem Biophys Res Commun. 2017;485:753–60. https://doi.org/10.1016/j.bbrc.2017.02.124 .
doi: 10.1016/j.bbrc.2017.02.124
pubmed: 28249782
Fu SH, Zhang HF, Yang ZB, Li TB, Liu B, Lou Z, Ma QL, Luo XJ, Peng J. Alda-1 reduces cerebral ischemia/reperfusion injury in rat through clearance of reactive aldehydes. Naunyn Schmiedebergs Arch Pharmacol. 2014;387:87–94. https://doi.org/10.1007/s00210-013-0922-8 .
doi: 10.1007/s00210-013-0922-8
pubmed: 24081521
Woods C, Shang C, Taghavi F, Downey P, Zalewski A, Rubio GR, Liu J, Homburger JR, Grunwald Z, Qi W, et al. In Vivo Post-Cardiac Arrest Myocardial Dysfunction Is Supported by Ca2+/Calmodulin-Dependent Protein Kinase II-Mediated Calcium Long-Term Potentiation and Mitigated by Alda-1, an Agonist of Aldehyde Dehydrogenase Type 2. Circulation. 2016;134:961–77. https://doi.org/10.1161/CIRCULATIONAHA.116.021618 .
doi: 10.1161/CIRCULATIONAHA.116.021618
pubmed: 27582424
pmcid: 5040468
Gomes KM, Campos JC, Bechara LR, Queliconi B, Lima VM, Disatnik MH, Magno P, Chen CH, Brum PC, Kowaltowski AJ, et al. Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling. Cardiovasc Res. 2014;103:498–508. https://doi.org/10.1093/cvr/cvu125 .
doi: 10.1093/cvr/cvu125
pubmed: 24817685
pmcid: 4155470
Drozak J, Chrobok L, Poleszak O, Jagielski AK, Derlacz R. Molecular identification of carnosine N-methyltransferase as chicken histamine N-methyltransferase-like protein (hnmt-like). PLoS ONE. 2013;8: e64805. https://doi.org/10.1371/journal.pone.0064805 .
doi: 10.1371/journal.pone.0064805
pubmed: 23705015
pmcid: 3660329
Drozak J, Piecuch M, Poleszak O, Kozlowski P, Chrobok L, Baelde HJ, de Heer E. UPF0586 Protein C9orf41 Homolog Is Anserine-producing Methyltransferase. J Biol Chem. 2015;290:17190–205. https://doi.org/10.1074/jbc.M115.640037 .
doi: 10.1074/jbc.M115.640037
pubmed: 26001783
pmcid: 4498059
Drozak J, Veiga-da-Cunha M, Vertommen D, Stroobant V, Van Schaftingen E. Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem. 2010;285:9346–56. https://doi.org/10.1074/jbc.M109.095505 .
doi: 10.1074/jbc.M109.095505
pubmed: 20097752
pmcid: 2843183
Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93:1803–45. https://doi.org/10.1152/physrev.00039.2012 .
doi: 10.1152/physrev.00039.2012
pubmed: 24137022
Aldini G, Granata P, Carini M. Detoxification of cytotoxic alpha, beta-unsaturated aldehydes by carnosine: characterization of conjugated adducts by electrospray ionization tandem mass spectrometry and detection by liquid chromatography/mass spectrometry in rat skeletal muscle. J Mass Spectrom. 2002;37:1219–28. https://doi.org/10.1002/jms.381 .
doi: 10.1002/jms.381
pubmed: 12489081
Baguet A, Koppo K, Pottier A, Derave W. Beta-alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. Eur J Appl Physiol. 2010;108:495–503. https://doi.org/10.1007/s00421-009-1225-0 .
doi: 10.1007/s00421-009-1225-0
pubmed: 19841932
Posa DK, Miller J, Hoetker D, Ramage MI, Gao H, Zhao J, Doelling B, Bhatnagar A, Wigmore SJ, Skipworth RJE, et al. Skeletal muscle analysis of cancer patients reveals a potential role for carnosine in muscle wasting. J Cachexia Sarcopenia Muscle. 2023. https://doi.org/10.1002/jcsm.13258 .
doi: 10.1002/jcsm.13258
pubmed: 37199284
pmcid: 10401540
de Courten B, Jakubova M, de Courten MP, Kukurova IJ, Vallova S, Krumpolec P, Valkovic L, Kurdiova T, Garzon D, Barbaresi S, et al. Effects of carnosine supplementation on glucose metabolism: Pilot clinical trial. Obesity (Silver Spring). 2016;24:1027–34. https://doi.org/10.1002/oby.21434 .
doi: 10.1002/oby.21434
pubmed: 27040154
Lombardi C, Carubelli V, Lazzarini V, Vizzardi E, Bordonali T, Ciccarese C, Castrini AI, Dei Cas A, Nodari S, Metra M. Effects of oral administration of orodispersible levo-carnosine on quality of life and exercise performance in patients with chronic heart failure. Nutrition. 2015;31:72–8. https://doi.org/10.1016/j.nut.2014.04.021 .
doi: 10.1016/j.nut.2014.04.021
pubmed: 25287762
Everaert I, De Naeyer H, Taes Y, Derave W. Gene expression of carnosine-related enzymes and transporters in skeletal muscle. Eur J Appl Physiol. 2013;113:1169–79. https://doi.org/10.1007/s00421-012-2540-4 .
doi: 10.1007/s00421-012-2540-4
pubmed: 23124893
Derave W, Ozdemir MS, Harris RC, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E. beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. 1985;2007(103):1736–43. https://doi.org/10.1152/japplphysiol.00397.2007 .
doi: 10.1152/japplphysiol.00397.2007
Everaert I, Stegen S, Vanheel B, Taes Y, Derave W. Effect of beta-alanine and carnosine supplementation on muscle contractility in mice. Med Sci Sports Exerc. 2013;45:43–51. https://doi.org/10.1249/MSS.0b013e31826cdb68 .
doi: 10.1249/MSS.0b013e31826cdb68
pubmed: 22895378