Effect of Hemoglobin and Blood Glucose Levels on CT Perfusion Ischemic Core Estimation: A Post Hoc Analysis of the ESCAPE-NA1 Trial.
Humans
Female
Male
Aged
Ischemic Stroke
/ diagnostic imaging
Blood Glucose
/ metabolism
Hemoglobins
/ metabolism
Middle Aged
Tomography, X-Ray Computed
Cerebrovascular Circulation
/ physiology
Aged, 80 and over
Anemia
/ blood
Thrombectomy
/ methods
Brain Ischemia
/ diagnostic imaging
Perfusion Imaging
Hyperglycemia
/ blood
Journal
Neurology
ISSN: 1526-632X
Titre abrégé: Neurology
Pays: United States
ID NLM: 0401060
Informations de publication
Date de publication:
26 Nov 2024
26 Nov 2024
Historique:
medline:
22
10
2024
pubmed:
21
10
2024
entrez:
21
10
2024
Statut:
ppublish
Résumé
CT perfusion (CTP) maps can estimate the ischemic core in acute ischemic stroke based on distinctive cerebral blood flow thresholds. However, metabolic factors beyond perfusion influence the tissue tolerance to ischemia and the infarct growth rate. Underestimating the ischemic core volume (ICV) might result in overestimating the salvageable cerebral tissue and, consequently, overestimating the potential clinical benefits of reperfusion therapies. We aim to evaluate whether baseline hemoglobin and blood glucose levels influence the accuracy of baseline CTP ICV estimations. Large vessel occlusion stroke patients investigated with baseline CTP undergoing thrombectomy with near-complete reperfusion and without parenchymal hemorrhage from the ESCAPE-NA1 trial were included. Patients were subdivided into anemic (hemoglobin <130 g/L for men and <120 g/L for women) and nonanemic groups, and hyperglycemic (blood glucose level >7 mmol/L) and normoglycemic groups. Ischemic core underestimated volume (ICuV) was calculated: final infarct volume minus CTP-based ICV. The primary outcome was the presence of "perfusion scotoma" defined as ICuV ≥10 mL. Presence of "perfusion scotoma" and median ICuV were compared between anemic vs nonanemic and hyperglycemic vs normoglycemic patients using nonparametric tests and multivariable binary logistic regression with adjustment for baseline variables. One hundred sixty-two of 1,105 (15%) patients were included (median age 70.5 [interquartile range (IQR) 61-80.4], 50.6% women). The median ICuV was 7.26 mL (IQR 0-25.63). Seventy-eight (48%) patients demonstrated perfusion scotoma. Forty-two (25.7%) patients were anemic, and 65 (40.1%) were hyperglycemic. In univariable analysis, the hyperglycemic group had a higher prevalence of perfusion scotoma (65% [n = 40] vs 39% [n = 38], In our study, CTP-based ischemic core underestimation was common and associated with higher baseline blood glucose levels. Individual metabolic factors beyond perfusion that critically influence the infarct growth rate should be considered when interpreting baseline CTP estimations of ischemic core.
Sections du résumé
BACKGROUND AND OBJECTIVES
OBJECTIVE
CT perfusion (CTP) maps can estimate the ischemic core in acute ischemic stroke based on distinctive cerebral blood flow thresholds. However, metabolic factors beyond perfusion influence the tissue tolerance to ischemia and the infarct growth rate. Underestimating the ischemic core volume (ICV) might result in overestimating the salvageable cerebral tissue and, consequently, overestimating the potential clinical benefits of reperfusion therapies. We aim to evaluate whether baseline hemoglobin and blood glucose levels influence the accuracy of baseline CTP ICV estimations.
METHODS
METHODS
Large vessel occlusion stroke patients investigated with baseline CTP undergoing thrombectomy with near-complete reperfusion and without parenchymal hemorrhage from the ESCAPE-NA1 trial were included. Patients were subdivided into anemic (hemoglobin <130 g/L for men and <120 g/L for women) and nonanemic groups, and hyperglycemic (blood glucose level >7 mmol/L) and normoglycemic groups. Ischemic core underestimated volume (ICuV) was calculated: final infarct volume minus CTP-based ICV. The primary outcome was the presence of "perfusion scotoma" defined as ICuV ≥10 mL. Presence of "perfusion scotoma" and median ICuV were compared between anemic vs nonanemic and hyperglycemic vs normoglycemic patients using nonparametric tests and multivariable binary logistic regression with adjustment for baseline variables.
RESULTS
RESULTS
One hundred sixty-two of 1,105 (15%) patients were included (median age 70.5 [interquartile range (IQR) 61-80.4], 50.6% women). The median ICuV was 7.26 mL (IQR 0-25.63). Seventy-eight (48%) patients demonstrated perfusion scotoma. Forty-two (25.7%) patients were anemic, and 65 (40.1%) were hyperglycemic. In univariable analysis, the hyperglycemic group had a higher prevalence of perfusion scotoma (65% [n = 40] vs 39% [n = 38],
DISCUSSION
CONCLUSIONS
In our study, CTP-based ischemic core underestimation was common and associated with higher baseline blood glucose levels. Individual metabolic factors beyond perfusion that critically influence the infarct growth rate should be considered when interpreting baseline CTP estimations of ischemic core.
Identifiants
pubmed: 39432874
doi: 10.1212/WNL.0000000000209939
doi:
Substances chimiques
Blood Glucose
0
Hemoglobins
0
Types de publication
Journal Article
Randomized Controlled Trial
Langues
eng
Sous-ensembles de citation
IM