GC-MS analysis, molecular docking, and pharmacokinetic studies on Dalbergia sissoo barks extracts for compounds with anti-diabetic potential.
Molecular Docking Simulation
Plant Extracts
/ chemistry
Gas Chromatography-Mass Spectrometry
/ methods
Plant Bark
/ chemistry
Hypoglycemic Agents
/ pharmacology
Dalbergia
/ chemistry
Dipeptidyl Peptidase 4
/ metabolism
Diabetes Mellitus, Type 2
/ drug therapy
Spectroscopy, Fourier Transform Infrared
/ methods
Phytochemicals
/ chemistry
alpha-Amylases
/ antagonists & inhibitors
Humans
alpha-Glucosidases
/ metabolism
Animals
DPP-4 inhibitors
Drug discovery and development
Glucose uptake
Type-2 diabetes mellitus
α-Amylase
α-Glucosidase
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 10 2024
22 10 2024
Historique:
received:
09
04
2024
accepted:
07
10
2024
medline:
23
10
2024
pubmed:
23
10
2024
entrez:
22
10
2024
Statut:
epublish
Résumé
Diabetes is a metabolic condition defined by abnormal blood sugar levels. Targeting starch-hydrolyzing enzymes and Dipeptidyl Peptidase 4 (DPP-4) expressed on the surface of numerous cells is one of the key strategies to lower the risk of Type-2 diabetes mellitus (T2DM). Dalbergia sissoo Roxb. bark (DSB) extracts have been reported to have anti-diabetic properties. This study intended to scientifically validate use of alcoholic and hydro-alcoholic extracts of DSB for T2DM by conducting preliminary phytochemical investigations, characterising potential phytochemicals using Fourier transform infrared (FT-IR) spectroscopy and Gas chromatography-mass spectrometry (GC-MS) analysis followed by comprehensive in-silico analysis. A qualitative phytochemical evaluation indicated the presence of alkaloids, phenolics, glycosides, conjugated acids and flavonoids. Ethanolic extracts showed highest total phenolic content (TPC) (127.072 ± 14.08031 μg GAE/g dry extract) and total flavonoid content (106.911 ± 5.84516 μg QE /g dry extract). Further FT-IR spectroscopy also revealed typical band values associated with phenol, alcohol, alkene, alkane and conjugated acid functional groups. The GC-MS analysis identified 139 compounds, 18 of which had anti-diabetic potential. In-silico ADMET analysis of potential compounds revealed 15 compounds that followed Lipinski's rule and demonstrated drug-like properties, as well as good oral bioavailability. Molecular docking was utilised to analyse their potential to interact with three targets: α-amylase, α-glucosidase, and DPP-4, which are crucial in managing diabetes-related problems. Molecular Docking analysis and membrane permeability test utilising the PerMM platform revealed that compounds in the extracts, such as Soyasapogenol B and Corydine, had better interactions and permeability across the plasma membrane than standard drugs in use. Molecular dynamics simulations also showed that selected compounds remained stable upon interaction with α-amylase. Overall, using the in-silico approaches it was predicted that DSB extracts contain potential phytochemicals with diverse anti-diabetic properties. It further needs to be investigated for possible development as formulation or drug of choice for treating T2DM.
Identifiants
pubmed: 39438536
doi: 10.1038/s41598-024-75570-3
pii: 10.1038/s41598-024-75570-3
doi:
Substances chimiques
Plant Extracts
0
Hypoglycemic Agents
0
Dipeptidyl Peptidase 4
EC 3.4.14.5
Phytochemicals
0
alpha-Amylases
EC 3.2.1.1
alpha-Glucosidases
EC 3.2.1.20
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
24936Subventions
Organisme : Faculty Research Grant Scheme, Guru Gobind Singh Indraprastha University, New Delhi, India
ID : GGSIPU/DRC/FRGS/2022/1223/15
Organisme : Faculty Research Grant Scheme, Guru Gobind Singh Indraprastha University, New Delhi, India
ID : GGSIPU/RDC/FRGS/2023/1448/18
Informations de copyright
© 2024. The Author(s).
Références
Li, W., Yuan, G., Pan, Y., Wang, C. & Chen, H. Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: A review. Front. Pharmacol. 8, 74 (2017).
pubmed: 28280467
pmcid: 5322182
Ali, J. et al. Overall clinical features of type 2 diabetes mellitus with respect to gender. Cureus https://doi.org/10.7759/cureus.35771 (2023).
doi: 10.7759/cureus.35771
pubmed: 38698879
pmcid: 10827280
Artasensi, A., Pedretti, A., Vistoli, G. & Fumagalli, L. Type 2 diabetes mellitus: A review of multi-target drugs. Molecules 25, 1987. https://doi.org/10.3390/molecules25081987 (2020).
doi: 10.3390/molecules25081987
pubmed: 32340373
pmcid: 7221535
Cui, J., Liu, Y., Li, Y., Xu, F. & Liu, Y. Type 2 Diabetes and myocardial infarction: Recent clinical evidence and perspective. Front. Cardiovasc. Med. 8, 644189 (2021).
doi: 10.3389/fcvm.2021.644189
pubmed: 33718461
pmcid: 7943438
Hung, H.-Y., Qian, K., Morris-Natschke, S. L., Hsu, C.-S. & Lee, K.-H. Recent discovery of plant-derived anti-diabetic natural products. Nat. Prod. Rep. 29, 580–606. https://doi.org/10.1039/C2NP00074A (2012).
doi: 10.1039/C2NP00074A
pubmed: 22491825
Nawaz, M. et al. Structural elucidation, molecular docking, α-amylase and α-glucosidase inhibition studies of 5-amino-nicotinic acid derivatives. BMC Chem. 14, 43. https://doi.org/10.1186/s13065-020-00695-1 (2020).
doi: 10.1186/s13065-020-00695-1
pubmed: 32685927
pmcid: 7362424
Adnan, M. et al. Network pharmacology study to reveal the potentiality of a methanol extract of Caesalpinia sappan L. wood against type-2 diabetes mellitus. Life 12, 277. https://doi.org/10.3390/life12020277 (2022).
doi: 10.3390/life12020277
pubmed: 35207564
pmcid: 8880704
Alam, S. et al. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Front. Endocrinol. 13, 800714. https://doi.org/10.3389/fendo.2022.800714 (2022).
doi: 10.3389/fendo.2022.800714
Singh, S., Bansal, A., Singh, V., Chopra, T. & Poddar, J. Flavonoids, alkaloids and terpenoids: A new hope for the treatment of diabetes mellitus. J. Diabetes Metab. Disord. 21, 941–950. https://doi.org/10.1007/s40200-021-00943-8 (2022).
doi: 10.1007/s40200-021-00943-8
pubmed: 35673446
pmcid: 9167359
Asafo-Agyei, T., Appau, Y., Barimah, K. B. & Asase, A. Medicinal plants used for management of diabetes and hypertension in Ghana. Heliyon 9, e22977. https://doi.org/10.1016/j.heliyon.2023.e22977 (2023).
doi: 10.1016/j.heliyon.2023.e22977
pubmed: 38076168
pmcid: 10703729
Bailey, C. J. Metformin: Historical overview. Diabetologia 60, 1566–1576. https://doi.org/10.1007/s00125-017-4318-z (2017).
doi: 10.1007/s00125-017-4318-z
pubmed: 28776081
Al-Snaf, P. D. A. E. Chemical constituents and pharmacological effects of Dalbergia sissoo—A review. IOSR J. Pharm. 07, 59–71. https://doi.org/10.9790/3013-0702015971 (2017).
doi: 10.9790/3013-0702015971
Mannan, Md. A., Khatun, A. & Khan, Md. F. H. Antinociceptive effect of methanol extract of Dalbergia sissoo leaves in mice. BMC Complement. Altern. Med. 17, 72. https://doi.org/10.1186/s12906-017-1565-y (2017).
doi: 10.1186/s12906-017-1565-y
pubmed: 28114964
pmcid: 5260076
Thakkar, A. B., RamalingamB, S., Thakkar, V. R. & Thakor, P. Hydromethanolic leaves extract of Dalbergia sissoo Roxb. ex DC. induces apoptosis in lung adenocarcinoma cells. Process Biochem. 134, 250–261. https://doi.org/10.1016/j.procbio.2023.10.006 (2023).
doi: 10.1016/j.procbio.2023.10.006
Naik, H. N. et al. LC–MS profiling, in vitro and in silico C-ABL kinase inhibitory approach to identify potential anticancer agents from Dalbergia sissoo leaves. Sci. Rep. 14, 73. https://doi.org/10.1038/s41598-023-49995-1 (2024).
doi: 10.1038/s41598-023-49995-1
pubmed: 38167560
pmcid: 10761914
El-Azzazy, E. A., Ibrahim, M. T. & Reda, M. A. LC/MS profile and biological evaluation of Dalbergia sissoo growing in Egypt desert. Azhar Int. J. Pharm. Med. Sci. https://doi.org/10.21608/aijpms.2023.190847.1190 (2024).
doi: 10.21608/aijpms.2023.190847.1190
Dixit, S. Investigation of immunomodulation activity in the leaves of Dalbergia dissoo. Glob. J. Pharm. Pharm. Sci. https://doi.org/10.19080/GJPPS.2018.05.555655 (2018).
doi: 10.19080/GJPPS.2018.05.555655
Interaction of Selected Terpenoids From Dalbergia sissoo With Catalytic Domain of Matrix Metalloproteinase-1: An In Silico Assessment of Their Anti-wrinkling Potential - Shagufta Yasmeen, Promila Gupta. https://doi.org/10.1177/1177932219896538 (2019). Accessed 24 Sep 2024
Devi, P., Singh, S. & Promila. Isolation and characterization of chemical constituents from Dalbergia sissoo Roxb. Stem. Int J Chem Stud. (2017).
Saini, S., & Sharma, S. Antidiabetic activity of different extracts of Dalbergia Sissoo Dc. Stem Bark On Streptozotocin-Nicotinamide Induced Type 2 Diabetic Rats. 5.
Pund, K. V., Vyawahare, N. S., Gadakh, R. T. & Murkute, V. K. Antidiabetic evaluation of Dalbergia sissoo against alloxan induced diabetes mellitus in wistar albino rats (2012).
Savithramma, N., Rao, M. L. & Suhrulatha, D. Screening of medicinal plants for secondary metabolites (2011).
Orole, O. O. GC-MS evaluation phytochemical and antinutritional screening of Ganoderma lucidum. J. Adv. Biol. Biotechnol. https://doi.org/10.9734/JABB/2016/24261 (2016).
doi: 10.9734/JABB/2016/24261
Gul, R., Jan, S. U., Faridullah, S., Sherani, S. & Jahan, N. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia Indigenous to Balochistan. Sci. World J. 2017, e5873648. https://doi.org/10.1155/2017/5873648 (2017).
doi: 10.1155/2017/5873648
Kancherla, N., Dhakshinamoothi, A., Chitra, K. & Komaram, R. B. Preliminary analysis of phytoconstituents and evaluation of anthelminthic property of Cayratia auriculata (In Vitro). Mædica 14, 350–356. https://doi.org/10.26574/maedica.2019.14.4.350 (2019).
doi: 10.26574/maedica.2019.14.4.350
pubmed: 32153665
pmcid: 7035446
Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158. https://doi.org/10.5344/ajev.1965.16.3.144 (1965).
doi: 10.5344/ajev.1965.16.3.144
Woisky, R. G. & Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 37, 99–105. https://doi.org/10.1080/00218839.1998.11100961 (1998).
doi: 10.1080/00218839.1998.11100961
Mahboubi, M., Kazempour, N. & Boland Nazar, A. R. Total phenolic, total flavonoids, antioxidant and antimicrobial activities of scrophularia striata boiss extracts. Jundishapur J. Nat. Pharm. Prod. 8, 15–19 (2013).
doi: 10.17795/jjnpp-7621
pubmed: 24624181
pmcid: 3941883
Wongsa, P., Phatikulrungsun, P. & Prathumthong, S. FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions. Sci. Rep. 12, 6631. https://doi.org/10.1038/s41598-022-10669-z (2022).
doi: 10.1038/s41598-022-10669-z
pubmed: 35459897
pmcid: 9033800
Chaturvedi, S. & Gupta, P. Functional components in extracts of Beta vulgaris (Chukandar) parts for antioxidant effect and antiobesity potential with lipase inhibition. Food Biosci. 41, 100983. https://doi.org/10.1016/j.fbio.2021.100983 (2021).
doi: 10.1016/j.fbio.2021.100983
SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. https://www.nature.com/articles/srep42717 . Accessed 11 Mar 2024
Banerjee, P., Eckert, A. O., Schrey, A. K. & Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 46, W257–W263. https://doi.org/10.1093/nar/gky318 (2018).
doi: 10.1093/nar/gky318
pubmed: 29718510
pmcid: 6031011
Burley, S. K. et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 49, D437–D451. https://doi.org/10.1093/nar/gkaa1038 (2021).
doi: 10.1093/nar/gkaa1038
pubmed: 33211854
Bolton, E. E., Wang, Y., Thiessen, P. A. & Bryant, S. H. PubChem: Integrated platform of small molecules and biological activities. Ann. Rep. Comput. Chem. 4, 217–241. https://doi.org/10.1016/S1574-1400(08)00012-1 (2008).
doi: 10.1016/S1574-1400(08)00012-1
O’Boyle, N. M. et al. Open Babel: An open chemical toolbox. J. Cheminform. 3, 33. https://doi.org/10.1186/1758-2946-3-33 (2011).
doi: 10.1186/1758-2946-3-33
pubmed: 21982300
pmcid: 3198950
Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461. https://doi.org/10.1002/jcc.21334 (2010).
doi: 10.1002/jcc.21334
pubmed: 19499576
pmcid: 3041641
Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25. https://doi.org/10.1016/j.softx.2015.06.001 (2015).
doi: 10.1016/j.softx.2015.06.001
Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B. & Lindahl, E. Implementation of the CHARMM Force Field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput. 6, 459–466. https://doi.org/10.1021/ct900549r (2010).
doi: 10.1021/ct900549r
pubmed: 26617301
Zoete, V., Cuendet, M. A., Grosdidier, A. & Michielin, O. SwissParam: A fast force field generation tool for small organic molecules. J. Comput. Chem. 32, 2359–2368. https://doi.org/10.1002/jcc.21816 (2011).
doi: 10.1002/jcc.21816
pubmed: 21541964
Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38. https://doi.org/10.1016/0263-7855(96)00018-5 (1996).
doi: 10.1016/0263-7855(96)00018-5
pubmed: 8744570
Adinortey, C. A. et al. Molecular structure-based screening of the constituents of Calotropis procera identifies potential inhibitors of diabetes mellitus target alpha glucosidase. Curr. Issues Mol. Biol. 44, 963–987. https://doi.org/10.3390/cimb44020064 (2022).
doi: 10.3390/cimb44020064
pubmed: 35723349
pmcid: 8928985
Kong, M. et al. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomed. Pharmacother. 133, 110975. https://doi.org/10.1016/j.biopha.2020.110975 (2021).
doi: 10.1016/j.biopha.2020.110975
pubmed: 33212375
Saleem, S., Muhammad, G., Hussain, M. A., Altaf, M. & Bukhari, S. N. A. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iran J. Basic Med. Sci. 23, 1501–1526. https://doi.org/10.22038/IJBMS.2020.44254.10378 (2020).
doi: 10.22038/IJBMS.2020.44254.10378
pubmed: 33489024
pmcid: 7811807
Martín, M. Á. & Ramos, S. Dietary flavonoids and insulin signaling in diabetes and obesity. Cells 10, 1474. https://doi.org/10.3390/cells10061474 (2021).
doi: 10.3390/cells10061474
pubmed: 34208379
pmcid: 8231211
Putta, S. et al. Therapeutic potentials of triterpenes in diabetes and its associated complications. Curr. Top Med. Chem. 16, 2532–2542. https://doi.org/10.2174/1568026616666160414123343 (2016).
doi: 10.2174/1568026616666160414123343
pubmed: 27086788
Sousa, L. R. et al. Use of monoterpenes as potential therapeutics in diabetes mellitus: A prospective review. Adv. Pharmacol. Pharm. Sci. 2023, e1512974. https://doi.org/10.1155/2023/1512974 (2023).
doi: 10.1155/2023/1512974
Deka, H., Choudhury, A. & Dey, B. K. An overview on plant derived phenolic compounds and their role in treatment and management of diabetes. J. Pharmacopuncture 25, 199–208. https://doi.org/10.3831/KPI.2022.25.3.199 (2022).
doi: 10.3831/KPI.2022.25.3.199
pubmed: 36186092
pmcid: 9510143
Allagui, I. et al. Phytochemical screening, antioxidant properties, anti-apoptotic effects and molecular docking study of Tunisian cleome (Cleome arabica L.) fruits extract under optimized extraction conditions. Int. J. Food Prop. 25, 2107–2120. https://doi.org/10.1080/10942912.2022.2125009 (2022).
doi: 10.1080/10942912.2022.2125009
Sabandar, C. W., Jalil, J., Ahmat, N. & Aladdin, N.-A. Medicinal uses, chemistry and pharmacology of Dillenia species (Dilleniaceae). Phytochemistry 134, 6–25. https://doi.org/10.1016/j.phytochem.2016.11.010 (2017).
doi: 10.1016/j.phytochem.2016.11.010
pubmed: 27889244
Rohman, A., Setyaningrum, D. L. & Riyanto, S. FTIR spectroscopy combined with partial least square for analysis of red fruit oil in ternary mixture system. Int. J. Spectrosc. 2014, e785914. https://doi.org/10.1155/2014/785914 (2014).
doi: 10.1155/2014/785914
Alrubaie, L. A., Muhasin, R. J. & Mousa, M. N. Synthesis, characterization and evaluation of antiinflammatory properties of novel α, β-unsaturated ketones. Trop J. Pharm. Res. 19, 147–154. https://doi.org/10.4314/tjpr.v19i1.22 (2020).
doi: 10.4314/tjpr.v19i1.22
Ralte, L., Khiangte, L., Thangjam, N. M., Kumar, A. & Singh, Y. T. GC–MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Sci. Rep. 12, 3395. https://doi.org/10.1038/s41598-022-07320-2 (2022).
doi: 10.1038/s41598-022-07320-2
pubmed: 35233058
pmcid: 8888824
de Almeida, P. D. O. et al. Anti-inflammatory activity of triterpenes isolated from protium paniculatum oil-resins. Evid. Based Complement. Altern. Med. https://doi.org/10.1155/2015/293768 (2015).
doi: 10.1155/2015/293768
Lin, Y., Shen, C., Wang, F., Fang, Z. & Shen, G. Network pharmacology and molecular docking study on the potential mechanism of Yi-Qi-Huo-Xue-Tong-Luo formula in treating diabetic peripheral neuropathy. J. Diabetes Res. 2021, 9941791. https://doi.org/10.1155/2021/9941791 (2021).
doi: 10.1155/2021/9941791
pubmed: 34159207
pmcid: 8188603
Iqbal, D. et al. Soyasapogenol-B as a potential multitarget therapeutic agent for neurodegenerative disorders: Molecular docking and dynamics study. Entropy https://doi.org/10.3390/e24050593 (2022).
doi: 10.3390/e24050593
pubmed: 35885104
pmcid: 9319675
Oselusi, S. O., Christoffels, A. & Egieyeh, S. A. Cheminformatic characterization of natural antimicrobial products for the development of new lead compounds. Molecules 26, 3970. https://doi.org/10.3390/molecules26133970 (2021).
doi: 10.3390/molecules26133970
pubmed: 34209681
pmcid: 8271829
Tian, S. et al. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug. Deliv. Rev. 86, 2–10. https://doi.org/10.1016/j.addr.2015.01.009 (2015).
doi: 10.1016/j.addr.2015.01.009
pubmed: 25666163
Benet, L. Z., Hosey, C. M., Ursu, O. & Oprea, T. I. BDDCS, the rule of 5 and drugability. Adv. Drug. Deliv. Rev. 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007 (2016).
doi: 10.1016/j.addr.2016.05.007
pubmed: 27182629
pmcid: 4910824
Wairata, J. et al. Evaluation of the antioxidant, antidiabetic, and antiplasmodial activities of xanthones isolated from garcinia forbesii and their in silico studies. Biomedicines 9, 1380. https://doi.org/10.3390/biomedicines9101380 (2021).
doi: 10.3390/biomedicines9101380
pubmed: 34680496
pmcid: 8533219
Mechchate, H., Es-safi, I., Al Kamaly, M.O., & Bousta D. Insight into gentisic acid antidiabetic potential using in vitro and in silico approaches. Molecules 26, 1932. https://doi.org/10.3390/molecules26071932 (2021).
doi: 10.3390/molecules26071932
pubmed: 33808152
pmcid: 8037080
Hsiu, J., Fischer, E. H. & Stein, E. A. Alpha-amylases as calcium-metalloenzymes. II. Calcium and the catalytic activity*. Biochemistry 3, 61–66. https://doi.org/10.1021/bi00889a011 (1964).
doi: 10.1021/bi00889a011
pubmed: 14114506
Ragunath, C. et al. Probing the role of aromatic residues at the secondary saccharide-binding sites of human salivary α-amylase in substrate hydrolysis and bacterial binding. J. Mol. Biol. 384, 1232–1248. https://doi.org/10.1016/j.jmb.2008.09.089 (2008).
doi: 10.1016/j.jmb.2008.09.089
pubmed: 18951906
pmcid: 2644404
Chien, C.-H., Tsai, C.-H., Lin, C.-H., Chou, C.-Y. & Chen, X. Identification of hydrophobic residues critical for DPP-IV dimerization. Biochemistry 45, 7006–7012. https://doi.org/10.1021/bi060401c (2006).
doi: 10.1021/bi060401c
pubmed: 16752891
Lomize, A. L. & Pogozheva, I. D. Physics-based method for modeling passive membrane permeability and translocation pathways of bioactive molecules. J. Chem. Inf. Model 59, 3198–3213. https://doi.org/10.1021/acs.jcim.9b00224 (2019).
doi: 10.1021/acs.jcim.9b00224
pubmed: 31259555
pmcid: 6756154
Kuzmanic, A. & Zagrovic, B. Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys. J. 98, 861–871. https://doi.org/10.1016/j.bpj.2009.11.011 (2010).
doi: 10.1016/j.bpj.2009.11.011
pubmed: 20197040
pmcid: 2830444
Kashyap, J. & Datta, D. Drug repurposing for SARS-CoV-2: A high-throughput molecular docking, molecular dynamics, machine learning, and DFT study. J. Mater. Sci. 57, 10780–10802. https://doi.org/10.1007/s10853-022-07195-8 (2022).
doi: 10.1007/s10853-022-07195-8
pubmed: 35502407
pmcid: 9045684
Stratton, C. F., Newman, D. J. & Tan, D. S. Cheminformatic comparison of approved drugs from natural product versus synthetic origins. Bioorg. Med. Chem. Lett. 25, 4802–4807. https://doi.org/10.1016/j.bmcl.2015.07.014 (2015).
doi: 10.1016/j.bmcl.2015.07.014
pubmed: 26254944
pmcid: 4607632
Iwamoto, K. et al. Soyasapogenols reduce cellular triglyceride levels in 3T3-L1 mouse adipocyte cells by accelerating triglyceride lipolysis. Biochem. Biophys. Rep. 16, 44–49. https://doi.org/10.1016/j.bbrep.2018.09.006 (2018).
doi: 10.1016/j.bbrep.2018.09.006
pubmed: 30294680
pmcid: 6171538
Timalsina, D., Bhusal, D., Devkota, H. P., Pokhrel, K. P. & Sharma, K. R. α-Amylase inhibitory activity of Catunaregam spinosa (Thunb.) Tirveng.: In vitro and in silico studies. BioMed. Res. Int. 2021, 4133876. https://doi.org/10.1155/2021/4133876 (2021).
doi: 10.1155/2021/4133876
pubmed: 34938807
pmcid: 8687831
Kamruzzaman, M., Horowitz, M., Jones, K. L. & Marathe, C. S. Gut-based strategies to reduce postprandial glycaemia in type 2 diabetes. Front. Endocrinol. 12, 661877. https://doi.org/10.3389/fendo.2021.661877 (2021).
doi: 10.3389/fendo.2021.661877
Salmaso, V. & Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol. 9 (2018).
Dirir, A. M., Daou, M., Yousef, A. F. & Yousef, L. F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 21, 1049–1079. https://doi.org/10.1007/s11101-021-09773-1 (2022).
doi: 10.1007/s11101-021-09773-1
pubmed: 34421444
Saini, K., Sharma, S. & Khan, Y. DPP-4 inhibitors for treating T2DM - hype or hope? An analysis based on the current literature. Front. Mol. Biosci. 10, 1130625 (2023).
doi: 10.3389/fmolb.2023.1130625
pubmed: 37287751
pmcid: 10242023
Yang, L. et al. Exploration in the mechanism of Kaempferol for the treatment of gastric cancer based on network pharmacology. BioMed. Res. Int. 2020, e5891016. https://doi.org/10.1155/2020/5891016 (2020).
doi: 10.1155/2020/5891016
Blakaj, D. M., McConnell, K. J., Beveridge, D. L. & Baranger, A. M. Molecular dynamics and thermodynamics of protein−RNA interactions: Mutation of a conserved aromatic residue modifies stacking interactions and structural adaptation in the U1A−stem loop 2 RNA complex. J. Am. Chem. Soc. 123, 2548–2551. https://doi.org/10.1021/ja005538j (2001).
doi: 10.1021/ja005538j
pubmed: 11456923
Pecsi, I., Leveles, I., Harmat, V., Vertessy, B. G. & Toth, J. Aromatic stacking between nucleobase and enzyme promotes phosphate ester hydrolysis in dUTPase. Nucleic Acids Res. 38, 7179–7186. https://doi.org/10.1093/nar/gkq584 (2010).
doi: 10.1093/nar/gkq584
pubmed: 20601405
pmcid: 2978360
Patil, R. et al. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLOS ONE 5, e12029. https://doi.org/10.1371/journal.pone.0012029 (2010).
doi: 10.1371/journal.pone.0012029
pubmed: 20808434
pmcid: 2922327
Ejaz, S. A., Aziz, M., Zafar, Z., Akhtar, N. & Ogaly, H. A. Revisiting the inhibitory potential of protein kinase inhibitors against NEK7 protein via comprehensive computational investigations. Sci. Rep. 13, 4304. https://doi.org/10.1038/s41598-023-31499-7 (2023).
doi: 10.1038/s41598-023-31499-7
pubmed: 36922575
pmcid: 10017757
Lobanov, MYu., Bogatyreva, N. S. & Galzitskaya, O. V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 42, 623–628. https://doi.org/10.1134/S0026893308040195 (2008).
doi: 10.1134/S0026893308040195
Li, M.-H., Luo, Q., Xue, X.-G. & Li, Z.-S. Molecular dynamics studies of the 3D structure and planar ligand binding of a quadruplex dimer. J. Mol. Model. 17, 515–526. https://doi.org/10.1007/s00894-010-0746-0 (2011).
doi: 10.1007/s00894-010-0746-0
pubmed: 20508957