GC-MS analysis, molecular docking, and pharmacokinetic studies on Dalbergia sissoo barks extracts for compounds with anti-diabetic potential.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 10 2024
Historique:
received: 09 04 2024
accepted: 07 10 2024
medline: 23 10 2024
pubmed: 23 10 2024
entrez: 22 10 2024
Statut: epublish

Résumé

Diabetes is a metabolic condition defined by abnormal blood sugar levels. Targeting starch-hydrolyzing enzymes and Dipeptidyl Peptidase 4 (DPP-4) expressed on the surface of numerous cells is one of the key strategies to lower the risk of Type-2 diabetes mellitus (T2DM). Dalbergia sissoo Roxb. bark (DSB) extracts have been reported to have anti-diabetic properties. This study intended to scientifically validate use of alcoholic and hydro-alcoholic extracts of DSB for T2DM by conducting preliminary phytochemical investigations, characterising potential phytochemicals using Fourier transform infrared (FT-IR) spectroscopy and Gas chromatography-mass spectrometry (GC-MS) analysis followed by comprehensive in-silico analysis. A qualitative phytochemical evaluation indicated the presence of alkaloids, phenolics, glycosides, conjugated acids and flavonoids. Ethanolic extracts showed highest total phenolic content (TPC) (127.072 ± 14.08031 μg GAE/g dry extract) and total flavonoid content (106.911 ± 5.84516 μg QE /g dry extract). Further FT-IR spectroscopy also revealed typical band values associated with phenol, alcohol, alkene, alkane and conjugated acid functional groups. The GC-MS analysis identified 139 compounds, 18 of which had anti-diabetic potential. In-silico ADMET analysis of potential compounds revealed 15 compounds that followed Lipinski's rule and demonstrated drug-like properties, as well as good oral bioavailability. Molecular docking was utilised to analyse their potential to interact with three targets: α-amylase, α-glucosidase, and DPP-4, which are crucial in managing diabetes-related problems. Molecular Docking analysis and membrane permeability test utilising the PerMM platform revealed that compounds in the extracts, such as Soyasapogenol B and Corydine, had better interactions and permeability across the plasma membrane than standard drugs in use. Molecular dynamics simulations also showed that selected compounds remained stable upon interaction with α-amylase. Overall, using the in-silico approaches it was predicted that DSB extracts contain potential phytochemicals with diverse anti-diabetic properties. It further needs to be investigated for possible development as formulation or drug of choice for treating T2DM.

Identifiants

pubmed: 39438536
doi: 10.1038/s41598-024-75570-3
pii: 10.1038/s41598-024-75570-3
doi:

Substances chimiques

Plant Extracts 0
Hypoglycemic Agents 0
Dipeptidyl Peptidase 4 EC 3.4.14.5
Phytochemicals 0
alpha-Amylases EC 3.2.1.1
alpha-Glucosidases EC 3.2.1.20

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

24936

Subventions

Organisme : Faculty Research Grant Scheme, Guru Gobind Singh Indraprastha University, New Delhi, India
ID : GGSIPU/DRC/FRGS/2022/1223/15
Organisme : Faculty Research Grant Scheme, Guru Gobind Singh Indraprastha University, New Delhi, India
ID : GGSIPU/RDC/FRGS/2023/1448/18

Informations de copyright

© 2024. The Author(s).

Références

Li, W., Yuan, G., Pan, Y., Wang, C. & Chen, H. Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: A review. Front. Pharmacol. 8, 74 (2017).
pubmed: 28280467 pmcid: 5322182
Ali, J. et al. Overall clinical features of type 2 diabetes mellitus with respect to gender. Cureus https://doi.org/10.7759/cureus.35771 (2023).
doi: 10.7759/cureus.35771 pubmed: 38698879 pmcid: 10827280
Artasensi, A., Pedretti, A., Vistoli, G. & Fumagalli, L. Type 2 diabetes mellitus: A review of multi-target drugs. Molecules 25, 1987. https://doi.org/10.3390/molecules25081987 (2020).
doi: 10.3390/molecules25081987 pubmed: 32340373 pmcid: 7221535
Cui, J., Liu, Y., Li, Y., Xu, F. & Liu, Y. Type 2 Diabetes and myocardial infarction: Recent clinical evidence and perspective. Front. Cardiovasc. Med. 8, 644189 (2021).
doi: 10.3389/fcvm.2021.644189 pubmed: 33718461 pmcid: 7943438
Hung, H.-Y., Qian, K., Morris-Natschke, S. L., Hsu, C.-S. & Lee, K.-H. Recent discovery of plant-derived anti-diabetic natural products. Nat. Prod. Rep. 29, 580–606. https://doi.org/10.1039/C2NP00074A (2012).
doi: 10.1039/C2NP00074A pubmed: 22491825
Nawaz, M. et al. Structural elucidation, molecular docking, α-amylase and α-glucosidase inhibition studies of 5-amino-nicotinic acid derivatives. BMC Chem. 14, 43. https://doi.org/10.1186/s13065-020-00695-1 (2020).
doi: 10.1186/s13065-020-00695-1 pubmed: 32685927 pmcid: 7362424
Adnan, M. et al. Network pharmacology study to reveal the potentiality of a methanol extract of Caesalpinia sappan L. wood against type-2 diabetes mellitus. Life 12, 277. https://doi.org/10.3390/life12020277 (2022).
doi: 10.3390/life12020277 pubmed: 35207564 pmcid: 8880704
Alam, S. et al. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Front. Endocrinol. 13, 800714. https://doi.org/10.3389/fendo.2022.800714 (2022).
doi: 10.3389/fendo.2022.800714
Singh, S., Bansal, A., Singh, V., Chopra, T. & Poddar, J. Flavonoids, alkaloids and terpenoids: A new hope for the treatment of diabetes mellitus. J. Diabetes Metab. Disord. 21, 941–950. https://doi.org/10.1007/s40200-021-00943-8 (2022).
doi: 10.1007/s40200-021-00943-8 pubmed: 35673446 pmcid: 9167359
Asafo-Agyei, T., Appau, Y., Barimah, K. B. & Asase, A. Medicinal plants used for management of diabetes and hypertension in Ghana. Heliyon 9, e22977. https://doi.org/10.1016/j.heliyon.2023.e22977 (2023).
doi: 10.1016/j.heliyon.2023.e22977 pubmed: 38076168 pmcid: 10703729
Bailey, C. J. Metformin: Historical overview. Diabetologia 60, 1566–1576. https://doi.org/10.1007/s00125-017-4318-z (2017).
doi: 10.1007/s00125-017-4318-z pubmed: 28776081
Al-Snaf, P. D. A. E. Chemical constituents and pharmacological effects of Dalbergia sissoo—A review. IOSR J. Pharm. 07, 59–71. https://doi.org/10.9790/3013-0702015971 (2017).
doi: 10.9790/3013-0702015971
Mannan, Md. A., Khatun, A. & Khan, Md. F. H. Antinociceptive effect of methanol extract of Dalbergia sissoo leaves in mice. BMC Complement. Altern. Med. 17, 72. https://doi.org/10.1186/s12906-017-1565-y (2017).
doi: 10.1186/s12906-017-1565-y pubmed: 28114964 pmcid: 5260076
Thakkar, A. B., RamalingamB, S., Thakkar, V. R. & Thakor, P. Hydromethanolic leaves extract of Dalbergia sissoo Roxb. ex DC. induces apoptosis in lung adenocarcinoma cells. Process Biochem. 134, 250–261. https://doi.org/10.1016/j.procbio.2023.10.006 (2023).
doi: 10.1016/j.procbio.2023.10.006
Naik, H. N. et al. LC–MS profiling, in vitro and in silico C-ABL kinase inhibitory approach to identify potential anticancer agents from Dalbergia sissoo leaves. Sci. Rep. 14, 73. https://doi.org/10.1038/s41598-023-49995-1 (2024).
doi: 10.1038/s41598-023-49995-1 pubmed: 38167560 pmcid: 10761914
El-Azzazy, E. A., Ibrahim, M. T. & Reda, M. A. LC/MS profile and biological evaluation of Dalbergia sissoo growing in Egypt desert. Azhar Int. J. Pharm. Med. Sci. https://doi.org/10.21608/aijpms.2023.190847.1190 (2024).
doi: 10.21608/aijpms.2023.190847.1190
Dixit, S. Investigation of immunomodulation activity in the leaves of Dalbergia dissoo. Glob. J. Pharm. Pharm. Sci. https://doi.org/10.19080/GJPPS.2018.05.555655 (2018).
doi: 10.19080/GJPPS.2018.05.555655
Interaction of Selected Terpenoids From Dalbergia sissoo With Catalytic Domain of Matrix Metalloproteinase-1: An In Silico Assessment of Their Anti-wrinkling Potential - Shagufta Yasmeen, Promila Gupta. https://doi.org/10.1177/1177932219896538 (2019). Accessed 24 Sep 2024
Devi, P., Singh, S. & Promila. Isolation and characterization of chemical constituents from Dalbergia sissoo Roxb. Stem. Int J Chem Stud. (2017).
Saini, S., & Sharma, S. Antidiabetic activity of different extracts of Dalbergia Sissoo Dc. Stem Bark On Streptozotocin-Nicotinamide Induced Type 2 Diabetic Rats. 5.
Pund, K. V., Vyawahare, N. S., Gadakh, R. T. & Murkute, V. K. Antidiabetic evaluation of Dalbergia sissoo against alloxan induced diabetes mellitus in wistar albino rats (2012).
Savithramma, N., Rao, M. L. & Suhrulatha, D. Screening of medicinal plants for secondary metabolites (2011).
Orole, O. O. GC-MS evaluation phytochemical and antinutritional screening of Ganoderma lucidum. J. Adv. Biol. Biotechnol. https://doi.org/10.9734/JABB/2016/24261 (2016).
doi: 10.9734/JABB/2016/24261
Gul, R., Jan, S. U., Faridullah, S., Sherani, S. & Jahan, N. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia Indigenous to Balochistan. Sci. World J. 2017, e5873648. https://doi.org/10.1155/2017/5873648 (2017).
doi: 10.1155/2017/5873648
Kancherla, N., Dhakshinamoothi, A., Chitra, K. & Komaram, R. B. Preliminary analysis of phytoconstituents and evaluation of anthelminthic property of Cayratia auriculata (In Vitro). Mædica 14, 350–356. https://doi.org/10.26574/maedica.2019.14.4.350 (2019).
doi: 10.26574/maedica.2019.14.4.350 pubmed: 32153665 pmcid: 7035446
Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158. https://doi.org/10.5344/ajev.1965.16.3.144 (1965).
doi: 10.5344/ajev.1965.16.3.144
Woisky, R. G. & Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 37, 99–105. https://doi.org/10.1080/00218839.1998.11100961 (1998).
doi: 10.1080/00218839.1998.11100961
Mahboubi, M., Kazempour, N. & Boland Nazar, A. R. Total phenolic, total flavonoids, antioxidant and antimicrobial activities of scrophularia striata boiss extracts. Jundishapur J. Nat. Pharm. Prod. 8, 15–19 (2013).
doi: 10.17795/jjnpp-7621 pubmed: 24624181 pmcid: 3941883
Wongsa, P., Phatikulrungsun, P. & Prathumthong, S. FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions. Sci. Rep. 12, 6631. https://doi.org/10.1038/s41598-022-10669-z (2022).
doi: 10.1038/s41598-022-10669-z pubmed: 35459897 pmcid: 9033800
Chaturvedi, S. & Gupta, P. Functional components in extracts of Beta vulgaris (Chukandar) parts for antioxidant effect and antiobesity potential with lipase inhibition. Food Biosci. 41, 100983. https://doi.org/10.1016/j.fbio.2021.100983 (2021).
doi: 10.1016/j.fbio.2021.100983
SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. https://www.nature.com/articles/srep42717 . Accessed 11 Mar 2024
Banerjee, P., Eckert, A. O., Schrey, A. K. & Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 46, W257–W263. https://doi.org/10.1093/nar/gky318 (2018).
doi: 10.1093/nar/gky318 pubmed: 29718510 pmcid: 6031011
Burley, S. K. et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 49, D437–D451. https://doi.org/10.1093/nar/gkaa1038 (2021).
doi: 10.1093/nar/gkaa1038 pubmed: 33211854
Bolton, E. E., Wang, Y., Thiessen, P. A. & Bryant, S. H. PubChem: Integrated platform of small molecules and biological activities. Ann. Rep. Comput. Chem. 4, 217–241. https://doi.org/10.1016/S1574-1400(08)00012-1 (2008).
doi: 10.1016/S1574-1400(08)00012-1
O’Boyle, N. M. et al. Open Babel: An open chemical toolbox. J. Cheminform. 3, 33. https://doi.org/10.1186/1758-2946-3-33 (2011).
doi: 10.1186/1758-2946-3-33 pubmed: 21982300 pmcid: 3198950
Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461. https://doi.org/10.1002/jcc.21334 (2010).
doi: 10.1002/jcc.21334 pubmed: 19499576 pmcid: 3041641
Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25. https://doi.org/10.1016/j.softx.2015.06.001 (2015).
doi: 10.1016/j.softx.2015.06.001
Bjelkmar, P., Larsson, P., Cuendet, M. A., Hess, B. & Lindahl, E. Implementation of the CHARMM Force Field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput. 6, 459–466. https://doi.org/10.1021/ct900549r (2010).
doi: 10.1021/ct900549r pubmed: 26617301
Zoete, V., Cuendet, M. A., Grosdidier, A. & Michielin, O. SwissParam: A fast force field generation tool for small organic molecules. J. Comput. Chem. 32, 2359–2368. https://doi.org/10.1002/jcc.21816 (2011).
doi: 10.1002/jcc.21816 pubmed: 21541964
Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38. https://doi.org/10.1016/0263-7855(96)00018-5 (1996).
doi: 10.1016/0263-7855(96)00018-5 pubmed: 8744570
Adinortey, C. A. et al. Molecular structure-based screening of the constituents of Calotropis procera identifies potential inhibitors of diabetes mellitus target alpha glucosidase. Curr. Issues Mol. Biol. 44, 963–987. https://doi.org/10.3390/cimb44020064 (2022).
doi: 10.3390/cimb44020064 pubmed: 35723349 pmcid: 8928985
Kong, M. et al. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomed. Pharmacother. 133, 110975. https://doi.org/10.1016/j.biopha.2020.110975 (2021).
doi: 10.1016/j.biopha.2020.110975 pubmed: 33212375
Saleem, S., Muhammad, G., Hussain, M. A., Altaf, M. & Bukhari, S. N. A. Withania somnifera L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. Iran J. Basic Med. Sci. 23, 1501–1526. https://doi.org/10.22038/IJBMS.2020.44254.10378 (2020).
doi: 10.22038/IJBMS.2020.44254.10378 pubmed: 33489024 pmcid: 7811807
Martín, M. Á. & Ramos, S. Dietary flavonoids and insulin signaling in diabetes and obesity. Cells 10, 1474. https://doi.org/10.3390/cells10061474 (2021).
doi: 10.3390/cells10061474 pubmed: 34208379 pmcid: 8231211
Putta, S. et al. Therapeutic potentials of triterpenes in diabetes and its associated complications. Curr. Top Med. Chem. 16, 2532–2542. https://doi.org/10.2174/1568026616666160414123343 (2016).
doi: 10.2174/1568026616666160414123343 pubmed: 27086788
Sousa, L. R. et al. Use of monoterpenes as potential therapeutics in diabetes mellitus: A prospective review. Adv. Pharmacol. Pharm. Sci. 2023, e1512974. https://doi.org/10.1155/2023/1512974 (2023).
doi: 10.1155/2023/1512974
Deka, H., Choudhury, A. & Dey, B. K. An overview on plant derived phenolic compounds and their role in treatment and management of diabetes. J. Pharmacopuncture 25, 199–208. https://doi.org/10.3831/KPI.2022.25.3.199 (2022).
doi: 10.3831/KPI.2022.25.3.199 pubmed: 36186092 pmcid: 9510143
Allagui, I. et al. Phytochemical screening, antioxidant properties, anti-apoptotic effects and molecular docking study of Tunisian cleome (Cleome arabica L.) fruits extract under optimized extraction conditions. Int. J. Food Prop. 25, 2107–2120. https://doi.org/10.1080/10942912.2022.2125009 (2022).
doi: 10.1080/10942912.2022.2125009
Sabandar, C. W., Jalil, J., Ahmat, N. & Aladdin, N.-A. Medicinal uses, chemistry and pharmacology of Dillenia species (Dilleniaceae). Phytochemistry 134, 6–25. https://doi.org/10.1016/j.phytochem.2016.11.010 (2017).
doi: 10.1016/j.phytochem.2016.11.010 pubmed: 27889244
Rohman, A., Setyaningrum, D. L. & Riyanto, S. FTIR spectroscopy combined with partial least square for analysis of red fruit oil in ternary mixture system. Int. J. Spectrosc. 2014, e785914. https://doi.org/10.1155/2014/785914 (2014).
doi: 10.1155/2014/785914
Alrubaie, L. A., Muhasin, R. J. & Mousa, M. N. Synthesis, characterization and evaluation of antiinflammatory properties of novel α, β-unsaturated ketones. Trop J. Pharm. Res. 19, 147–154. https://doi.org/10.4314/tjpr.v19i1.22 (2020).
doi: 10.4314/tjpr.v19i1.22
Ralte, L., Khiangte, L., Thangjam, N. M., Kumar, A. & Singh, Y. T. GC–MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Sci. Rep. 12, 3395. https://doi.org/10.1038/s41598-022-07320-2 (2022).
doi: 10.1038/s41598-022-07320-2 pubmed: 35233058 pmcid: 8888824
de Almeida, P. D. O. et al. Anti-inflammatory activity of triterpenes isolated from protium paniculatum oil-resins. Evid. Based Complement. Altern. Med. https://doi.org/10.1155/2015/293768 (2015).
doi: 10.1155/2015/293768
Lin, Y., Shen, C., Wang, F., Fang, Z. & Shen, G. Network pharmacology and molecular docking study on the potential mechanism of Yi-Qi-Huo-Xue-Tong-Luo formula in treating diabetic peripheral neuropathy. J. Diabetes Res. 2021, 9941791. https://doi.org/10.1155/2021/9941791 (2021).
doi: 10.1155/2021/9941791 pubmed: 34159207 pmcid: 8188603
Iqbal, D. et al. Soyasapogenol-B as a potential multitarget therapeutic agent for neurodegenerative disorders: Molecular docking and dynamics study. Entropy https://doi.org/10.3390/e24050593 (2022).
doi: 10.3390/e24050593 pubmed: 35885104 pmcid: 9319675
Oselusi, S. O., Christoffels, A. & Egieyeh, S. A. Cheminformatic characterization of natural antimicrobial products for the development of new lead compounds. Molecules 26, 3970. https://doi.org/10.3390/molecules26133970 (2021).
doi: 10.3390/molecules26133970 pubmed: 34209681 pmcid: 8271829
Tian, S. et al. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug. Deliv. Rev. 86, 2–10. https://doi.org/10.1016/j.addr.2015.01.009 (2015).
doi: 10.1016/j.addr.2015.01.009 pubmed: 25666163
Benet, L. Z., Hosey, C. M., Ursu, O. & Oprea, T. I. BDDCS, the rule of 5 and drugability. Adv. Drug. Deliv. Rev. 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007 (2016).
doi: 10.1016/j.addr.2016.05.007 pubmed: 27182629 pmcid: 4910824
Wairata, J. et al. Evaluation of the antioxidant, antidiabetic, and antiplasmodial activities of xanthones isolated from garcinia forbesii and their in silico studies. Biomedicines 9, 1380. https://doi.org/10.3390/biomedicines9101380 (2021).
doi: 10.3390/biomedicines9101380 pubmed: 34680496 pmcid: 8533219
Mechchate, H., Es-safi, I., Al Kamaly, M.O., & Bousta D. Insight into gentisic acid antidiabetic potential using in vitro and in silico approaches. Molecules 26, 1932. https://doi.org/10.3390/molecules26071932 (2021).
doi: 10.3390/molecules26071932 pubmed: 33808152 pmcid: 8037080
Hsiu, J., Fischer, E. H. & Stein, E. A. Alpha-amylases as calcium-metalloenzymes. II. Calcium and the catalytic activity*. Biochemistry 3, 61–66. https://doi.org/10.1021/bi00889a011 (1964).
doi: 10.1021/bi00889a011 pubmed: 14114506
Ragunath, C. et al. Probing the role of aromatic residues at the secondary saccharide-binding sites of human salivary α-amylase in substrate hydrolysis and bacterial binding. J. Mol. Biol. 384, 1232–1248. https://doi.org/10.1016/j.jmb.2008.09.089 (2008).
doi: 10.1016/j.jmb.2008.09.089 pubmed: 18951906 pmcid: 2644404
Chien, C.-H., Tsai, C.-H., Lin, C.-H., Chou, C.-Y. & Chen, X. Identification of hydrophobic residues critical for DPP-IV dimerization. Biochemistry 45, 7006–7012. https://doi.org/10.1021/bi060401c (2006).
doi: 10.1021/bi060401c pubmed: 16752891
Lomize, A. L. & Pogozheva, I. D. Physics-based method for modeling passive membrane permeability and translocation pathways of bioactive molecules. J. Chem. Inf. Model 59, 3198–3213. https://doi.org/10.1021/acs.jcim.9b00224 (2019).
doi: 10.1021/acs.jcim.9b00224 pubmed: 31259555 pmcid: 6756154
Kuzmanic, A. & Zagrovic, B. Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys. J. 98, 861–871. https://doi.org/10.1016/j.bpj.2009.11.011 (2010).
doi: 10.1016/j.bpj.2009.11.011 pubmed: 20197040 pmcid: 2830444
Kashyap, J. & Datta, D. Drug repurposing for SARS-CoV-2: A high-throughput molecular docking, molecular dynamics, machine learning, and DFT study. J. Mater. Sci. 57, 10780–10802. https://doi.org/10.1007/s10853-022-07195-8 (2022).
doi: 10.1007/s10853-022-07195-8 pubmed: 35502407 pmcid: 9045684
Stratton, C. F., Newman, D. J. & Tan, D. S. Cheminformatic comparison of approved drugs from natural product versus synthetic origins. Bioorg. Med. Chem. Lett. 25, 4802–4807. https://doi.org/10.1016/j.bmcl.2015.07.014 (2015).
doi: 10.1016/j.bmcl.2015.07.014 pubmed: 26254944 pmcid: 4607632
Iwamoto, K. et al. Soyasapogenols reduce cellular triglyceride levels in 3T3-L1 mouse adipocyte cells by accelerating triglyceride lipolysis. Biochem. Biophys. Rep. 16, 44–49. https://doi.org/10.1016/j.bbrep.2018.09.006 (2018).
doi: 10.1016/j.bbrep.2018.09.006 pubmed: 30294680 pmcid: 6171538
Timalsina, D., Bhusal, D., Devkota, H. P., Pokhrel, K. P. & Sharma, K. R. α-Amylase inhibitory activity of Catunaregam spinosa (Thunb.) Tirveng.: In vitro and in silico studies. BioMed. Res. Int. 2021, 4133876. https://doi.org/10.1155/2021/4133876 (2021).
doi: 10.1155/2021/4133876 pubmed: 34938807 pmcid: 8687831
Kamruzzaman, M., Horowitz, M., Jones, K. L. & Marathe, C. S. Gut-based strategies to reduce postprandial glycaemia in type 2 diabetes. Front. Endocrinol. 12, 661877. https://doi.org/10.3389/fendo.2021.661877 (2021).
doi: 10.3389/fendo.2021.661877
Salmaso, V. & Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol. 9 (2018).
Dirir, A. M., Daou, M., Yousef, A. F. & Yousef, L. F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 21, 1049–1079. https://doi.org/10.1007/s11101-021-09773-1 (2022).
doi: 10.1007/s11101-021-09773-1 pubmed: 34421444
Saini, K., Sharma, S. & Khan, Y. DPP-4 inhibitors for treating T2DM - hype or hope? An analysis based on the current literature. Front. Mol. Biosci. 10, 1130625 (2023).
doi: 10.3389/fmolb.2023.1130625 pubmed: 37287751 pmcid: 10242023
Yang, L. et al. Exploration in the mechanism of Kaempferol for the treatment of gastric cancer based on network pharmacology. BioMed. Res. Int. 2020, e5891016. https://doi.org/10.1155/2020/5891016 (2020).
doi: 10.1155/2020/5891016
Blakaj, D. M., McConnell, K. J., Beveridge, D. L. & Baranger, A. M. Molecular dynamics and thermodynamics of protein−RNA interactions: Mutation of a conserved aromatic residue modifies stacking interactions and structural adaptation in the U1A−stem loop 2 RNA complex. J. Am. Chem. Soc. 123, 2548–2551. https://doi.org/10.1021/ja005538j (2001).
doi: 10.1021/ja005538j pubmed: 11456923
Pecsi, I., Leveles, I., Harmat, V., Vertessy, B. G. & Toth, J. Aromatic stacking between nucleobase and enzyme promotes phosphate ester hydrolysis in dUTPase. Nucleic Acids Res. 38, 7179–7186. https://doi.org/10.1093/nar/gkq584 (2010).
doi: 10.1093/nar/gkq584 pubmed: 20601405 pmcid: 2978360
Patil, R. et al. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLOS ONE 5, e12029. https://doi.org/10.1371/journal.pone.0012029 (2010).
doi: 10.1371/journal.pone.0012029 pubmed: 20808434 pmcid: 2922327
Ejaz, S. A., Aziz, M., Zafar, Z., Akhtar, N. & Ogaly, H. A. Revisiting the inhibitory potential of protein kinase inhibitors against NEK7 protein via comprehensive computational investigations. Sci. Rep. 13, 4304. https://doi.org/10.1038/s41598-023-31499-7 (2023).
doi: 10.1038/s41598-023-31499-7 pubmed: 36922575 pmcid: 10017757
Lobanov, MYu., Bogatyreva, N. S. & Galzitskaya, O. V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 42, 623–628. https://doi.org/10.1134/S0026893308040195 (2008).
doi: 10.1134/S0026893308040195
Li, M.-H., Luo, Q., Xue, X.-G. & Li, Z.-S. Molecular dynamics studies of the 3D structure and planar ligand binding of a quadruplex dimer. J. Mol. Model. 17, 515–526. https://doi.org/10.1007/s00894-010-0746-0 (2011).
doi: 10.1007/s00894-010-0746-0 pubmed: 20508957

Auteurs

Deepanshi Vijh (D)

Agriculture Plant Biotechnology Laboratory (ARL-316), University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078, India.

Promila Gupta (P)

Agriculture Plant Biotechnology Laboratory (ARL-316), University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078, India. promila@ipu.ac.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH