GHRH-stimulated pituitary small extracellular vesicles inhibit hepatocyte proliferation and IGF-1 expression by its cargo miR-375-3p.


Journal

Journal of nanobiotechnology
ISSN: 1477-3155
Titre abrégé: J Nanobiotechnology
Pays: England
ID NLM: 101152208

Informations de publication

Date de publication:
22 Oct 2024
Historique:
received: 18 03 2024
accepted: 14 09 2024
medline: 23 10 2024
pubmed: 23 10 2024
entrez: 22 10 2024
Statut: epublish

Résumé

Small extracellular vesicles (sEV) have emerged as a novel mode of intercellular material transport and information transmission. It has been suggested hormones may regulate the production and function of sEV. However, the specific impact of growth hormone-releasing hormone (GHRH) on pituitary sEV production and the role of sEV in the regulation of the GHRH-GH-IGF axis has not been previously reported. The results of the present study demonstrated that GHRH increased the production of pituitary sEV by promoting the expression of Rab27a. More importantly, GHRH induced alterations in protein and miRNA levels within GH3-sEV components. Notably, GH3-sEV with GHRH treatment exhibited the enhanced ability to impede BRL 3A cell proliferation and the expression of IGF-1. Conclusively, for the first time, we corroborate the influence of GHRH on pituitary sEV, thereby presenting novel evidence for how sEV participates in the balance of the GHRH-GH-IGF axis. Importantly, this study provides new insight into a novel balance mechanism mediated by sEV within the endocrine system.

Identifiants

pubmed: 39438882
doi: 10.1186/s12951-024-02857-y
pii: 10.1186/s12951-024-02857-y
doi:

Substances chimiques

Growth Hormone-Releasing Hormone 9034-39-3
Insulin-Like Growth Factor I 67763-96-6
MicroRNAs 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

649

Subventions

Organisme : National Natural Science Foundation of China
ID : 31802156
Organisme : National Natural Science Foundation of China
ID : 32072814
Organisme : National Natural Science Foundation of China
ID : 32072812
Organisme : Natural Science Foundation of Guangzhou Province
ID : 2021A1515011310
Organisme : Natural Science Foundation of Guangzhou Province
ID : 2020A1515010062

Informations de copyright

© 2024. The Author(s).

Références

van Niel G. Shedding light on the cell biology of extracellular vesicles. Nat Revi Mol Cell Biol. 2018;19(4):213–28.
doi: 10.1038/nrm.2017.125
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.
pubmed: 12154376 doi: 10.1038/nri855
Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514.
pubmed: 31220978 doi: 10.1146/annurev-biochem-013118-111902
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):6977.
doi: 10.1126/science.aau6977
Natasha G, Gundogan B, Tan A, Farhatnia Y, Wu W, Rajadas J, Seifalian AM. Exosomes as immunotheranostic nanoparticles. Clin Ther. 2014;36(6):820–9.
doi: 10.1016/j.clinthera.2014.04.019
Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–33.
pubmed: 21609964 pmcid: 3167594 doi: 10.1093/nar/gkr254
Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G. The biogenesis and functions of exosomes. Traffic. 2002;3(5):321–30.
pubmed: 11967126 doi: 10.1034/j.1600-0854.2002.30502.x
Fan L, Yao L, Li Z, Wan Z, Sun W, Qiu S, Zhang W, Xiao D, Song L, Yang G. Exosome-based mitochondrial delivery of circRNA mSCAR alleviates sepsis by orchestrating macrophage activation. Advanced Science. 2023;10(14):2205692.
pubmed: 36965082 pmcid: 10190648 doi: 10.1002/advs.202205692
Behera J, Kumar A, Voor MJ, Tyagi N. Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice. Theranostics. 2021;11(16):7715.
pubmed: 34335960 pmcid: 8315071 doi: 10.7150/thno.58410
Yaoyun K, Lin Z, Xiaoyu A, Vivek V, Ertugrul K, Dirk MH, Arshad M, Mathias B, Thorsten RD. Adipose-derived mesenchymal stem cells reduce autophagy in stroke mice by extracellular vesicle transfer of miR-25. J Extracellular Vesicles. 2020;10(1):8.
Huan Z, Rui-Xin W, Xiao-Tao H, Ying A, Xin-Yue X, Hai-Hua S, Li-An W, Fa-Ming C. Periodontitis-compromised dental pulp stem cells secrete extracellular vesicles carrying miRNA-378a promote local angiogenesis by targeting Sufu to activate the Hedgehog/Gli1 signalling. Cell Prolif. 2021;54(5):89.
Dong L, Pu Y, Zhang L, Qi Q, Xu L, Li W, Wei C, Wang X, Zhou S, Zhu J, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410. Cell Death Dis. 2018;9(2):218.
pubmed: 29440630 pmcid: 5833395 doi: 10.1038/s41419-018-0323-5
Kogure A, Kosaka N, Ochiya T. Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: an emerging player in cancer metastasis. J Biomed Sci. 2019;26(1):45.
doi: 10.1186/s12929-019-0500-6
Hadi Valadi KE. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.
pubmed: 17486113 doi: 10.1038/ncb1596
Xiong J, Fan Y, Wang Y, Luo J, Chen T, Sun J, Xi Q, Zhang Y. New signaling kid on the block in the endocrine system: the role of extracellular vesicles. Endocrinology. 2023;164(8):099.
doi: 10.1210/endocr/bqad099
Crewe C, Joffin N, Rutkowski JM, Kim M, Scherer PE. An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell. 2018. https://doi.org/10.1530/ey.16.11.8 .
doi: 10.1530/ey.16.11.8 pubmed: 30293865 pmcid: 6195477
Ma S, Shao S, Yang C, Yao Z, Gao L, Chen W. A preliminary study: proteomic analysis of exosomes derived from thyroid-stimulating hormone-stimulated HepG2 cells. J Endocrinol Invest. 2020;43(9):1229–38.
pubmed: 32166700 doi: 10.1007/s40618-020-01210-y
Heiston EM, Ballantyne A, Stewart NR, La Salvia S, Musante L, Lanningan J, Erdbrügger U, Malin SK. Metabolism: Insulin infusion decreases medium-sized extracellular vesicles in adults with metabolic syndrome. Am J Physiol-Endocrinol Metab. 2022;323:380.
doi: 10.1152/ajpendo.00022.2022
Zhou C, Shen S, Moran R, Deng N, Marbán E, Melmed S. Pituitary somatotroph adenoma-derived exosomes: characterization of nonhormonal actions. J Clin Endocrinol Metab. 2021;107(2):379–97.
pmcid: 8764361 doi: 10.1210/clinem/dgab651
Lin MT, Ho LT, Uang WN. Effects of anterior pituitary hormones and their releasing hormones on physiological and behavioral functions in rats. J Steroid Biochem. 1983;19(12):433–8.
pubmed: 6350720 doi: 10.1016/0022-4731(83)90200-5
Takeuchi YJCC. Hormones and osteoporosis update. Possible roles of pituitary hormones, TSH and FSH, for bone metabolism. Clin Calcium. 2009;19(7):977–83.
pubmed: 19567994
Weiss S, Bergland R, Page R, Turpen C, Hymer WC. Pituitary cell transplants to the cerebral ventricles promote growth of hypophysectomized rats. Proc Soc Exp Biol Med. 1978;159(3):409–13.
pubmed: 733805 doi: 10.3181/00379727-159-40359
Thorner MO, Vance ML, Hartman ML, Holl RW, Evans WS, Veldhuis JD, Van Cauter E, Copinschi G, Bowers CY. Physiological role of somatostatin on growth hormone regulation in humans. Metabolism. 1990;39(9):40–2.
pubmed: 1976218 doi: 10.1016/0026-0495(90)90207-S
Frohman LA, Jansson JO. Growth hormone-releasing hormone. Endocr Rev. 1986;7(3):223–53.
pubmed: 2874984 doi: 10.1210/edrv-7-3-223
Berelowitz M, Szabo M, Frohman LA, Firestone S, Chu L, Hintz RL. Somatomedin-C mediates growth hormone negative feedback by effects on both the hypothalamus and the pituitary. Science. 1981;212(4500):1279–81.
pubmed: 6262917 doi: 10.1126/science.6262917
Schwander JC, Hauri C, Zapf J, Froesch ER. Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: dependence on growth hormone status. Endocrinology. 1983;113(1):297–305.
pubmed: 6190641 doi: 10.1210/endo-113-1-297
Xiong Y, Tang Y, Fan F, Zeng Y, Liu Z. Exosomal hsa-miR-21-5p derived from growth hormone-secreting pituitary adenoma promotes abnormal bone formation in acromegaly. Transl Res. 2019;215:1–16.
pubmed: 31469974 doi: 10.1016/j.trsl.2019.07.013
Zhao P, Cheng J, Li B, Nie D, Zhang Y. Toxicology: Up-regulation of the expressions of MiR-149–5p and MiR-99a-3p in exosome inhibits the progress of pituitary adenomas. Cell Biol Toxicol. 2021;37:1–19.
doi: 10.1007/s10565-020-09570-0
Zhang Y, Liu YT, Tang H, Xie WQ, Yao H, Gu WT, Zheng YZ, Shang HB, Wang Y, Wei YX. Exosome-transmitted lncRNA H19 inhibits the growth of pituitary adenoma. J Clin Endocrinol Metab. 2019;104(12):6345–56.
pubmed: 31369093 doi: 10.1210/jc.2019-00536
Xiong J, Zhang H, Zeng B, Liu J, Luo J, Chen T, Sun J, Xi Q, Zhang Y. An exploration of non-coding RNAs in extracellular vesicles delivered by swine anterior pituitary. Front Genet. 2021;12: 772753.
pubmed: 34912377 pmcid: 8667663 doi: 10.3389/fgene.2021.772753
Barb C, Barrett J, Wright J, Kraeling R, Rampacek G. Opioid modulation of LH secretion by pig pituitary cells in vitro. Reproduction. 1990;90(1):213–9.
doi: 10.1530/jrf.0.0900213
Lin J, Barb C, Kraeling R, Rampacek G. Growth hormone releasing factor decreases long form leptin receptor expression in porcine anterior pituitary cells. Domest Anim Endocrinol. 2003;24(2):95–101.
pubmed: 12586311 doi: 10.1016/S0739-7240(02)00209-6
Ye R-S, Xi Q-Y, Qi Q, Cheng X, Chen T, Li H, Kallon S, Shu G, Wang S-B, Jiang Q-Y. Differentially expressed miRNAs after GnRH treatment and their potential roles in FSH regulation in porcine anterior pituitary cell. PLoS ONE. 2013;8(2): e57156.
pubmed: 23451171 pmcid: 3579806 doi: 10.1371/journal.pone.0057156
Qi Q-E, Xi Q-Y, Ye R-S, Chen T, Cheng X, Li C-Y, Zhu X-T, Shu G, Wang L-N, Jiang Q-Y. Alteration of the miRNA expression profile in male porcine anterior pituitary cells in response to GHRH and CST and analysis of the potential roles for miRNAs in regulating GH. Growth Hormon IGF Res. 2015;25(2):66–74.
doi: 10.1016/j.ghir.2014.12.002
Tian Y, Gong M, Hu Y, Liu H, Zhang W, Zhang M, Hu X, Aubert D, Zhu S, Wu L. Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J Extra Vesicles. 2020;9(1):1697028.
doi: 10.1080/20013078.2019.1697028
Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A, Remke J, Zimmer K, Zeug A. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig. 2014;124(5):2136–46.
pubmed: 24743145 pmcid: 4001534 doi: 10.1172/JCI70577
Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoco Cell Biol. 2006;30(1):21–9.
doi: 10.1002/0471143030.cb0322s30
Zhang M, Yu Q, Tang W, Wu Y, Lv J, Sun L, Shi G, Wu M, Qu J, Di C. Epithelial exosomal contactin-1 promotes monocyte-derived dendritic cell–dominant T-cell responses in asthma. J Allergy Clin Immunol. 2021;148(6):1545–58.
pubmed: 33957164 doi: 10.1016/j.jaci.2021.04.025
Clotilde Théry KWW, Elena A, Maria JA, Johnathon DA, Ramaroson A, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;45:6.
Théry C, Amigorena S, Raposo G, Clayton A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. 2006, 30(1).
Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30.
pubmed: 19966785 doi: 10.1038/ncb2000
Song L, Tang S, Han X, Jiang Z, Dong L, Liu C, Liang X, Dong J, Qiu C, Wang Y. KIBRA controls exosome secretion via inhibiting the proteasomal degradation of Rab27a. Nat Commun. 2019;10(1):1639.
pubmed: 30967557 pmcid: 6456494 doi: 10.1038/s41467-019-09720-x
Ye R-S, Li M, Li C-Y, Qi Q-E, Chen T, Cheng X, Wang S-B, Shu G, Wang L-N, Zhu X-T. miR-361-3p regulates FSH by targeting FSHB in a porcine anterior pituitary cell model. Reproduction. 2017;153(3):341–9.
pubmed: 27998941 doi: 10.1530/REP-16-0373
Yang YF, Lee YC, Wang YY, Wang CH, Hou MF, Yuan SF. YWHAE promotes proliferation, metastasis, and chemoresistance in breast cancer cells. Kaohsiung J Med Sci. 2019;35(7):408–16.
pubmed: 31001932 doi: 10.1002/kjm2.12075
Guo W, Li GJ, Xu HB, Xie JS, Shi TP, Zhang SZ, Chen XH, Huang ZG. In vitro biological characterization of DCUN1D5 in DNA damage response. Asian Pac J Cancer Prev. 2012;13(8):4157–62.
pubmed: 23098533 doi: 10.7314/APJCP.2012.13.8.4157
Wang M, Fu Z, Wu J, Zhang J, Jiang L, Khazan B, Telljohann R, Zhao M, Krug AW, Pikilidou M, et al. MFG-E8 activates proliferation of vascular smooth muscle cells via integrin signaling. Aging Cell. 2012;11(3):500–8.
pubmed: 22385834 doi: 10.1111/j.1474-9726.2012.00813.x
Gu Y, Zhang Z, Camps MGM, Ossendorp F, Wijdeven RH, Ten Dijke P. Genome-wide CRISPR screens define determinants of epithelial-mesenchymal transition mediated immune evasion by pancreatic cancer cells. Sci Adva. 2023;9(28):eadf9915.
doi: 10.1126/sciadv.adf9915
Li H, Jin X, Liu B, Zhang P, Chen W, Li Q. CircRNA CBL11 suppresses cell proliferation by sponging miR-6778–5p in colorectal cancer. BMC Cancer. 2019;19(1):826.
pubmed: 31438886 pmcid: 6704711 doi: 10.1186/s12885-019-6017-2
Chang K, Wei Z, Cao H. miR-375-3p inhibits the progression of laryngeal squamous cell carcinoma by targeting hepatocyte nuclear factor-1β. Oncol Lett. 2020;20(4):80.
pubmed: 32863913 pmcid: 7436894 doi: 10.3892/ol.2020.11941
Yin Y, Cheng Z, Fu X, Ji S. MicroRNA-375-3p is implicated in carotid artery stenosis by promoting the cell proliferation and migration of vascular smooth muscle cells. BMC Cardiovasc Disord. 2021;21(1):518.
pubmed: 34702176 pmcid: 8549333 doi: 10.1186/s12872-021-02326-6
Rane SG, Reddy EP. Janus kinases: components of multiple signaling pathways. Oncogene. 2000;19(49):5662–79.
pubmed: 11114747 doi: 10.1038/sj.onc.1203925
Yin L-h, Zheng X-q, Li H-y, Bi L-x, Shi Y-f, Ye A-f, Wu J-b, Gao S-m. Epigenetic deregulated miR-375 contributes to the constitutive activation of JAK2/STAT signaling in myeloproliferative neoplasm. Leuk Res. 2015;39(4):471–8.
pubmed: 25666256 doi: 10.1016/j.leukres.2015.01.009
Xu Y, Jin J, Liu Y, Huang Z, Deng Y, You T, Zhou T, Si J, Zhuo W. Snail-regulated MiR-375 inhibits migration and invasion of gastric cancer cells by targeting JAK2. PLoS ONE. 2014;9(7): e99516.
pubmed: 25055044 pmcid: 4108470 doi: 10.1371/journal.pone.0099516
Sos BC, Harris C, Nordstrom SM, Tran JL, Balázs M, Caplazi P, Febbraio M, Applegate MA, Wagner K-U, Weiss EJ. Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocyte-specific deletion of JAK2. J Clin Investig. 2011;121(4):1412–23.
pubmed: 21364286 pmcid: 3069761 doi: 10.1172/JCI42894
Shi SY, Martin RG, Duncan RE, Choi D, Lu S-Y, Schroer SA, Cai EP, Luk CT, Hopperton KE, Domenichiello AF. Hepatocyte-specific deletion of Janus kinase 2 (JAK2) protects against diet-induced steatohepatitis and glucose intolerance. J Biol Chem. 2012;287(13):10277–88.
pubmed: 22275361 pmcid: 3323042 doi: 10.1074/jbc.M111.317453
Wang S, Wang G, Zhang M, Zhuang L, Wan X, Xu J, Wang L, Zhu X, Gao P, Xi Q. The dipeptide Pro-Asp promotes IGF-1 secretion and expression in hepatocytes by enhancing JAK2/STAT5 signaling pathway. Mol Cell Endocrinol. 2016;436:204–10.
pubmed: 27473671 doi: 10.1016/j.mce.2016.07.028
Zhang Y, Kim MS, Jia B, Yan J, Zuniga-Hertz JP, Han C, Cai D. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature. 2017;548(7665):52–7.
pubmed: 28746310 pmcid: 5999038 doi: 10.1038/nature23282
Guay C, Menoud V, Rome S, Regazzi R. Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells. Cell Commun Signal. 2015;13:17.
pubmed: 25880779 pmcid: 4371845 doi: 10.1186/s12964-015-0097-7
Figliolini F, Cantaluppi V, De Lena M, Beltramo S, Romagnoli R, Salizzoni M, Melzi R, Nano R, Piemonti L, Tetta C, et al. Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets. PLoS ONE. 2014;9(7): e102521.
pubmed: 25028931 pmcid: 4100900 doi: 10.1371/journal.pone.0102521
da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod. 2012;86(3):71.
pubmed: 22116803 doi: 10.1095/biolreprod.111.093252
Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22(2):182–93.
pubmed: 26663221
Guo H, Chang Z, Zhang Z, Zhao Y, Jiang X, Yu H, Zhang Y, Zhao R, He B. Extracellular ATPs produced in seminal plasma exosomes regulate boar sperm motility and mitochondrial metabolism. Theriogenology. 2019;139:113–20.
pubmed: 31401476 doi: 10.1016/j.theriogenology.2019.08.003
Crewe C, Joffin N, Rutkowski JM, Kim M, Zhang F, Towler DA, Gordillo R, Scherer PE. An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell. 2018;175(3):695–708.
pubmed: 30293865 pmcid: 6195477 doi: 10.1016/j.cell.2018.09.005
Cao M, Isaac R, Yan W, Ruan X, Jiang L, Wan Y, Wang J, Wang E, Caron C, Neben S. Cancer-cell-secreted extracellular vesicles suppress insulin secretion through miR-122 to impair systemic glucose homeostasis and contribute to tumour growth. Nat Cell Biol. 2022;24(6):954–67.
pubmed: 35637408 pmcid: 9233030 doi: 10.1038/s41556-022-00919-7
Qian B, Yang Y, Tang N, Wang J, Sun P, Yang N, Chen F, Wu T, Sun T, Li Y. M1 macrophage-derived exosomes impair beta cell insulin secretion via miR-212-5p by targeting SIRT2 and inhibiting Akt/GSK-3β/β-catenin pathway in mice. Diabetologia. 2021;64(9):2037–51.
pubmed: 34117507 doi: 10.1007/s00125-021-05489-1
Shao L-t. PTH (1–34) enhances the therapeutic effect of bone marrow mesenchymal stem cell-derived exosomes by inhibiting proinflammatory cytokines expression on OA chondrocyte repair in vitro. Arthritis Res Ther. 2022;24(1):1–13.
doi: 10.1186/s13075-022-02778-x
Sun C-K, Chen C-H, Chang C-L, Chiang H-J, Sung P-H, Chen K-H, Chen Y-L, Chen S-Y, Kao G-S, Chang H-W. Melatonin treatment enhances therapeutic effects of exosomes against acute liver ischemia-reperfusion injury. Am J Transl Res. 2017;9(4):1543.
pubmed: 28469765 pmcid: 5411908
Alzahrani FA. Melatonin improves therapeutic potential of mesenchymal stem cells-derived exosomes against renal ischemia-reperfusion injury in rats. Am J Transl Res. 2019;11(5):2887.
pubmed: 31217862 pmcid: 6556638
Xu F, Zhong JY, Lin X, Shan SK, Guo B, Zheng MH, Wang Y, Li F, Cui RR, Wu F. Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. J Pineal Res. 2020;68(3): e12631.
pubmed: 31943334 pmcid: 7154654 doi: 10.1111/jpi.12631
Ozansoy M, Ozansoy MB, Yulug B, Cankaya S, Kilic E, Goktekin S, Kilic U. Melatonin affects the release of exosomes and tau-content in in vitro amyloid-beta toxicity model. J Clin Neurosci. 2020;73:237–44.
pubmed: 32061493 doi: 10.1016/j.jocn.2019.11.046
Pournaghi M, Khodavirdilou R, Saadatlou MAE, Nasimi FS, Yousefi S, Mobarak H, Darabi M, Shahnazi V, Rahbarghazi R, Mahdipour M. Effect of melatonin on exosomal dynamics in bovine cumulus cells. Process Biochem. 2021;106:78–87.
doi: 10.1016/j.procbio.2021.03.008

Auteurs

Jiali Xiong (J)

College of Medicine, Jiaxing University, Jiaxing, 314000, Zhejiang, China.
College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.

Yuxuan Wang (Y)

College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.

Hailong Wang (H)

College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.

Junyi Luo (J)

College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.

Ting Chen (T)

College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.

Jiajie Sun (J)

College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.

Qianyun Xi (Q)

College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.

Yongliang Zhang (Y)

College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China. zhangyl@scau.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH