Development of Minodronic Acid-Loaded Dissolving Microneedles for Enhanced Osteoporosis Therapy: Influence of Drug Loading on the Bioavailability of Minodronic Acid.


Journal

AAPS PharmSciTech
ISSN: 1530-9932
Titre abrégé: AAPS PharmSciTech
Pays: United States
ID NLM: 100960111

Informations de publication

Date de publication:
23 Oct 2024
Historique:
received: 13 06 2024
accepted: 29 09 2024
medline: 24 10 2024
pubmed: 24 10 2024
entrez: 23 10 2024
Statut: epublish

Résumé

Osteoporosis is a metabolic bone disorder with impaired bone microstructure and increased bone fractures, seriously affecting the quality of life of patients. Among various bisphosphonates prescribed for managing osteoporosis, minodronic acid (MA) is the most potent inhibitor of bone context resorption. However, oral MA tablet is the only commercialized dosage form that has extremely low bioavailability, severe adverse reactions, and poor patient compliance. To tackle these issues, we developed MA-loaded dissolving microneedles (MA-MNs) with significantly improved bioavailability for osteoporosis therapy. We investigated the influence of drug loading on the physicochemical properties, transdermal permeation behavior, and pharmacokinetics of MA-MNs. The drug loading of MA-MNs exerted almost no effect on their morphology, mechanical property, and skin insertion ability, but it compromised the transdermal permeability and bioavailability of MA-MNs. Compared with oral MA, MA-MNs with the lowest drug loading (224.9 μg/patch) showed a 9-fold and 25.8-fold increase in peak concentration and bioavailability, respectively. This may be ascribed to the reason that the increased drug loading can generate higher burst release, higher drug residual rate, and drug supersaturation effect in skin tissues, eventually limiting drug absorption into the systemic circulation. Moreover, MA-MNs prolonged the half-life of MA and provided more steady plasma drug concentrations than intravenously injected MA, which helps to reduce dosing frequency and side effects. Therefore, dissolving MNs with optimized drug loading provides a promising alternative for bisphosphonate drug delivery.

Identifiants

pubmed: 39443354
doi: 10.1208/s12249-024-02963-y
pii: 10.1208/s12249-024-02963-y
doi:

Substances chimiques

Imidazoles 0
Diphosphonates 0
Bone Density Conservation Agents 0
YM 529 127657-42-5

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

252

Informations de copyright

© 2024. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.

Références

Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: Now and the Future. Lancet. 2011;377(9773):1276–87. https://doi.org/10.1016/s0140-6736(10)62349-5 .
doi: 10.1016/s0140-6736(10)62349-5 pubmed: 21450337 pmcid: 3555696
Tella SH, Gallagher JC. Prevention and Treatment of Postmenopausal Osteoporosis. J Steroid Biochem Mol Biol. 2014;142:155–70. https://doi.org/10.1016/j.jsbmb.2013.09.008 .
doi: 10.1016/j.jsbmb.2013.09.008 pubmed: 24176761
Keene GS, Parker MJ, Pryor GA. Mortality and morbidity after hip fractures. BMJ. 1993;307(6914):1248–50. https://doi.org/10.1136/bmj.307.6914.1248 .
doi: 10.1136/bmj.307.6914.1248 pubmed: 8166806 pmcid: 1679389
Liu H, Su J. Organoid and organoid extracellular vesicles for osteoporotic fractures therapy: Current status and future perspectives. Interdiscip Med. 2023;1(3):e20230011. https://doi.org/10.1002/INMD.20230011 .
doi: 10.1002/INMD.20230011
Reginster J-Y, Burlet N. Osteoporosis: A still increasing prevalence. Bone. 2006;38(2):4–9. https://doi.org/10.1016/j.bone.2005.11.024 .
doi: 10.1016/j.bone.2005.11.024
Lin JT, Lane JM. Osteoporosis: A review. Clin Orthop. 2004;425:126–34. https://doi.org/10.1097/01.blo.0000132404.30139.f2 .
doi: 10.1097/01.blo.0000132404.30139.f2
Reid IR. A broader strategy for osteoporosis interventions. Nat Rev Endocrinol. 2020;16(6):333–9. https://doi.org/10.1038/s41574-020-0339-7 .
doi: 10.1038/s41574-020-0339-7 pubmed: 32203407
Ayers C, Kansagara D, Lazur B, Fu R, Kwon A, Harrod C. Effectiveness and safety of treatments to prevent fractures in people with low bone mass or primary osteoporosis: a living systematic review and network meta-analysis for the American College of Physicians. Ann Intern Med. 2023;176(2):182–95. https://doi.org/10.7326/M22-0684 .
doi: 10.7326/M22-0684 pubmed: 36592455
Eastell R, Szulc P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017;5(11):908–23. https://doi.org/10.1016/S2213-8587(17)30184-5 .
doi: 10.1016/S2213-8587(17)30184-5 pubmed: 28689768
Mori H, Tanaka M, Kayasuga R, Masuda T, Ochi Y, Yamada H, et al. Minodronic Acid (ONO-5920/YM529) prevents decrease in bone mineral density and bone strength, and improves bone microarchitecture in ovariectomized cynomolgus monkeys. Bone. 2008;43(5):840–8. https://doi.org/10.1016/j.bone.2008.07.242 .
doi: 10.1016/j.bone.2008.07.242 pubmed: 18718565
Mashiba T, Saito M, Yamagami Y, Tanaka M, Iwata K, Yamamoto T. Effects of suppressed bone remodeling by minodronic acid and alendronate on bone mass, microdamage accumulation, collagen crosslinks and bone mechanical properties in the lumbar vertebra of ovariectomized cynomolgus monkeys. Bone. 2017;97:184–91. https://doi.org/10.1016/j.bone.2017.01.008 .
doi: 10.1016/j.bone.2017.01.008 pubmed: 28082077
Chartrand NA, Lau C-K, Parsons MT, Handlon JJ, Ronquillo YC, Hoopes PC, et al. Ocular side effects of bisphosphonates: a review of literature. J Ocul Pharmacol Ther. 2023;39(1):3–16. https://doi.org/10.1089/jop.2022.0094 .
doi: 10.1089/jop.2022.0094 pubmed: 36409537
Gopinath V. Osteoporosis. Med Clin North Am. 2023;107(2):213–25. https://doi.org/10.1016/j.mcna.2022.10.013 .
doi: 10.1016/j.mcna.2022.10.013 pubmed: 36759092
Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater Res. 2021;25(1):24. https://doi.org/10.1186/s40824-021-00226-6 .
doi: 10.1186/s40824-021-00226-6 pubmed: 34321111 pmcid: 8317283
Ramadon D, McCrudden MTC, Courtenay AJ, Donnelly RF. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res. 2022;12(4):758–91. https://doi.org/10.1007/s13346-021-00909-6 .
doi: 10.1007/s13346-021-00909-6 pubmed: 33474709
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8. https://doi.org/10.1038/nbt.1504 .
doi: 10.1038/nbt.1504 pubmed: 18997767 pmcid: 2700785
Wang J, Yuan S, Tu Y, Lv Z, Cheng H, Ding X. Extracellular vesicles in skin health, diseases, and aging. Interdiscip Med. 2024;2(3):e20240011. https://doi.org/10.1002/INMD.20240011 .
doi: 10.1002/INMD.20240011
Naik A, Kalia YN, Guy RH. Transdermal drug delivery: overcoming the skin’s barrier function. Pharm Sci Technol Today. 2000;3(9):318–26. https://doi.org/10.1016/S1461-5347(00)00295-9 .
doi: 10.1016/S1461-5347(00)00295-9 pubmed: 10996573
Jiang X, Zeng Y, Zhang W, Wang C, Li W. Advances in microneedle patches for long-acting contraception. Acta Mater Medica. 2023;2(1):1–8. https://doi.org/10.15212/AMM-2022-0042 .
doi: 10.15212/AMM-2022-0042
Zhang Y, Xu Y, Kong H, Zhang J, Chan HF, Wang J, et al. Microneedle system for tissue engineering and regenerative medicine. Exploration. 2023;3(1):20210170. https://doi.org/10.1002/EXP.20210170 .
doi: 10.1002/EXP.20210170 pubmed: 37323624 pmcid: 10190997
Gowda BHJ, Ahmed MG, Hani U, Kesharwani P, Wahab S, Paul K. Microneedles as a momentous platform for psoriasis therapy and diagnosis: a state-of-the-art review. Int J Pharm. 2023;632:122591. https://doi.org/10.1016/j.ijpharm.2023.122591 .
doi: 10.1016/j.ijpharm.2023.122591 pubmed: 36626973
Jung JH, Jin SG. Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Investig. 2021;51(5):503–17. https://doi.org/10.1007/s40005-021-00512-4 .
doi: 10.1007/s40005-021-00512-4 pubmed: 33686358 pmcid: 7931162
Ali M, Namjoshi S, Benson HAE, Mohammed Y, Kumeria T. Dissolvable polymer microneedles for drug delivery and diagnostics. J Controlled Release. 2022;347:561–89. https://doi.org/10.1016/j.jconrel.2022.04.043 .
doi: 10.1016/j.jconrel.2022.04.043
Amani H, Shahbazi M-A, D’Amico C, Fontana F, Abbaszadeh S, Santos HA. Microneedles for painless transdermal immunotherapeutic applications. J Controlled Release. 2021;330:185–217. https://doi.org/10.1016/j.jconrel.2020.12.019 .
doi: 10.1016/j.jconrel.2020.12.019
Gowda BHJ, Ahmed MG, Sanjana A. Can microneedles replace hypodermic needles? Resonance. 2022;27(1):63–85. https://doi.org/10.1007/s12045-022-1294-5 .
doi: 10.1007/s12045-022-1294-5
Raina SA, Zhang GGZ, Alonzo DE, Wu J, Zhu D, Catron ND, et al. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs. J Pharm Sci. 2014;103(9):2736–48. https://doi.org/10.1002/jps.23826 .
doi: 10.1002/jps.23826 pubmed: 24382592
Taylor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:122–42. https://doi.org/10.1016/j.addr.2016.03.006 .
doi: 10.1016/j.addr.2016.03.006 pubmed: 27013254
Leichtnam M-L, Rolland H, Wüthrich P, Guy RH. Enhancement of transdermal testosterone delivery by supersaturation. J Pharm Sci. 2006;95(11):2373–9. https://doi.org/10.1002/jps.20669 .
doi: 10.1002/jps.20669 pubmed: 16886189
Fukushima K, Ise A, Morita H, Hasegawa R, Ito Y, Sugioka N, et al. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm Res. 2011;28(1):7–21. https://doi.org/10.1007/s11095-010-0097-7 .
doi: 10.1007/s11095-010-0097-7 pubmed: 20300802
Gowda BHJ, Ahmed MG, Sahebkar A, Riadi Y, Shukla R, Kesharwani P. Stimuli-responsive microneedles as a transdermal drug delivery system: a demand-supply strategy. Biomacromolecules. 2022;23(4):1519–44. https://doi.org/10.1021/acs.biomac.1c01691 .
doi: 10.1021/acs.biomac.1c01691 pubmed: 35274937
Hu W, Peng T, Huang Y, Ren T, Chen H, Chen Y, et al. Hyaluronidase-powered microneedles for significantly enhanced transdermal delivery efficiency. J Controlled Release. 2023;353:380–90. https://doi.org/10.1016/j.jconrel.2022.11.046 .
doi: 10.1016/j.jconrel.2022.11.046
Loizidou EZ, Williams NA, Barrow DA, Eaton MJ, McCrory J, Evans SL, et al. Structural characterisation and transdermal delivery studies on sugar microneedles: experimental and finite element modelling analyses. Eur J Pharm Biopharm. 2015;89:224–31. https://doi.org/10.1016/j.ejpb.2014.11.023 .
doi: 10.1016/j.ejpb.2014.11.023 pubmed: 25481031
Zhu DD, Zhang XP, Shen CB, Cui Y, Guo XD. The maximum possible amount of drug in rapidly separating microneedles. Drug Deliv Transl Res. 2019;9(6):1133–42. https://doi.org/10.1007/s13346-019-00658-7 .
doi: 10.1007/s13346-019-00658-7 pubmed: 31292933
Olatunji O, Das DB, Garland MJ, Belaid L, Donnelly RF. Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches. J Pharm Sci. 2013;102(4):1209–21. https://doi.org/10.1002/jps.23439 .
doi: 10.1002/jps.23439 pubmed: 23359221
Makvandi P, Kirkby M, Hutton ARJ, Shabani M, Yiu CKY, Baghbantaraghdari Z, et al. Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 2021;13(1):93. https://doi.org/10.1007/s40820-021-00611-9 .
doi: 10.1007/s40820-021-00611-9
Davis SP, MG Allen, MR Prausnitz. The Mechanics of Microneedles. In: Proceedings of the Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology. 2002; Vol. 1, pp. 498–499.
Shao S, Wang S, Ren L, Wang J, Chen X, Pi H, et al. Layer-by-layer assembly of lipid nanobubbles on microneedles for ultrasound-assisted transdermal drug delivery. ACS Appl Bio Mater. 2022;5(2):562–9. https://doi.org/10.1021/acsabm.1c01049 .
doi: 10.1021/acsabm.1c01049 pubmed: 35021618
Davis SP, Landis BJ, Adams ZH, Allen MG, Prausnitz MR. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech. 2004;37(8):1155–63. https://doi.org/10.1016/j.jbiomech.2003.12.010 .
doi: 10.1016/j.jbiomech.2003.12.010 pubmed: 15212920
Lopez-Ramirez MA, Soto F, Wang C, Rueda R, Shukla S, Silva-Lopez C, et al. Built-in active microneedle patch with enhanced autonomous drug delivery. Adv Mater. 2020;32(1):1905740. https://doi.org/10.1002/adma.201905740 .
doi: 10.1002/adma.201905740
Li W, Terry RN, Tang J, Feng MR, Schwendeman SP, Prausnitz MR. Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat Biomed Eng. 2019;3(3):220–9. https://doi.org/10.1038/s41551-018-0337-4 .
doi: 10.1038/s41551-018-0337-4 pubmed: 30948808
Yan G, Warner KS, Zhang J, Sharma S, Gale BK. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int J Pharm. 2010;391(1–2):7–12. https://doi.org/10.1016/j.ijpharm.2010.02.007 .
doi: 10.1016/j.ijpharm.2010.02.007 pubmed: 20188808
Lee JW, Park J-H, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113–24. https://doi.org/10.1016/j.biomaterials.2007.12.048 .
doi: 10.1016/j.biomaterials.2007.12.048 pubmed: 18261792 pmcid: 2293299
Yang B, Dong Y, Shen Y, Hou A, Quan G, Pan X, et al. Bilayer dissolving microneedle array containing 5-fluorouracil and triamcinolone with biphasic release profile for hypertrophic scar therapy. Bioact Mater. 2021;6(8):2400–11. https://doi.org/10.1016/j.bioactmat.2021.01.014 .
doi: 10.1016/j.bioactmat.2021.01.014 pubmed: 33553824 pmcid: 7846935
Strindberg S, Plum J, Stie MB, Christiansen ML, Hagner Nielsen L, Rades T, et al. Effect of supersaturation on absorption of indomethacin and tadalafil in a single pass intestinal perfusion rat model, in the absence and presence of a precipitation inhibitor. Eur J Pharm Biopharm. 2020;151:108–15. https://doi.org/10.1016/j.ejpb.2020.03.019 .
doi: 10.1016/j.ejpb.2020.03.019 pubmed: 32298758
Crum MF, Trevaskis NL, Pouton CW, Porter CJH. Transient supersaturation supports drug absorption from lipid-based formulations for short periods of time, but ongoing solubilization is required for longer absorption periods. Mol Pharm. 2017;14(2):394–405. https://doi.org/10.1021/acs.molpharmaceut.6b00792 .
doi: 10.1021/acs.molpharmaceut.6b00792 pubmed: 28002666
Supe S, Takudage P. Methods for evaluating penetration of drug into the skin: A review. Skin Res Technol. 2021;27(3):299–308. https://doi.org/10.1111/srt.12968 .
doi: 10.1111/srt.12968 pubmed: 33095948
González-González O, Ramirez IO, Ramirez BI, O’Connell P, Ballesteros MP, Torrado JJ, et al. Drug stability: ICH versus accelerated predictive stability studies. Pharmaceutics. 2022;14(11):2324. https://doi.org/10.3390/pharmaceutics14112324 .
doi: 10.3390/pharmaceutics14112324 pubmed: 36365143 pmcid: 9693625
Tønnesen HH. Formulation and stability testing of photolabile drugs. Int J Pharm. 2001;225(1–2):1–14. https://doi.org/10.1016/S0378-5173(01)00746-3 .
doi: 10.1016/S0378-5173(01)00746-3 pubmed: 11489550
Di L, Kerns EH, Hong Y, Chen H. Development and application of high throughput plasma stability assay for drug discovery. Int J Pharm. 2005;297(1–2):110–9. https://doi.org/10.1016/j.ijpharm.2005.03.022 .
doi: 10.1016/j.ijpharm.2005.03.022 pubmed: 15876500
Zhou Y, He X, Li H, Ni Y, Xu M, Sattar H, et al. Pharmacokinetics and tolerability of minodronic acid tablets in healthy chinese subjects and food and age effects on the pharmacokinetics. Clin Ther. 2015;37(4):869–76. https://doi.org/10.1016/j.clinthera.2015.01.015 .
doi: 10.1016/j.clinthera.2015.01.015 pubmed: 25748293
Rehman NU, Song C, Kim J, Noh I, Rhee Y-S, Chung HJ. Pharmacokinetic evaluation of a novel donepezil-loaded dissolving microneedle patch in rats. Pharmaceutics. 2021;14(1):5. https://doi.org/10.3390/pharmaceutics14010005 .
doi: 10.3390/pharmaceutics14010005 pubmed: 35056902 pmcid: 8778454
Ameri M, Kadkhodayan M, Nguyen J, Bravo J, Su R, Chan K, et al. Human growth hormone delivery with a microneedle transdermal system: preclinical formulation, stability, delivery and PK of therapeutically relevant doses. Pharmaceutics. 2014;6(2):220–34. https://doi.org/10.3390/pharmaceutics6020220 .
doi: 10.3390/pharmaceutics6020220 pubmed: 24838219 pmcid: 4085596
Chen G, Hao B, Ju D, Liu M, Zhao H, Du Z, et al. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharm Sin B. 2015;5(6):569–76. https://doi.org/10.1016/j.apsb.2015.09.006 .
doi: 10.1016/j.apsb.2015.09.006 pubmed: 26713272 pmcid: 4675819
Zhang Y, Jiang G, Yu W, Liu D, Xu B. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Mater Sci Eng C. 2018;85:18–26. https://doi.org/10.1016/j.msec.2017.12.006 .
doi: 10.1016/j.msec.2017.12.006
Traverso G, Schoellhammer CM, Schroeder A, Maa R, Lauwers GY, Polat BE, et al. Microneedles for drug delivery via the gastrointestinal tract. J Pharm Sci. 2015;104(2):362–7. https://doi.org/10.1002/jps.24182 .
doi: 10.1002/jps.24182 pubmed: 25250829
Ita K. Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics. 2015;7(3):90–105. https://doi.org/10.3390/pharmaceutics7030090 .
doi: 10.3390/pharmaceutics7030090 pubmed: 26131647 pmcid: 4588187

Auteurs

Beibei Yang (B)

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Zeshi Jiang (Z)

State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China.

Xiaoqian Feng (X)

State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China.

Jingxin Yang (J)

Xinji Pharmaceutical Technology Co., Ltd, Guangzhou, 5111400, China.

Chao Lu (C)

State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China.

Chuanbin Wu (C)

State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China.

Xin Pan (X)

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China. panxin2@mail.sysu.edu.cn.

Tingting Peng (T)

State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China. pengtt@jnu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH