Exogenous silicon alleviates aluminum stress in Eucalyptus species by enhancing the antioxidant capacity and improving plant growth and tolerance quality.


Journal

BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807

Informations de publication

Date de publication:
23 Oct 2024
Historique:
received: 28 07 2024
accepted: 16 10 2024
medline: 24 10 2024
pubmed: 24 10 2024
entrez: 24 10 2024
Statut: epublish

Résumé

As an efficient and high-quality additive in agriculture and forestry production, silicon (Si) plays an important role in alleviating heavy metal stress and improving plant growth. However, the alleviating effect of aluminum (Al) toxicity by Si in Eucalyptus is still incomplete. Here, a study was conducted using two Al concentrations (0 and 4.5 mM) with four Si concentrations (0, 0.5, 1, and 1.5 mM) to investigate plant growth, tolerance and antioxidant defense system in four Eucalyptus species (Eucalyptus tereticornis, Eucalyptus urophylla, Eucalyptus grandis, and Eucalyptus urophylla × Eucalyptus grandis). The results showed that the stress induced by 4.5 mM Al increased oxidative damage, disturbed the balance of enzymatic and non-enzymatic antioxidant systems, and negatively affected plant growth and tolerance quality in the four Eucalyptus species. However, the addition of 0.5 mM and 1 mM Si alleviated the effects of Al toxicity on plant growth and improved plant growth quality by strengthening stress tolerance. Besides, adding Si significantly facilitated the synergistic action of enzymatic and non-enzymatic antioxidant defenses, increased the removal of reactive oxygen species, reduced lipid peroxidation, and oxidative stress, and promoted the phytoremediation rate of the four Eucalyptus species by 18.7 ~ 34.8% compared to that in the absence of Si. Silicon can alleviate the effect of Al toxicity by enhancing the antioxidant capacity and improving plant growth and tolerance quality. Hence, the application of Si is an effective method for the phytoremediation of Eucalyptus plantations in southern China.

Sections du résumé

BACKGROUND BACKGROUND
As an efficient and high-quality additive in agriculture and forestry production, silicon (Si) plays an important role in alleviating heavy metal stress and improving plant growth. However, the alleviating effect of aluminum (Al) toxicity by Si in Eucalyptus is still incomplete.
RESULTS RESULTS
Here, a study was conducted using two Al concentrations (0 and 4.5 mM) with four Si concentrations (0, 0.5, 1, and 1.5 mM) to investigate plant growth, tolerance and antioxidant defense system in four Eucalyptus species (Eucalyptus tereticornis, Eucalyptus urophylla, Eucalyptus grandis, and Eucalyptus urophylla × Eucalyptus grandis). The results showed that the stress induced by 4.5 mM Al increased oxidative damage, disturbed the balance of enzymatic and non-enzymatic antioxidant systems, and negatively affected plant growth and tolerance quality in the four Eucalyptus species. However, the addition of 0.5 mM and 1 mM Si alleviated the effects of Al toxicity on plant growth and improved plant growth quality by strengthening stress tolerance. Besides, adding Si significantly facilitated the synergistic action of enzymatic and non-enzymatic antioxidant defenses, increased the removal of reactive oxygen species, reduced lipid peroxidation, and oxidative stress, and promoted the phytoremediation rate of the four Eucalyptus species by 18.7 ~ 34.8% compared to that in the absence of Si.
CONCLUSIONS CONCLUSIONS
Silicon can alleviate the effect of Al toxicity by enhancing the antioxidant capacity and improving plant growth and tolerance quality. Hence, the application of Si is an effective method for the phytoremediation of Eucalyptus plantations in southern China.

Identifiants

pubmed: 39443879
doi: 10.1186/s12870-024-05723-z
pii: 10.1186/s12870-024-05723-z
doi:

Substances chimiques

Silicon Z4152N8IUI
Aluminum CPD4NFA903
Antioxidants 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

997

Subventions

Organisme : Natural Science Foundation of Guangxi Province
ID : 2023GXNSFAA026485
Organisme : National Natural Science Foundation of China
ID : 31800530

Informations de copyright

© 2024. The Author(s).

Références

Fujii K, Funakawa S, Kosaki T. Effects of forest management on soil acidification in cedar plantation. Geoderma. 2022;424:115967.
doi: 10.1016/j.geoderma.2022.115967
Von Uexküll HR, Mutert E. Global extent, development and economic impact of acid soils. Plant Soil. 1995;171:1–15.
doi: 10.1007/BF00009558
Zhu X, Ros GH, Xu M, Xu D, Cai Z, Sun N, Duan Y, de Vries W. The contribution of natural and anthropogenic causes to soil acidification rates under different fertilization practices and site conditions in southern China. Sci Total Environ. 2024;934:172986.
Zhang Q, Zhu J, Wang Q, Xu L, Li M, Dai G, Mulder J, Xi Y, He N. Soil acidification in China’s forests due to atmospheric acid deposition from 1980 to 2050. Science Bulletin. 2022;67(9):914–7.
doi: 10.1016/j.scib.2022.01.004 pubmed: 36546025
Botté A, Zaidi M, Guery J, Denis F, Vincent L. Aluminium in aquatic environments: abundance and ecotoxicological impacts. Aquat Ecol. 2022;56:751–73.
doi: 10.1007/s10452-021-09936-4
Nieboer E, Richardson D. The replacement of the nondescript term ‘Heavy Metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut. 1980;1:3–26.
Chowra U, Yanase E, Koyama H, Panda SK. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper. Protoplasma. 2017;254(1):293–302.
doi: 10.1007/s00709-016-0943-5 pubmed: 26769708
Sinha D and Datta S. Molecular Mechanism of Aluminum Tolerance in Plants: An Overview. In: Kumar K, Srivastava S. (eds) Plant Metal and Metalloid Transporters. Springer, Singapore 2022.
Ofoe R, Thomas RH, Asiedu SK, Wang-Pruski G, Fofana B, Abbey L. Aluminum in plant: benefits, toxicity and tolerance mechanisms. Frontier in Plant Science. 2023;13:1085998.
doi: 10.3389/fpls.2022.1085998
Wedepohl K. The composition of the continental crust. Geochim Cosmochim Acta. 1995;59:1217–32.
doi: 10.1016/0016-7037(95)00038-2
Souri Z, Khanna K, Karimi N, Ahmad P. Silicon and plants: current knowledge and future prospects. J Plant Growth Regul. 2021;40:906–25.
doi: 10.1007/s00344-020-10172-7
Imtiaz M, Rizwan MS, Mushtaq MA, Ashraf M, Shahzad SM, Yousaf B, Saeed DA, Rizwan M, Nawaz MA, Mehmood S, Tu S. Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: A review. J Environ Manage. 2016;183(3):521–9.
doi: 10.1016/j.jenvman.2016.09.009 pubmed: 27623366
Sommer M, Kaczorek D, Kuzyakov Y, Breuer J. Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci. 2006;169:310–29.
doi: 10.1002/jpln.200521981
Liu L, Huang Z, Meng C, Jiang P. Research progress on soil silicon in different ecosystems in China. Acta Pedol Sin. 2021;58(1):31–41.
Asgher M, Rehaman A, Nazar Ul Islam S, Khan NA. Multifaceted roles of silicon nano particles in heavy metals-stressed plants. Environ Pollut. 2024;341:122886.
Aguilar MV, Mattos JP, Wertonge GS, Rosa FC, Lovato LR, Valsoler DV, Azevedo TD, Nicoloso FT, Tabaldi LA. Silicon as an attenuator of the toxic effects of aluminum in Schinus terebinthifolius plants. Braz J Biol. 2023;83:e271301.
doi: 10.1590/1519-6984.271301 pubmed: 37646754
Hilty J, Muller B, Pantin F, Leuzinger S. Plant growth: the what, the how, and the why. New Phytol. 2021;232(1):25–41.
doi: 10.1111/nph.17610 pubmed: 34245021
Ur Rahman S, Han JC, Ahmad M, Ashraf MN, Khaliq MA, Yousaf M, Wang Y, Yasin G, Nawaz MF, Khan KA, Du Z. Aluminum phytotoxicity in acidic environments: a comprehensive review of plant tolerance and adaptation strategies. Ecotoxicol Environ Saf. 2024;269:115791.
doi: 10.1016/j.ecoenv.2023.115791 pubmed: 38070417
Rodrigues de Queiroz A, Hines CJ, Brown J, Sahay S, Vijayan J, Stone JM, Bickford N, Wuellner MR, Głowacka K, Buan NR, Roston RL. The effects of exogenously applied antioxidants on plant growth and resilience. Phytochemistry Rev. 2023;22:407–447.
Halliwell B. Reactive oxygen species (ROS), oxygen radicals and antioxidants: where are we now, where is the field going and where should we go? Biochem Biophys Res Commun. 2022;633:17–9.
doi: 10.1016/j.bbrc.2022.08.098 pubmed: 36344150
Zhang Y, Wang X. Geographical spatial distribution and productivity dynamic change of Eucalyptus plantations in China. Sci Rep. 2021;11(1):19764.
doi: 10.1038/s41598-021-97089-7 pubmed: 34611175 pmcid: 8492638
Maharani R, Fernandes A, Fatriasari W. Review on expansion of Eucalyptus: its value impacts on social, economic, and environmental. In: Lee SH, Lum WC, Antov P, Krišťák Ľ, Rahandi Lubis MA, Fatriasari W. (eds). Eucalyptus. Springer, Singapore, 2024.
Yang ZD, Fang XR, Mu JP. Effect of aluminium on the growth and some physiological characters of Eucalyptus seedlings. Guangxi Science. 1996;3:30–3.
Liang Y, Bai T, Liu B, Yu W, Teng W. Different antioxidant regulation mechanisms in response to aluminum-induced oxidative stress in Eucalyptus species. Ecotoxicol Environ Saf. 2022;241:113748.
doi: 10.1016/j.ecoenv.2022.113748 pubmed: 35696965
Gao J, Guo G, Guo Y, Wang X, Du Y. Measuring plant leaf area by scanner and ImageJ software. China Vegetables. 2011;02:73–7.
Pirooz P, Amooaghaie R, Ahadi A, Sharififar F. Silicon-induced nitric oxide burst modulates systemic defensive responses of Salvia officinalis under copper toxicity. Plant Physiol Biochem. 2021;162:752–61.
doi: 10.1016/j.plaphy.2021.02.048 pubmed: 33799186
Zhao S, Kamran M, Rizwan M, Ali S, Yan L, Alwahibi MS, Elshikh MS, Riaz M. Regulation of proline metabolism, AsA-GSH cycle, cadmium uptake and subcellular distribution in Brassica napus L. under the effect of nano-silicon. Environmental Pollution. 2023;335:122321.
Hasanuzzaman M, Nahar K, Alam MM, Fujita M. Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res. 2014;161(3):297–307.
doi: 10.1007/s12011-014-0120-7 pubmed: 25249068
Duan ZQ, Bai L, Zhao ZG, Zhang GP, Cheng FM, Jiang LX, Chen KM. Drought-stimulated activity of plasma membrane nicotinamide adenine dinucleotide phosphate oxidase and its catalytic properties in rice. J Integr Plant Biol. 2009;51(12):1104–15.
doi: 10.1111/j.1744-7909.2009.00879.x pubmed: 20021558
Nayab G, Zhou J, Jia R, Lv YH, Yang YD, Brown RW, Zang HD, Jones DL, Zeng ZH. Climate warming masks the negative effect of microplastics on plant-soil health in a silt loam soil. Geoderma. 2022;425:116083.
doi: 10.1016/j.geoderma.2022.116083
Zhang Y, Zong L, Shi Y. Effects of soil pH on characteristics of soil Al in tea plantations. Soils. 2019;51(4):746–51.
Song W. Study on quality evaluation of land spatial ecological restoration based on multi feature fusion. Journal of Environmental Science (China). 2023;48:146–52.
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2024.
Xiao Z, Ye M, Gao Z, Jiang Y, Zhang X, Nikolic N, Liang Y. Silicon reduces Aluminum-Induced suberization by inhibiting the uptake and transport of Aluminum in rice roots and consequently promotes root growth. Plant Cell Physiol. 2022;63(3):340–52.
doi: 10.1093/pcp/pcac001 pubmed: 34981810
Wu B, Qi F, Liang Y. Fuels for ROS signaling in plant immunity. Trends Plant Science. 2023;28(10):1124–31.
doi: 10.1016/j.tplants.2023.04.007
Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattapaglia D, Vaillancourt RE. Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol Phylogenet Evol. 2011;59(1):206–24.
doi: 10.1016/j.ympev.2011.02.003 pubmed: 21310251
Giannakoula AE, Moustakas M, Syros TD, Yupsanis TA. Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line. Environ Exp Bot. 2010;67:487–94.
doi: 10.1016/j.envexpbot.2009.07.010
Meena NL, Kumari A, Maheshwari C, Bhardwaj R, Dhaka AS, Hasan M. Antioxidant Defense Mechanism and High-Temperature Stress Tolerance in Plants. In: Shahid M, Gaur R. (eds) Molecular Dynamics of Plant Stress and its Management. Springer, Singapore, 2024.
Ren K, Yang X, Li J, Jin H, Gu K, Chen Y, Liu M, Luo Y, Jiang Y. Alleviating the adverse effects of Cd-Pb contamination through the application of silicon fertilizer: Enhancing soil microbial diversity and mitigating heavy metal contamination. Chemosphere. 2024;352:141414.
doi: 10.1016/j.chemosphere.2024.141414 pubmed: 38336042
Hodson MJ. Silicon mitigates the effects of aluminium toxicity. In: de Mello Prado R. (eds) Benefits of Silicon in the Nutrition of Plants. Springer, Cham, 2023.
Silveira Sousa Junior G, Hurtado AC, Cassia Alves R, Gasparino EC, Dos Santos DMM. Silicon attenuates aluminum toxicity in sugarcane plants by modifying growth, roots morphoanatomy, photosynthetic pigments, and gas exchange parameters. Sci Rep. 2024;14(1):4717.
Qi A, Yan X, Liu Y, Zeng Q, Yuan H, Huang H, Liang C, Xiang D, Zou L, Peng L, Zhao G, Huang J, Wan Y. Silicon mitigates aluminum toxicity of tartary buckwheat by regulating antioxidant systems. Phyton Intern J Experiment Botany. 2023;93(1):1–13.
Kurniawan SB, Ramli NN, Said NSM, Alias J, Imron MF, Abdullah SRS, Othman AR, Purwanti IF, Hasan HA. Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon. 2022;8(4):e08995.
doi: 10.1016/j.heliyon.2022.e08995 pubmed: 35399376 pmcid: 8983376
Shen X, Dai M, Yang J, Sun L, Tan X, Peng C, Ali I, Naz I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere. 2022;291:132979.
doi: 10.1016/j.chemosphere.2021.132979 pubmed: 34801572
Iqbal Z, Sarkhosh A, Balal RM, Gómez C, Zubair M, Ilyas N, Khan N, Shahid MA. Silicon alleviate Hypoxia stress by improving enzymatic and non-enzymatic antioxidants and regulating nutrient uptake in Muscadine Grape (Muscadinia rotundifolia Michx.). Front in Plant Sci. 2021;10:618873.
doi: 10.3389/fpls.2020.618873
Dawidowicz AL, Olszowy-Tomczyk M, Typek R. Synergistic and antagonistic antioxidant effects in the binary cannabinoids mixtures. Fitoterapia. 2021;153:104992.
doi: 10.1016/j.fitote.2021.104992 pubmed: 34273440
Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT. Coordinated resource allocation to plant growth-defense tradeoffs. New Phytol. 2022;233(3):1051–66.
doi: 10.1111/nph.17773 pubmed: 34614214
Roychoudhury A, Aftab T. Phytohormones, plant growth regulators and signaling molecules: cross-talk and stress responses. Plant Cell Report. 2021;40(8):1301–3.
doi: 10.1007/s00299-021-02755-9
Feng Y, Han H, Nong W, Tang J, Chen X, Li X, Shi L, Kreslavski VD, Allakhverdiev SI, Shabala S, Shi W, Yu M. The biomineralization of silica induced stress tolerance in plants: a case study for aluminum toxicity. Plant Signal Behav. 2023;18(1):2233179.
doi: 10.1080/15592324.2023.2233179 pubmed: 37431740 pmcid: 10337488
Zeng H, Li Y, Chen W, Yan J, Wu J, Lou H. Melatonin alleviates aluminum toxicity by regulating aluminum-responsive and nonresponsive pathways in hickory. J Hazard Mater. 2023;460:132274.

Auteurs

Linjuan Huang (L)

Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Nanning, 530004, China.
Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, 530004, China.
College of Forestry, Guangxi University, Nanning, 530004, China.

Hongying Li (H)

Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Nanning, 530004, China.
Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, 530004, China.
College of Forestry, Guangxi University, Nanning, 530004, China.

Yishan Luo (Y)

Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Nanning, 530004, China.
Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, 530004, China.
College of Forestry, Guangxi University, Nanning, 530004, China.

Jingzhong Shi (J)

Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Nanning, 530004, China.
Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, 530004, China.
College of Forestry, Guangxi University, Nanning, 530004, China.

Le Kong (L)

Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Nanning, 530004, China.
Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, 530004, China.
College of Forestry, Guangxi University, Nanning, 530004, China.

Weichao Teng (W)

Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Nanning, 530004, China. vincentt@yeah.net.
Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning, 530004, China. vincentt@yeah.net.
College of Forestry, Guangxi University, Nanning, 530004, China. vincentt@yeah.net.

Articles similaires

Psoriasis Humans Magnesium Zinc Trace Elements
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Pesticide Exposure and Its Association with Parkinson's Disease: A Case-Control Analysis.

Ali Samareh, Hossein Pourghadamyari, Mohammad Hadi Nemtollahi et al.
1.00
Humans Pesticides Case-Control Studies Male Female

Classifications MeSH