Precise genetic control of ATOH1 enhances maturation of regenerated hair cells in the mature mouse utricle.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 Oct 2024
Historique:
received: 25 07 2023
accepted: 27 09 2024
medline: 25 10 2024
pubmed: 25 10 2024
entrez: 25 10 2024
Statut: epublish

Résumé

Vestibular hair cells are mechanoreceptors critical for detecting head position and motion. In mammals, hair cell loss causes vestibular dysfunction as spontaneous regeneration is nearly absent. Constitutive expression of exogenous ATOH1, a hair cell transcription factor, increases hair cell regeneration, however, these cells fail to fully mature. Here, we profiled mouse utricles at 14 time points, and defined transcriptomes of developing and mature vestibular hair cells. To mimic native hair cells which downregulate endogenous ATOH1 as they mature, we engineered viral vectors carrying the supporting cell promoters GFAP and RLBP1. In utricles damaged ex vivo, both CMV-ATOH1 and GFAP-ATOH1 increased regeneration more effectively than RLBP1-ATOH1, while GFAP-ATOH1 and RLBP1-ATOH1 induced hair cells with more mature transcriptomes. In utricles damaged in vivo, GFAP-ATOH1 induced regeneration of hair cells expressing genes indicative of maturing type II hair cells, and more hair cells with bundles and synapses than untreated organs. Together our results demonstrate the efficacy of spatiotemporal control of ATOH1 overexpression in inner ear hair cell regeneration.

Identifiants

pubmed: 39448563
doi: 10.1038/s41467-024-53153-0
pii: 10.1038/s41467-024-53153-0
doi:

Substances chimiques

Atoh1 protein, mouse 0
Basic Helix-Loop-Helix Transcription Factors 0
Glial Fibrillary Acidic Protein 0
glial fibrillary astrocytic protein, mouse 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9166

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Deafness and Other Communication Disorders (NIDCD)
ID : R01DC016919

Informations de copyright

© 2024. The Author(s).

Références

Tsuji, K. et al. Temporal bone studies of the human peripheral vestibular system. Aminoglycoside ototoxicity. Ann. Otol. Rhinol. Laryngol. Suppl. 181, 20–25 (2000).
pubmed: 10821231 doi: 10.1177/00034894001090S504
Rauch, S. D., Velazquez-Villasenor, L., Dimitri, P. S. & Merchant, S. N. Decreasing hair cell counts in aging humans. Ann. N. Y. Acad. Sci. 942, 220–227 (2001).
pubmed: 11710464 doi: 10.1111/j.1749-6632.2001.tb03748.x
Agrawal, Y., Carey, J. P., Della Santina, C. C., Schubert, M. C. & Minor, L. B. Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001-2004. Arch. Intern. Med. 169, 938–944 (2009).
pubmed: 19468085 doi: 10.1001/archinternmed.2009.66
Sayyid, Z. N., Kim, G. S. & Cheng, A. G. Molecular therapy for genetic and degenerative vestibular disorders. Curr. Opin. Otolaryngol. Head. Neck Surg. 26, 307–311 (2018).
pubmed: 30045104 pmcid: 7173647 doi: 10.1097/MOO.0000000000000477
Corwin, J. T. Postembryonic production and aging in inner ear hair cells in sharks. J. Comp. Neurol. 201, 541–553 (1981).
pubmed: 7287934 doi: 10.1002/cne.902010406
Popper, A. N. & Hoxter, B. Growth of a fish ear: 1. Quantitative analysis of hair cell and ganglion cell proliferation. Hear Res. 15, 133–142 (1984).
pubmed: 6490539 doi: 10.1016/0378-5955(84)90044-3
Jorgensen, J. M. & Mathiesen, C. The avian inner ear. Continuous production of hair cells in vestibular sensory organs, but not in the auditory papilla. Naturwissenschaften 75, 319–320 (1988).
pubmed: 3205314
Corwin, J. T. & Cotanche, D. A. Regeneration of sensory hair cells after acoustic trauma. Science 240, 1772–1774 (1988).
pubmed: 3381100 doi: 10.1126/science.3381100
Ryals, B. M. & Rubel, E. W. Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240, 1774–1776 (1988).
pubmed: 3381101 doi: 10.1126/science.3381101
Dooling, R. J., Ryals, B. M. & Manabe, K. Recovery of hearing and vocal behavior after hair-cell regeneration. Proc. Natl Acad. Sci. USA 94, 14206–14210 (1997).
pubmed: 9391178 pmcid: 28458 doi: 10.1073/pnas.94.25.14206
Smolders, J. W. Functional recovery in the avian ear after hair cell regeneration. Audio. Neurootol. 4, 286–302 (1999).
doi: 10.1159/000013853
Golub, J. S. et al. Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. J. Neurosci. 32, 15093–15105 (2012).
pubmed: 23100430 pmcid: 3544304 doi: 10.1523/JNEUROSCI.1709-12.2012
Sayyid, Z. N., Wang, T., Chen, L., Jones, S. M. & Cheng, A. G. Atoh1 directs regeneration and functional recovery of the mature mouse vestibular system. Cell Rep. 28, 312–324.e314 (2019).
pubmed: 31291569 pmcid: 6659123 doi: 10.1016/j.celrep.2019.06.028
Jen, H. I. et al. Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. Elife 8, https://doi.org/10.7554/eLife.44328 (2019).
Kawamoto, K., Izumikawa, M., Beyer, L. A., Atkin, G. M. & Raphael, Y. Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity. Hear Res. 247, 17–26 (2009).
pubmed: 18809482 doi: 10.1016/j.heares.2008.08.010
Atkinson, P. J., Huarcaya Najarro, E., Sayyid, Z. N. & Cheng, A. G. Sensory hair cell development and regeneration: similarities and differences. Development 142, 1561–1571 (2015).
pubmed: 25922522 pmcid: 4419275 doi: 10.1242/dev.114926
Gonzalez-Garrido, A. et al. The differentiation status of hair cells that regenerate naturally in the vestibular inner ear of the adult mouse. J. Neurosci. 41, 7779–7796 (2021).
pubmed: 34301830 pmcid: 8445055 doi: 10.1523/JNEUROSCI.3127-20.2021
Wang, T. et al. Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells. PLoS Biol. 17, e3000326 (2019).
pubmed: 31260439 pmcid: 6602158 doi: 10.1371/journal.pbio.3000326
Schlecker, C. et al. Selective atonal gene delivery improves balance function in a mouse model of vestibular disease. Gene Ther. 18, 884–890 (2011).
pubmed: 21472006 pmcid: 3136627 doi: 10.1038/gt.2011.33
Guo, J. Y. et al. AAV8-mediated Atoh1 overexpression induces dose-dependent regeneration of vestibular hair cells in adult mice. Neurosci. Lett. 747, 135679 (2021).
pubmed: 33524475 doi: 10.1016/j.neulet.2021.135679
Shou, J., Zheng, J. L. & Gao, W. Q. Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1. Mol. Cell Neurosci. 23, 169–179 (2003).
pubmed: 12812751 doi: 10.1016/S1044-7431(03)00066-6
Staecker, H., Praetorius, M., Baker, K. & Brough, D. E. Vestibular hair cell regeneration and restoration of balance function induced by math1 gene transfer. Otol. Neurotol. 28, 223–231 (2007).
pubmed: 17255891 doi: 10.1097/MAO.0b013e31802b3225
Staecker, H. et al. Optimizing atoh1-induced vestibular hair cell regeneration. Laryngoscope 124, S1–S12 (2014).
pubmed: 24938696 pmcid: 5267505 doi: 10.1002/lary.24775
Taylor, R. R. et al. Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing. Neurobiol. Aging 36, 2068–2084 (2015).
pubmed: 25818177 pmcid: 4436436 doi: 10.1016/j.neurobiolaging.2015.02.013
Yang, H., Xie, X., Deng, M., Chen, X. & Gan, L. Generation and characterization of Atoh1-Cre knock-in mouse line. Genesis 48, 407–413 (2010).
pubmed: 20533400 pmcid: 2885570 doi: 10.1002/dvg.20633
Pan, N. et al. A novel Atoh1 “self-terminating” mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability. PLoS ONE 7, e30358 (2012).
pubmed: 22279587 pmcid: 3261193 doi: 10.1371/journal.pone.0030358
Liu, Z. et al. Age-dependent in vivo conversion of mouse cochlear pillar and Deiters’ cells to immature hair cells by Atoh1 ectopic expression. J. Neurosci. 32, 6600–6610 (2012).
pubmed: 22573682 pmcid: 3359704 doi: 10.1523/JNEUROSCI.0818-12.2012
Zheng, J. L. & Gao, W. Q. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat. Neurosci. 3, 580–586 (2000).
pubmed: 10816314 doi: 10.1038/75753
Gubbels, S. P., Woessner, D. W., Mitchell, J. C., Ricci, A. J. & Brigande, J. V. Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455, 537–541 (2008).
pubmed: 18754012 pmcid: 2925035 doi: 10.1038/nature07265
Ben-Arie, N. et al. Math1 is essential for genesis of cerebellar granule neurons. Nature 390, 169–172 (1997).
pubmed: 9367153 doi: 10.1038/36579
Miesegaes, G. R. et al. Identification and subclassification of new Atoh1 derived cell populations during mouse spinal cord development. Dev. Biol. 327, 339–351 (2009).
pubmed: 19135992 doi: 10.1016/j.ydbio.2008.12.016
Wright, M. C. et al. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice. J. Cell Biol. 208, 367–379 (2015).
pubmed: 25624394 pmcid: 4315254 doi: 10.1083/jcb.201407101
Taylor, R. R. et al. Regenerating hair cells in vestibular sensory epithelia from humans. Elife 7, https://doi.org/10.7554/eLife.34817 (2018).
Praetorius, M. et al. Adenovector-mediated hair cell regeneration is affected by promoter type. Acta Otolaryngol. 130, 215–222 (2010).
pubmed: 20095092 pmcid: 5267485 doi: 10.3109/00016480903019251
Jan, T. A. et al. Spatiotemporal dynamics of inner ear sensory and non-sensory cells revealed by single-cell transcriptomics. Cell Rep. 36, 109358 (2021).
pubmed: 34260939 pmcid: 8378666 doi: 10.1016/j.celrep.2021.109358
Wang, G. P. et al. Adeno-associated virus-mediated gene transfer targeting normal and traumatized mouse utricle. Gene Ther. 21, 958–966 (2014).
pubmed: 25119376 doi: 10.1038/gt.2014.73
Cunningham, L. L., Cheng, A. G. & Rubel, E. W. Caspase activation in hair cells of the mouse utricle exposed to neomycin. J. Neurosci. 22, 8532–8540 (2002).
pubmed: 12351727 pmcid: 6757801 doi: 10.1523/JNEUROSCI.22-19-08532.2002
Forge, A., Li, L. & Nevill, G. Hair cell recovery in the vestibular sensory epithelia of mature guinea pigs. J. Comp. Neurol. 397, 69–88 (1998).
pubmed: 9671280 doi: 10.1002/(SICI)1096-9861(19980720)397:1<69::AID-CNE6>3.0.CO;2-G
McInturff, S., Burns, J. C. & Kelley, M. W. Characterization of spatial and temporal development of type I and type II hair cells in the mouse utricle using new cell-type-specific markers. Biol. Open 7, https://doi.org/10.1242/bio.038083 (2018).
Burns, J. C., Kelly, M. C., Hoa, M., Morell, R. J. & Kelley, M. W. Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat. Commun. 6, 8557 (2015).
pubmed: 26469390 doi: 10.1038/ncomms9557
Desai, S. S., Zeh, C. & Lysakowski, A. Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. J. Neurophysiol. 93, 251–266 (2005).
pubmed: 15240767 doi: 10.1152/jn.00746.2003
Desai, S. S., Ali, H. & Lysakowski, A. Comparative morphology of rodent vestibular periphery. II. Cristae ampullares. J. Neurophysiol. 93, 267–280 (2005).
pubmed: 15240768 doi: 10.1152/jn.00747.2003
Eatock, R. A. & Songer, J. E. Vestibular hair cells and afferents: two channels for head motion signals. Annu. Rev. Neurosci. 34, 501–534 (2011).
pubmed: 21469959 doi: 10.1146/annurev-neuro-061010-113710
Contini, D. et al. Intercellular K(+) accumulation depolarizes type I vestibular hair cells and their associated afferent nerve calyx. Neuroscience 227, 232–246 (2012).
pubmed: 23032932 doi: 10.1016/j.neuroscience.2012.09.051
Collado, M. S. et al. The postnatal accumulation of junctional E-cadherin is inversely correlated with the capacity for supporting cells to convert directly into sensory hair cells in mammalian balance organs. J. Neurosci. 31, 11855–11866 (2011).
pubmed: 21849546 pmcid: 3164812 doi: 10.1523/JNEUROSCI.2525-11.2011
Lin, V. et al. Inhibition of Notch activity promotes nonmitotic regeneration of hair cells in the adult mouse utricles. J. Neurosci. 31, 15329–15339 (2011).
pubmed: 22031879 pmcid: 3235543 doi: 10.1523/JNEUROSCI.2057-11.2011
Wang, G. P. et al. Notch signaling and Atoh1 expression during hair cell regeneration in the mouse utricle. Hear Res. 267, 61–70 (2010).
pubmed: 20433915 pmcid: 2902641 doi: 10.1016/j.heares.2010.03.085
Helms, A. W., Abney, A. L., Ben-Arie, N., Zoghbi, H. Y. & Johnson, J. E. Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development 127, 1185–1196 (2000).
pubmed: 10683172 doi: 10.1242/dev.127.6.1185
Shi, F., Cheng, Y. F., Wang, X. L. & Edge, A. S. Beta-catenin up-regulates Atoh1 expression in neural progenitor cells by interaction with an Atoh1 3’ enhancer. J. Biol. Chem. 285, 392–400 (2010).
pubmed: 19864427 doi: 10.1074/jbc.M109.059055
Kelly, M. C., Chang, Q., Pan, A., Lin, X. & Chen, P. Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. J. Neurosci. 32, 6699–6710 (2012).
pubmed: 22573692 pmcid: 3477623 doi: 10.1523/JNEUROSCI.5420-11.2012
Cai, T. et al. Characterization of the transcriptome of nascent hair cells and identification of direct targets of the Atoh1 transcription factor. J. Neurosci. 35, 5870–5883 (2015).
pubmed: 25855195 pmcid: 4388939 doi: 10.1523/JNEUROSCI.5083-14.2015
Soler-Martin, C., Diez-Padrisa, N., Boadas-Vaello, P. & Llorens, J. Behavioral disturbances and hair cell loss in the inner ear following nitrile exposure in mice, guinea pigs, and frogs. Toxicol. Sci. 96, 123–132 (2007).
pubmed: 17159233 doi: 10.1093/toxsci/kfl186
Pacentine, I., Chatterjee, P. & Barr-Gillespie, P. G. Stereocilia Rootlets: actin-based structures that are essential for structural stability of the hair bundle. Int. J. Mol. Sci. 21, 324 (2020).
Nouvian, R., Beutner, D., Parsons, T. D. & Moser, T. Structure and function of the hair cell ribbon synapse. J. Membr. Biol. 209, 153–165 (2006).
pubmed: 16773499 pmcid: 1764598 doi: 10.1007/s00232-005-0854-4
Schug, N. et al. Differential expression of otoferlin in brain, vestibular system, immature and mature cochlea of the rat. Eur. J. Neurosci. 24, 3372–3380 (2006).
pubmed: 17229086 doi: 10.1111/j.1460-9568.2006.05225.x
Kim, G. S. et al. Repair of surviving hair cells in the damaged mouse utricle. Proc. Natl Acad. Sci. USA 119, e2116973119 (2022).
pubmed: 35380897 pmcid: 9169652 doi: 10.1073/pnas.2116973119
Rio, C., Dikkes, P., Liberman, M. C. & Corfas, G. Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice. J. Comp. Neurol. 442, 156–162 (2002).
pubmed: 11754168 doi: 10.1002/cne.10085
Llorens, J. & Dememes, D. Hair cell degeneration resulting from 3,3’-iminodipropionitrile toxicity in the rat vestibular epithelia. Hear Res. 76, 78–86 (1994).
pubmed: 7928719 doi: 10.1016/0378-5955(94)90090-6
Bi, Z. et al. Development and transdifferentiation into inner hair cells require Tbx2. Natl Sci. Rev. 9, nwac156 (2022).
pubmed: 36687561 pmcid: 9844247 doi: 10.1093/nsr/nwac156
Atkinson, P. J., Kim, G. S. & Cheng, A. G. Direct cellular reprogramming and inner ear regeneration. Expert Opin. Biol. Ther. 19, 129–139 (2019).
pubmed: 30584811 pmcid: 6592785 doi: 10.1080/14712598.2019.1564035
Collado, M. S., Burns, J. C., Hu, Z. & Corwin, J. T. Recent advances in hair cell regeneration research. Curr. Opin. Otolaryngol. Head Neck Surg. 16, 465–471 (2008).
pubmed: 18797290 pmcid: 2692475 doi: 10.1097/MOO.0b013e32830f4ab5
Cheng, Y. F., Tong, M. & Edge, A. S. Destabilization of Atoh1 by E3 ubiquitin ligase Huwe1 and casein kinase 1 is essential for normal sensory hair cell development. J. Biol. Chem. 291, 21096–21109 (2016).
pubmed: 27542412 pmcid: 5076519 doi: 10.1074/jbc.M116.722124
Abdul-Aziz, D., Hathiramani, N., Phung, L., Sykopetrites, V. & Edge, A. S. B. HIC1 represses Atoh1 transcription and hair cell differentiation in the cochlea. Stem Cell Rep. 16, 797–809 (2021).
doi: 10.1016/j.stemcr.2021.02.022
Luo, Z. et al. Three distinct Atoh1 enhancers cooperate for sound receptor hair cell development. Proc. Natl Acad. Sci. USA 119, e2119850119 (2022).
pubmed: 35925886 pmcid: 9371730 doi: 10.1073/pnas.2119850119
Ono, K. et al. Retinoic acid degradation shapes zonal development of vestibular organs and sensitivity to transient linear accelerations. Nat. Commun. 11, 63 (2020).
pubmed: 31896743 pmcid: 6940366 doi: 10.1038/s41467-019-13710-4
Ratzan, E. M. et al. TMC function, dysfunction, and restoration in mouse vestibular organs. Front. Neurol. 15, 1356614 (2024).
pubmed: 38638308 pmcid: 11024474 doi: 10.3389/fneur.2024.1356614
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819 pmcid: 6884693 doi: 10.1038/s41592-019-0619-0
Johnson, S. L., Safieddine, S., Mustapha, M. & Marcotti, W. Hair cell afferent synapses: function and dysfunction. Cold Spring Harb. Perspect. Med. 9, https://doi.org/10.1101/cshperspect.a033175 (2019).
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e1821 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031

Auteurs

Tian Wang (T)

Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA.
Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Tian Yang (T)

Decibel Therapeutics, Boston, MA, 02215, USA.

Amanda Kedaigle (A)

Decibel Therapeutics, Boston, MA, 02215, USA.

Gabriela Pregernig (G)

Decibel Therapeutics, Boston, MA, 02215, USA.
Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.

Ryan McCarthy (R)

Decibel Therapeutics, Boston, MA, 02215, USA.
Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.

Ben Holmes (B)

Decibel Therapeutics, Boston, MA, 02215, USA.

Xudong Wu (X)

Decibel Therapeutics, Boston, MA, 02215, USA.

Lars Becker (L)

Decibel Therapeutics, Boston, MA, 02215, USA.
Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.

Ning Pan (N)

Decibel Therapeutics, Boston, MA, 02215, USA.
Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.

Kathy So (K)

Decibel Therapeutics, Boston, MA, 02215, USA.
Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.

Leon Chen (L)

Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA.

Jun He (J)

Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA.
Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Ahmad Mahmoudi (A)

Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA.

Soumya Negi (S)

Decibel Therapeutics, Boston, MA, 02215, USA.

Monika Kowalczyk (M)

Decibel Therapeutics, Boston, MA, 02215, USA.

Tyler Gibson (T)

Decibel Therapeutics, Boston, MA, 02215, USA.

Noah Druckenbrod (N)

Decibel Therapeutics, Boston, MA, 02215, USA. ndbrod@outlook.com.

Alan G Cheng (AG)

Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA. aglcheng@stanford.edu.

Joseph Burns (J)

Decibel Therapeutics, Boston, MA, 02215, USA.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH