Hydrogen isotope labeling unravels origin of soil-bound organic contaminant residues in biodegradability testing.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 Oct 2024
Historique:
received: 03 10 2023
accepted: 14 10 2024
medline: 25 10 2024
pubmed: 25 10 2024
entrez: 25 10 2024
Statut: epublish

Résumé

Biodegradability testing in soil helps to identify safe synthetic organic chemicals but is still obscured by the formation of soil-bound 'non-extractable' residues (NERs). Present-day methodologies using radiocarbon or stable (

Identifiants

pubmed: 39448570
doi: 10.1038/s41467-024-53478-w
pii: 10.1038/s41467-024-53478-w
doi:

Substances chimiques

Soil Pollutants 0
Soil 0
Deuterium AR09D82C7G
Glycine TE7660XO1C
Glyphosate 4632WW1X5A
Sulfamethoxazole JE42381TNV
2,4-Dichlorophenoxyacetic Acid 2577AQ9262
Carbon Isotopes 0
Amino Acids 0
Hydrogen 7YNJ3PO35Z
Organic Chemicals 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9178

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : No 980/3-1

Informations de copyright

© 2024. The Author(s).

Références

United Nations Environment Programme. Global Chemicals Outlook II. From Legacies to Innovative Solutions: Implementing the 2030 Agenda for Sustainable Development – Synthesis Report. https://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions (2019).
Rodríguez Eugenio, N., McLaughlin, M. J. & Pennock, D. J. Soil pollution. A hidden reality (Food and Agriculture Organization of the United Nations, Rome, 2018).
European Chemicals Agency. Guidance on information requirements and chemical safety assessment. Chapter R.11: PBT and vPvB assessment (European Chemicals Agency, Helsinki, 2017).
European Chemicals Agency. Guidance on information requirements and chemical safety assessment: chapter R.7b: endpoint specific guidance (European Chemicals Agency, 2017).
Houshani, M., et al. In Basic Concepts in Environmental Biotechnology, edited by N. Sharma, A. Singh Sodhi & N. Batra (CRC Press, Boca Raton, 2022).
Fenner, K., Canonica, S., Wackett, L. P. & Elsner, M. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341, 752–758 (2013).
pubmed: 23950532 doi: 10.1126/science.1236281
Nowak, K. M., Miltner, A. & Kästner, M. In Bioavailability of Organic Chemicals in Soil and Sediment, edited by J. J. Ortega-Calvo & J. R. Parsons (Springer International Publishing, Cham, 2020).
Kästner, M., Nowak, K. M., Miltner, A. & Schäffer, A. (Multiple) Isotope probing approaches to trace the fate of environmental chemicals and the formation of non-extractable ‘bound’ residues. Cur. Opin. Biotechnol. 41, 73–82 (2016).
doi: 10.1016/j.copbio.2016.05.002
Sigmund, G. et al. Addressing chemical pollution in biodiversity research. Glob. Change Biol. 29, 3240–3255 (2023).
doi: 10.1111/gcb.16689
Ortega-Calvo, J. J. & Parsons, J. R. (eds.). Bioavailability of Organic Chemicals in Soil and Sediment (Springer International Publishing, Cham, 2020).
Bose, S., Kumar, P. S., Vo, D.-V. N., Rajamohan, N. & Saravanan, R. Microbial degradation of recalcitrant pesticides: a review. Environ. Chem. Lett. 19, 3209–3228 (2021).
doi: 10.1007/s10311-021-01236-5
European Parliament, Council of the European Union. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/ 45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off. J. Eur. Union. https://eur-lex.europa.eu/eli/reg/2006/1907/oj (2006).
European Parliament, Council of the European Union. Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products (Text with EEA relevance). Off. J. Eur. Union. http://data.europa.eu/eli/reg/2012/528/2022-04-15 (2012).
European Parliament, Council of the European Union. Commission Regulation (EU) No 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market (Text with EEA relevance). Off. J. Eur. Union (2013).
Fate, Transport and Transformation Test Guidelines. OPPTS 835.3300 Soil Biodegradation (United States Environmental Protection Agency, 1998).
OECD. Test No. 307. Aerobic and Anaerobic Transformation in Soil (2002).
Harmsen, J., Hennecke, D., Hund-Rinke, K., Lahr, J. & Deneer, J. Certainties and uncertainties in accessing toxicity of non-extractable residues (NER) in soil. Environ. Sci. Eur. 31, 99 (2019).
doi: 10.1186/s12302-019-0281-2
ECHA. Options to address non-extractable residues in regulatory persistence assessment. Background note (2019).
Kästner, M., Trapp, S. & Schäffer, A. Consultancy services to support ECHA in improving the interpretation of Non-Extractable Residues (NER) in degradation assessment. Discussion paper-final report (2018).
Hennecke, D. et al. Silylation: a reproducible method for characterization of non-extractable residues (NER) of organic chemicals in the assessment of persistence. Environ. Sci. Adv. 2, 424–432 (2023).
doi: 10.1039/D2VA00314G
Biswas, B. et al. The fate of chemical pollutants with soil properties and processes in the climate change paradigm—A review. Soil Syst. 2 (2018).
Noyes, P. D. et al. The toxicology of climate change: Environmental contaminants in a warming world. Environ. Int. 35, 971–986 (2009).
pubmed: 19375165 doi: 10.1016/j.envint.2009.02.006
Ren, J., Wang, X., Gong, P. & Wang, C. Characterization of Tibetan soil as a source or sink of atmospheric persistent organic pollutants: Seasonal shift and impact of global warming. Environ. Sci. Technol. 53, 3589–3598 (2019).
pubmed: 30821446 doi: 10.1021/acs.est.9b00698
Zhu, X. et al. Substantial halogenated organic chemicals stored in permafrost soils on the Tibetan Plateau. Nat. Geosci. 16, 989–996 (2023).
doi: 10.1038/s41561-023-01293-1
Richnow, H. H. et al. Metabolites of xenobiotica and mineral oil constituents linked to macromolecular organic matter in polluted environments. Org. Geochem. 22, 671–IN10 (1994).
doi: 10.1016/0146-6380(94)90132-5
Richnow, H. H. et al. Organic pollutants associated with macromolecular soil organic matter: Mode of binding. Org. Geochem. 26, 745–758 (1997).
doi: 10.1016/S0146-6380(97)00054-5
Kästner, M., Nowak, K. M., Miltner, A., Trapp, S. & Schäffer, A. Classification and modelling of nonextractable residue (NER) formation of Xenobiotics in soil – A synthesis. Crit. Rev. Environ. Sci. Technol. 44, 2107–2171 (2014).
doi: 10.1080/10643389.2013.828270
Trapp, S., Brock, A. L., Nowak, K. & Kästner, M. Prediction of the formation of biogenic nonextractable residues during degradation of environmental chemicals from biomass yields. Environ. Sci. Technol. 52, 663–672 (2018).
pubmed: 29214805 doi: 10.1021/acs.est.7b04275
Loeffler, D. et al. Determination of non-extractable residues in soils: Towards a standardised approach. Environ. Pollut. 259, 113826 (2020).
pubmed: 31887596 doi: 10.1016/j.envpol.2019.113826
Ortega-Calvo, J.-J. et al. From bioavailability science to regulation of organic chemicals. Environ. Sci. Technol. 49, 10255–10264 (2015).
pubmed: 26230485 doi: 10.1021/acs.est.5b02412
Schäffer, A., Kästner, M. & Trapp, S. A unified approach for including non-extractable residues (NER) of chemicals and pesticides in the assessment of persistence. Environ. Sci. Eur. 30, 51 (2018).
pubmed: 30613459 pmcid: 6297198 doi: 10.1186/s12302-018-0181-x
Gevao, B., Jones, K. C., Semple, K. T., Craven, A. & Burauel, P. Nonextractable pesticide residues in soil. Environ. Sci. Technol. 37, 138A–144A (2003).
doi: 10.1021/es032402n
ECETOC. Development of Interim Guidance for the Inclusion of Non-Extractable Residues (NER) in the Risk Assessment of Chemicals. ECETOC Technical Report No. 118. (2013).
Barriuso, E., Benoit, P. & Dubus, I. G. Formation of pesticide nonextractable (bound) residues in soil. Magnitude, controlling factors and reversibility. Environ. Sci. Technol. 42, 1845–1854 (2008).
pubmed: 18409603 doi: 10.1021/es7021736
Nowak, K. M., Miltner, A., Gehre, M., Schäffer, A. & Kästner, M. Formation and fate of bound residues from microbial biomass during 2,4-D degradation in soil. Environ. Sci. Technol. 45, 999–1006 (2011).
pubmed: 21186826 doi: 10.1021/es103097f
Wang, S. et al. (Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-labeling approach. Water Res. 99, 91–100 (2016).
pubmed: 27140906 doi: 10.1016/j.watres.2016.04.041
Rowbotham, J. S., Ramirez, M. A., Lenz, O., Reeve, H. A. & Vincent, K. A. Bringing biocatalytic deuteration into the toolbox of asymmetric isotopic labelling techniques. Nat. Commun. 11, 1454 (2020).
pubmed: 32193396 pmcid: 7081218 doi: 10.1038/s41467-020-15310-z
Paul, A. et al. Hydrogen dynamics in soil organic matter as determined by
doi: 10.5194/bg-13-6587-2016
Buckeridge, K. M. et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun. Earth Environ. 1, 36 (2020).
Heijboer, A., Ruiter, P. C. D., Bodelier, P. L. E. & Kowalchuk, G. A. Modulation of litter decomposition by the soil microbial food web under influence of land use change. Front. Microbiol. 9, 2860 (2018).
pubmed: 30534120 pmcid: 6275175 doi: 10.3389/fmicb.2018.02860
Lempp, M., Lubrano, P., Bange, G. & Link, H. Metabolism of non-growing bacteria. Biol. Chem. 401, 1479–1485 (2020).
pubmed: 32845858 doi: 10.1515/hsz-2020-0201
Li, J., Pei, J., Dijkstra, F. A., Nie, M. & Pendall, E. Microbial carbon use efficiency, biomass residence time and temperature sensitivity across ecosystems and soil depths. Soil Biol. Biochem. 154, 108117 (2021).
doi: 10.1016/j.soilbio.2020.108117
Liang, C. & Balser, T. C. Microbial production of recalcitrant organic matter in global soils. Implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75 (2011).
pubmed: 21113179 doi: 10.1038/nrmicro2386-c1
Salehizadeh, H., Yan, N. & Farnood, R. Recent advances in microbial CO
doi: 10.1016/j.cej.2020.124584
Branduardi, P. & Sauer, M. Microbial carbon dioxide fixation: new tricks for an old game. FEMS Microbiol. Lett. 365 (2018).
Nowak, K. M. “Bound” residues from biomass and CO
Chini, C. C. S., Zeidler, J. D., Kashyap, S., Warner, G. & Chini, E. N. Evolving concepts in NAD+ metabolism. Cell Metab. 33, 1076–1087 (2021).
pubmed: 33930322 pmcid: 8172449 doi: 10.1016/j.cmet.2021.04.003
Gerlt, J. A. In Comprehensive Natural Products Chemistry (eds Barton, D. & Meth-Cohn, O.) (Pergamon, 1999).
Kessler, A., Merseburger, S., Kappler, A., Wilcke, W. & Oelmann, Y. Incorporation of ambient water-H into the C-bonded H pool of bacteria during substrate-specific metabolism. ACS Earth Space Chem. 6, 2180–2189 (2022).
doi: 10.1021/acsearthspacechem.2c00085
Fogel, M. L., Griffin, P. L. & Newsome, S. D. Hydrogen isotopes in individual amino acids reflect differentiated pools of hydrogen from food and water in Escherichia coli. Proc. Natl. Acad. Sci. USA 113, E4648–E4653 (2016).
pubmed: 27444017 pmcid: 4987767 doi: 10.1073/pnas.1525703113
Berry, D. et al. Tracking heavy water (D
pubmed: 25550518 doi: 10.1073/pnas.1420406112
Silverman, S. N., Wijker, R. S. & Sessions, A. L. Biosynthetic and catabolic pathways control amino acid δ2H values in aerobic heterotrophs. Front. Microbiol. 15, 1338486 (2024).
pubmed: 38646628 pmcid: 11026604 doi: 10.3389/fmicb.2024.1338486
Smith, D. A., Nakamoto, B. J., Suess, M. K. & Fogel, M. L. Central metabolism and growth rate impacts on hydrogen and carbon isotope fractionation during amino acid synthesis in E. coli. Front. Microbiol. 13, 840167 (2022).
pubmed: 35910622 pmcid: 9335129 doi: 10.3389/fmicb.2022.840167
Boivin, A., Amellal, S., Schiavon, M. & van Genuchten, M. T. 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils. Environ. Pollut. 138, 92–99 (2005).
pubmed: 16023914 doi: 10.1016/j.envpol.2005.02.016
Botero, L. R., Mougin, C., Peñuela, G. & Barriuso, E. Formation of 2,4-D bound residues in soils. New insights into microbial metabolism. Sci. Total Environ. 584-585, 715–722 (2017).
pubmed: 28131449 doi: 10.1016/j.scitotenv.2017.01.105
European Food Safety Authority (EFSA) Conclusion on the peer review of the pesticide risk assessment of the active substance 2,4‐D. EFSA J. 12, 358 (2014).
Girardi, C. et al. Microbial degradation of the pharmaceutical ibuprofen and the herbicide 2,4-D in water and soil - use and limits of data obtained from aqueous systems for predicting their fate in soil. Sci. Total Environ. 444, 32–42 (2013).
pubmed: 23262323 doi: 10.1016/j.scitotenv.2012.11.051
European Food Safety Authority (EFSA) Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 13, 1 (2015).
Muskus, A. M., Krauss, M., Miltner, A., Hamer, U. & Nowak, K. M. Effect of temperature, pH and total organic carbon variations on microbial turnover of
pubmed: 30580222 doi: 10.1016/j.scitotenv.2018.12.195
Muskus, A. M., Krauss, M., Miltner, A., Hamer, U. & Nowak, K. M. Degradation of glyphosate in a Colombian soil is influenced by temperature, total organic carbon content and pH. Environ. Pollut. 259, 113767 (2020).
pubmed: 31887598 doi: 10.1016/j.envpol.2019.113767
Andriamalala, A., Vieublé-Gonod, L., Dumeny, V. & Cambier, P. Fate of sulfamethoxazole, its main metabolite N-ac-sulfamethoxazole and ciprofloxacin in agricultural soils amended or not by organic waste products. Chemosphere 191, 607–615 (2018).
pubmed: 29078186 doi: 10.1016/j.chemosphere.2017.10.093
Höltge, S. & Kreuzig, R. Laboratory testing of sulfamethoxazole and its metabolite acetyl-sulfamethoxazole in soil. Clean. Soil Air Water 35, 104–110 (2007).
doi: 10.1002/clen.200600019
Gaultier, J., Farenhorst, A., Cathcart, J. & Goddard, T. Degradation of [carboxyl-14C] 2,4-D and [ring-U-14C] 2,4-D in 114 agricultural soils as affected by soil organic carbon content. Soil Biol. Biochem. 40, 217–227 (2008).
doi: 10.1016/j.soilbio.2007.08.003
Aslam, S., Jing, Y. & Nowak, K. M. Fate of glyphosate and its degradation products AMPA, glycine and sarcosine in an agricultural soil: implications for environmental risk assessment. J. Hazard. Mater. 447, 130847 (2023).
pubmed: 36696778 doi: 10.1016/j.jhazmat.2023.130847
Al-Rajab, A. J. & Schiavon, M. Degradation of
doi: 10.1016/S1001-0742(09)60264-3
Trapp, S., Brock, A. L., Kästner, M., Schäffer, A. & Hennecke, D. Critical evaluation of the microbial turnover to biomass approach for the estimation of biogenic non-extractable residues (NER). Environ. Sci. Eur. 34, 15 (2022).
doi: 10.1186/s12302-022-00592-5
Sviridov, A. V. et al. Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl. Microbiol. Biotechnol. 93, 787–796 (2012).
pubmed: 21789492 doi: 10.1007/s00253-011-3485-y
Zhang, Y. et al. Glycine transformation induces repartition of cadmium and lead in soil constituents. Environ. Pollut. 251, 930–937 (2019).
pubmed: 31234259 doi: 10.1016/j.envpol.2019.04.099
De Giovanni, R. & Zamenhof, S. Studies on incorporation of Deuterium into bacteria. Biochem. J. 87, 79–82 (1963).
pubmed: 14025789 pmcid: 1276842 doi: 10.1042/bj0870079
Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. Deuterium- and tritium-labelled compounds. Applications in the life sciences. Angew. Chem. 57, 1758–1784 (2018).
doi: 10.1002/anie.201704146
Busch, R. et al. Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim. Biophys. Acta 1760, 730–744 (2006).
pubmed: 16567052 doi: 10.1016/j.bbagen.2005.12.023
Krauser, J. A. A perspective on tritium versus carbon-14: ensuring optimal label selection in pharmaceutical research and development. J. Label. Compd. Radiopharm. 56, 441–446 (2013).
doi: 10.1002/jlcr.3085
Kopf, S. et al. Recent developments for the deuterium and tritium labeling of organic molecules. Chem. Rev. 122, 6634–6718 (2022).
pubmed: 35179363 doi: 10.1021/acs.chemrev.1c00795
Kostyukevich, Y. et al. Hydrogen/deuterium exchange in mass spectrometry. Mass Spectrom. Rev. 37, 811–853 (2018).
pubmed: 29603316 doi: 10.1002/mas.21565
Naveed, M. et al. Impact of long-term fertilization practice on soil structure evolution. Geoderma 217-218, 181–189 (2014).
doi: 10.1016/j.geoderma.2013.12.001
Amelung, W. & Zhang, X. Determination of amino acid enantiomers in soils. Soil Biol. Biochem. 33, 553–562 (2001).
doi: 10.1016/S0038-0717(00)00195-4
de Winter, J. Using the Student’s t-test with extremely small sample sizes. Pract. Assess. Res. Eval. 18, 10 (2013).
R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).

Auteurs

Sophie Lennartz (S)

Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
Department of Environmental Science, Aarhus University, Roskilde, Denmark.

Harriet A Byrne (HA)

Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.

Steffen Kümmel (S)

Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.

Martin Krauss (M)

Department of Exposure Science, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.

Karolina M Nowak (KM)

Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. karolina.nowak@ufz.de.
Chair of Geobiotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany. karolina.nowak@ufz.de.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal
Cameroon Humans Uranium Trace Elements Environmental Monitoring

Classifications MeSH