Distinct roles of size-defined HDL subpopulations in cardiovascular disease.


Journal

Current opinion in lipidology
ISSN: 1473-6535
Titre abrégé: Curr Opin Lipidol
Pays: England
ID NLM: 9010000

Informations de publication

Date de publication:
17 Oct 2024
Historique:
medline: 25 10 2024
pubmed: 25 10 2024
entrez: 25 10 2024
Statut: aheadofprint

Résumé

Doubts about whether high-density lipoprotein-cholesterol (HDL-C) levels are causally related to atherosclerotic cardiovascular disease (CVD) risk have stimulated research on identifying HDL-related metrics that might better reflect its cardioprotective functions. HDL is made up of different types of particles that vary in size, protein and lipid composition, and function. This review focuses on recent findings on the specific roles of HDL subpopulations defined by size in CVD. Small HDL particles are more effective than larger particles at promoting cellular cholesterol efflux because apolipoprotein A-I on their surface better engages ABCA1 (ATP binding cassette subfamily A member 1). In contrast, large HDL particles bind more effectively to scavenger receptor class B type 1 on endothelial cells, which helps prevent LDL from moving into the artery wall. The specific role of medium-sized HDL particles, the most abundant subpopulation, is still unclear. HDL is made up of subpopulations of different sizes of particles, with selective functional roles for small and large HDLs. The function of HDL may depend more on the size and composition of its subpopulations than on HDL-C levels. Further research is required to understand how these different HDL subpopulations influence the development of CVD.

Identifiants

pubmed: 39450930
doi: 10.1097/MOL.0000000000000959
pii: 00041433-990000000-00093
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.

Références

Kannel WB, Castelli WP, McNamara PM. Serum lipid fractions and risk of coronary heart disease. The Framingham study. Minn Med 1969; 52:1225–1230.
Tall AR. HDL in morbidity and mortality: a 40+ year perspective. Clin Chem 2021; 67 (1):19–23.
Heinecke JW. The not-so-simple HDL story: a new era for quantifying HDL and cardiovascular risk? Nat Med 2012; 18:1346–1347.
Adorni MP, Ronda N, Bernini F, Zimetti F. High density lipoprotein cholesterol efflux capacity and atherosclerosis in cardiovascular disease: pathophysiological aspects and pharmacological perspectives. Cells 2021; 10:574.
Brites F, Martin M, Guillas I, Kontush A. Antioxidative activity of high-density lipoprotein (HDL): mechanistic insights into potential clinical benefit. BBA Clin 2017; 8:66–77.
Lemmers RFH, van Hoek M, Lieverse AG, et al. The anti-inflammatory function of high-density lipoprotein in type II diabetes: a systematic review. J Clin Lipidol 2017; 11:712–724. e5.
Armstrong SM, Sugiyama MG, Fung KY, et al. A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovasc Res 2015; 108:268–277.
Kothari V, Ho TWW, Cabodevilla AG, et al. Imbalance of APOB lipoproteins and large HDL in Type 1 diabetes drives atherosclerosis. Circ Res 2024; 135:335–349.
Kontush A, Lhomme M, Chapman MJ. Unraveling the complexities of the HDL lipidome. J Lipid Res 2013; 54:2950–2963.
Davidson WS, Shah AS, Sexmith H, Gordon SM. The HDL Proteome Watch: compilation of studies leads to new insights on HDL function. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159072.
Rosenson RS, Brewer HB Jr, Chapman MJ, et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem 2011; 57:392–410.
Castro GR, Fielding CJ. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochemistry 1988; 27:25–29.
Kane JP, Malloy MJ. Prebeta-1 HDL and coronary heart disease. Curr Opin Lipidol 2012; 23:367–371.
Pullinger CR, O’Connor PM, Naya-Vigne JM, et al. Levels of prebeta-1 high-density lipoprotein are a strong independent positive risk factor for coronary heart disease and myocardial infarction: a meta-analysis. J Am Heart Assoc 2021; 10:e018381.
Munroe WH, Phillips ML, Schumaker VN. Excessive centrifugal fields damage high density lipoprotein. J Lipid Res 2015; 56:1172–1181.
McVicar JP, Kunitake ST, Hamilton RL, Kane JP. Characteristics of human lipoproteins isolated by selected-affinity immunosorption of apolipoprotein A-I. Proc Natl Acad Sci USA 1984; 81 (5):1356–1360.
Kunitake ST, Kane JP. Factors affecting the integrity of high density lipoproteins in the ultracentrifuge. J Lipid Res 1982; 23:936–940.
Stahlman M, Davidsson P, Kanmert I, et al. Proteomics and lipids of lipoproteins isolated at low salt concentrations in D2O/sucrose or in KBr. J Lipid Res 2008; 49:481–490.
Holzer M, Ljubojevic-Holzer S, Souza Junior DR, et al. HDL isolated by immunoaffinity, ultracentrifugation, or precipitation is compositionally and functionally distinct. J Lipid Res 2022; 63:100307.
Plump AS, Azrolan N, Odaka H, et al. ApoA-I knockout mice: characterization of HDL metabolism in homozygotes and identification of a post-RNA mechanism of apoA-I up-regulation in heterozygotes. J Lipid Res 1997; 38:1033–1047.
Gordon SM, Li H, Zhu X, et al. Impact of genetic deletion of platform apolipoproteins on the size distribution of the murine lipoproteome. J Proteomics 2016; 146:184–194.
Santos RD, Schaefer EJ, Asztalos BF, et al. Characterization of high density lipoprotein particles in familial apolipoprotein A-I deficiency. J Lipid Res 2008; 49:349–357.
Zhang W, Asztalos B, Roheim PS, Wong L. Characterization of phospholipids in pre-alpha HDL: selective phospholipid efflux with apolipoprotein A-I. J Lipid Res 1998; 39:1601–1607.
Asztalos BF, Sloop CH, Wong L, Roheim PS. Two-dimensional electrophoresis of plasma lipoproteins: recognition of new apo A-I-containing subpopulations. Biochim Biophys Acta 1993; 1169:291–300.
Niisuke K, Kuklenyik Z, Horvath KV, et al. Composition-function analysis of HDL subpopulations: influence of lipid composition on particle functionality. J Lipid Res 2020; 61:306–315.
Thomson R, Samanovic M, Raper J. Activity of trypanosome lytic factor: a novel component of innate immunity. Future Microbiol 2009; 4:789–796.
Han YH, Onufer EJ, Huang LH, et al. Enterically derived high-density lipoprotein restrains liver injury through the portal vein. Science 2021; 373:eabe6729.
Jeyarajah EJ, Cromwell WC, Otvos JD. Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med 2006; 26:847–870.
Caulfield MP, Li S, Lee G, et al. Direct determination of lipoprotein particle sizes and concentrations by ion mobility analysis. Clin Chem 2008; 54:1307–1316.
Hutchins PM, Ronsein GE, Monette JS, et al. Quantification of HDL particle concentration by calibrated ion mobility analysis. Clin Chem 2014; 60:1393–1401.
Matera R, Horvath KV, Nair H, et al. HDL particle measurement: comparison of 5 methods. Clin Chem 2018; 64:492–500.
Vaisar T, Heinecke JW. Quantification of high-density lipoprotein particle number by proton nuclear magnetic resonance: don’t believe the numbers. Curr Opin Lipidol 2024; 35:228–233.
Heinecke JW, Davidson WS. Size matters: HDL particle populations and the risk of infection. Nat Rev Cardiol 2023; 20:279–280.
Rader DJ, Alexander ET, Weibel GL, et al. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 2009; 50: (Suppl): S189–S194.
Oram JF, Heinecke JW. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev 2005; 85:1343–1372.
Du XM, Kim MJ, Hou L, et al. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ Res 2015; 116:1133–1142.
He Y, Ronsein GE, Tang C, et al. Diabetes impairs cellular cholesterol efflux from ABCA1 to small HDL particles. Circ Res 2020; 127:1198–1210.
Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet 2014; 384:618–625.
de la Llera-Moya M, Drazul-Schrader D, Asztalos BF, et al. The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages. Arterioscler Thromb Vasc Biol 2010; 30:796–801.
Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364:127–135.
Rohatgi A, Khera A, Berry JD, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 2014; 371:2383–2393.
Saleheen D, Scott R, Javad S, et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol 2015; 3:507–513.
Sato M, Neufeld EB, Playford MP, et al. Cell-free, high-density lipoprotein-specific phospholipid efflux assay predicts incident cardiovascular disease. J Clin Invest 2023; 133:e165370.
Costacou T, Vaisar T, Miller RG, et al. High-density lipoprotein particle concentration and size predict incident coronary artery disease events in a cohort with type 1 diabetes. J Am Heart Assoc 2024; 13:e034763.
Costacou T, Miller RG, Bornfeldt KE, et al. Sex differences in the associations of HDL particle concentration and cholesterol efflux capacity with incident coronary artery disease in type 1 diabetes: the RETRO HDLc cohort study. J Clin Lipidol 2024; 18:e218–e229.
He Y, Pavanello C, Hutchins PM, et al. Flipped C-terminal ends of APOA1 promote ABCA1-dependent cholesterol efflux by small HDLs. Circulation 2024; 149:774–787.
Fotakis P, Kothari V, Thomas DG, et al. Anti-inflammatory effects of HDL (high-density lipoprotein) in macrophages predominate over proinflammatory effects in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2019; 39:e253–e272.
Gibson CM, Duffy D, Korjian S, et al. Apolipoprotein A1 infusions and cardiovascular outcomes after acute myocardial Infarction. N Engl J Med 2024; 390:1560–1571.
Kashef MA, Giugliano G. Legacy effect of statins: 20-year follow up of the West of Scotland Coronary Prevention Study (WOSCOPS). Glob Cardiol Sci Pract 2016; 2016 (4):e201635.
Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344:1383–1389.
Povsic TJ, Korjian S, Bahit MC, et al. Effect of reconstituted human apolipoprotein A-I on recurrent ischemic events in survivors of acute MI. J Am Coll Cardiol 2024; 83:2163–2174.
Akinkuolie AO, Paynter NP, Padmanabhan L, Mora S. High-density lipoprotein particle subclass heterogeneity and incident coronary heart disease. Circ Cardiovasc Qual Outcomes 2014; 7:55–63.
Vaisar T, Kanter JE, Wimberger J, et al. High concentration of medium-sized HDL particles and enrichment in HDL paraoxonase 1 associate with protection from vascular complications in people with long-standing type 1 diabetes. Diabetes Care 2020; 43:178–186.
Pamir N, Hutchins P, Ronsein G, et al. Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway. J Lipid Res 2016; 57:246–257.
Rye KA, Bursill CA, Lambert G, et al. The metabolism and anti-atherogenic properties of HDL. J Lipid Res 2009; 50: (Suppl): S195–S200.
Hamilton RL, Williams MC, Fielding CJ, Havel RJ. Discoidal bilayer structure of nascent high density lipoproteins from perfused rat liver. J Clin Invest 1976; 58:667–680.
Colvin PL, Moriguchi E, Barrett PH, et al. Small HDL particles containing two apoA-I molecules are precursors in vivo to medium and large HDL particles containing three and four apoA-I molecules in nonhuman primates. J Lipid Res 1999; 40:1782–1792.
Colvin PL, Parks JS. Metabolism of high density lipoprotein subfractions. Curr Opin Lipidol 1999; 10 (4):309–314.
Lund-Katz S, Lyssenko NN, Nickel M, et al. Mechanisms responsible for the compositional heterogeneity of nascent high density lipoprotein. J Biol Chem 2013; 288:23150–23160.
Lyssenko NN, Nickel M, Tang C, Phillips MC. Factors controlling nascent high-density lipoprotein particle heterogeneity: ATP-binding cassette transporter A1 activity and cell lipid and apolipoprotein AI availability. FASEB J 2013; 27:2880–2892.
Mendivil CO, Furtado J, Morton AM, et al. Novel pathways of apolipoprotein A-I metabolism in high-density lipoprotein of different sizes in humans. Arterioscler Thromb Vasc Biol 2016; 36:156–165.
Monette JS, Hutchins PM, Ronsein GE, et al. Patients with coronary endothelial dysfunction have impaired cholesterol efflux capacity and reduced HDL particle concentration. Circ Res 2016; 119:83–90.
Deets A, Joshi PH, Chandra A, et al. Novel size-based high-density lipoprotein subspecies and incident vascular events. J Am Heart Assoc 2023; 12:e031160.
Zhao Q, Wang J, Miao Z, et al. A Mendelian randomization study of the role of lipoprotein subfractions in coronary artery disease. Elife 2021; 10:e58361.
Vaisar T, Babenko I, Horvath KV, et al. Relationships between HDL subpopulation proteome and HDL function in overweight/obese people with and without coronary heart disease. Atherosclerosis 2024; 397:118565.
Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res 2006; 98:1352–1364.
Huuskonen J, Olkkonen VM, Jauhiainen M, Ehnholm C. The impact of phospholipid transfer protein (PLTP) on HDL metabolism. Atherosclerosis 2001; 155:269–281.
Thuahnai ST, Lund-Katz S, Dhanasekaran P, et al. Scavenger receptor class B type I-mediated cholesteryl ester-selective uptake and efflux of unesterified cholesterol. Influence of high density lipoprotein size and structure. J Biol Chem 2004; 279:12448–12455.
Trigatti BL, Krieger M, Rigotti A. Influence of the HDL receptor SR-BI on lipoprotein metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23:1732–1738.
Zannis VI, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med (Berl) 2006; 84:276–294.
Oravec S, Demuth K, Myara I, Hornych A. The effect of high density lipoprotein subfractions on endothelial eicosanoid secretion. Thromb Res 1998; 92:65–71.
Shen WJ, Azhar S, Kraemer FB. SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu Rev Physiol 2018; 80:95–116.
Silver DL, Wang N, Xiao X, Tall AR. High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. J Biol Chem 2001; 276:25287–25293.
Huang L, Chambliss KL, Gao X, et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 2019; 569:565–569.
Kraehling JR, Chidlow JH, Rajagopal C, et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun 2016; 7:13516.
Acton S, Rigotti A, Landschulz KT, et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996; 271:518–520.
Cabodevilla AG, Tang S, Lee S, et al. Eruptive xanthoma model reveals endothelial cells internalize and metabolize chylomicrons, leading to extravascular triglyceride accumulation. J Clin Invest 2021; 131:145800.
Thuahnai ST, Lund-Katz S, Anantharamaiah GM, et al. A quantitative analysis of apolipoprotein binding to SR-BI: multiple binding sites for lipid-free and lipid-associated apolipoproteins. J Lipid Res 2003; 44:1132–1142.
Xu S, Laccotripe M, Huang X, et al. Apolipoproteins of HDL can directly mediate binding to the scavenger receptor SR-BI, an HDL receptor that mediates selective lipid uptake. J Lipid Res 1997; 38:1289–1298.
Groenen AG, Bazioti V, van Zeventer IA, et al. Large HDL particles negatively associate with leukocyte counts independent of cholesterol efflux capacity: a cross sectional study in the population-based LifeLines DEEP cohort. Atherosclerosis 2022; 343:20–27.
Gordon SM, Davidson WS, Urbina EM, et al. The effects of type 2 diabetes on lipoprotein composition and arterial stiffness in male youth. Diabetes 2013; 62:2958–2967.
Bowman L, Hopewell JC, et al. HPS3/TIMI55–REVEAL Collaborative Group Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med 2017; 377:1217–1227.
Ballantyne CM, Ditmarsch M, Kastelein JJ, et al. Obicetrapib plus ezetimibe as an adjunct to high-intensity statin therapy: a randomized phase 2 trial. J Clin Lipidol 2023; 17:491–503.
van Capelleveen JC, Kastelein JJ, Zwinderman AH, et al. Effects of the cholesteryl ester transfer protein inhibitor, TA-8995, on cholesterol efflux capacity and high-density lipoprotein particle subclasses. J Clin Lipidol 2016; 10 (5):1137–1144. e3.

Auteurs

W Sean Davidson (WS)

Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio.

Tomas Vaisar (T)

Deaprtment of Medicine, University of Washington School of Medicine.
University of Washington Medicine Diabetes Institute.

Jay W Heinecke (JW)

Deaprtment of Medicine, University of Washington School of Medicine.
University of Washington Medicine Diabetes Institute.

Karin E Bornfeldt (KE)

Deaprtment of Medicine, University of Washington School of Medicine.
University of Washington Medicine Diabetes Institute.
Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA.

Classifications MeSH