N-doped silicon QDs: facile synthesis and application as sensor for discrimination and selective detection of oxytetracycline, tetracycline, and chlortetracycline in foods.
Quantum Dots
/ chemistry
Chlortetracycline
/ analysis
Oxytetracycline
/ analysis
Silicon
/ chemistry
Tetracycline
/ analysis
Food Contamination
/ analysis
Nitrogen
/ chemistry
Limit of Detection
Spectrometry, Fluorescence
/ methods
Anti-Bacterial Agents
/ analysis
Fluorescent Dyes
/ chemistry
Food Analysis
/ methods
Complex formation
Fluorescence quenching and enhancement
N-SiQDs sensor
Oxytetracycline
Tetracycline antibiotics
Journal
Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782
Informations de publication
Date de publication:
25 Oct 2024
25 Oct 2024
Historique:
received:
05
09
2024
accepted:
16
10
2024
medline:
25
10
2024
pubmed:
25
10
2024
entrez:
25
10
2024
Statut:
epublish
Résumé
Nitrogen-doped silicon quantum dots (N-SiQDs) with a quantum yield of up to 37.8% were simply synthesized using inexpensive and readily available silica as the silicon source. Based on the internal filter effect (IFE), both oxytetracycline (OTC) and tetracycline (TC) can effectively and rapidly quench the fluorescence of N-SiQDs at 380 nm. However, interestingly, the accompanied formation of a new complex of OTC with N-SiQDs could emit fluorescence at 505 nm, resulting in a gradual color change of the sensor from blue to yellow under the irradiation of 365 nm UV lamp. Thus, a visual semi-quantitative detection of OTC was realized. In contrast, based on the aggregation-induced luminescence (AIE) effect, chlortetracycline (CTC) linearly enhanced the fluorescence intensity of N-SiQDs, which can effectively reduce other interfering signals, and can significantly improve the sensitivity and selectivity. Hence, a low limit of detection of 47 nM for CTC was obtained. On account of the three distinctly different phenomena and mechanisms of N-SiQDs sensor exhibited towards OTC, TC, and CTC, a novel sensing method for discriminating and selectively measuring OTC, TC, and CTC in food was developed.
Identifiants
pubmed: 39453488
doi: 10.1007/s00604-024-06786-3
pii: 10.1007/s00604-024-06786-3
doi:
Substances chimiques
Chlortetracycline
WCK1KIQ23Q
Oxytetracycline
X20I9EN955
Silicon
Z4152N8IUI
Tetracycline
F8VB5M810T
Nitrogen
N762921K75
Anti-Bacterial Agents
0
Fluorescent Dyes
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
698Subventions
Organisme : Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances
ID : PTS 2024-05
Organisme : Natural Science Foundation of Hubei Province of China
ID : 2022CFD038
Organisme : Natural Science Foundation of Hubei Province of China
ID : 2022CFD038
Organisme : Educational Commission of Hubei Province of China
ID : B2021129
Organisme : Educational Commission of Hubei Province of China
ID : B2021129
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Li Y, Liu C, Li Q, Mao S (2024) Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: a mini review. Chin Chem Lett 35:109541. https://doi.org/10.1016/j.cclet.2024.109541
doi: 10.1016/j.cclet.2024.109541
Li R, Hou X, Yuan M, Long Y, Chen S (2020) Carbon dots synthesized and its applications in the detection of chlortetracycline and water based on the aggregation-induced emission. ChemistrySelect 5:649–654. https://doi.org/10.1002/slct.201904094
doi: 10.1002/slct.201904094
Lu Z, Chen S, Chen M, Ma H, Wang T, Liu T, Yin J, Sun M, Wu C, Su G, Dai X, Wang X, Wang Y, Yin H, Zhou X, Shen Y, Rao H (2023) Trichromatic ratiometric fluorescent sensor based on machine learning and smartphone for visual and portable monitoring of tetracycline antibiotics. Chem Eng J 454:140492. https://doi.org/10.1016/j.cej.2022.140492
doi: 10.1016/j.cej.2022.140492
Deng R, Wang Z, Chen J, Zhu L, Shi Y, Xue W (2024) Rapid detection and differentiation of chlortetracycline and tetracycline by N, P-Ti3C2 QDs. Microchem J 203:110854. https://doi.org/10.1016/j.microc.2024.110854
doi: 10.1016/j.microc.2024.110854
Dai Z, He J, Zhou F, Lai T, Jiang G, Wang K, Li C, Yang Y (2023) Aptamer-modified porous anodized aluminum substrate for rapid and ultrasensitive detection of tetracycline via surface enhanced raman spectroscopy couple with electric field enrichment. ACS Appl Nano Mater 6:21303–21311. https://doi.org/10.1021/acsanm.3c04633
doi: 10.1021/acsanm.3c04633
Li P, Rao D, Wang Y, Hu X (2022) Adsorption characteristics of polythiophene for tetracyclines and determination of tetracyclines in fish and chicken manure by solid phase extraction-HPLC method. Microchem J 173:106935. https://doi.org/10.1016/j.microc.2021.106935
doi: 10.1016/j.microc.2021.106935
Raykova MR, Corrigan DK, Holdsworth M, Henriquez FL, Ward AC (2021) Emerging electrochemical sensors for real-time detection of tetracyclines in milk. Biosensors 11:232. https://doi.org/10.3390/bios11070232
doi: 10.3390/bios11070232
pubmed: 34356702
pmcid: 8301834
Zhang L, Yin M, Wei X, Sun Y, Luo Y, Lin H, Shu R, Xu D (2024) An aptamerelectrochemical sensor based on functional carbon nanofibers for tetracycline determination. Bioelectrochemistry 157:108668. https://doi.org/10.1016/j.bioelechem.2024.108668
doi: 10.1016/j.bioelechem.2024.108668
pubmed: 38387209
Hu J, Liao S, Bai Y, Wu S (2024) Carbon dots derived from green jujube as chemosensor for tetracycline detection. J Environ Chem Eng 12:112595. https://doi.org/10.1016/j.jece.2024.112595
doi: 10.1016/j.jece.2024.112595
Chai S, Chi Y, Sun W, Hou X, Pei S, Luo K, Lv W (2024) Synthesis of N-doped and P-doped silicon quantum dots and their applications for tetracycline detection in the honey samples and antibacterial properties. Food Chem 450:139324. https://doi.org/10.1016/j.foodchem.2024.139324
doi: 10.1016/j.foodchem.2024.139324
pubmed: 38615527
Wang B, Gu C, Jiao Y, Gao Y, Xiu L, Guo J, Qian T (2023) Novel preparation of red fluorescent carbon dots for tetracycline sensing and its application in trace determination. Talanta 253:123975. https://doi.org/10.1016/j.talanta.2022.123975
doi: 10.1016/j.talanta.2022.123975
pubmed: 36228555
Tang X, Wang L, Ye H, Zhao H, Zhao L (2022) Biological matrix-derived carbon quantum dots: highly selective detection of tetracyclines. J Photochem Photobiol A 424:113653. https://doi.org/10.1016/j.jphotochem.2021.113653
doi: 10.1016/j.jphotochem.2021.113653
Yang H, Wei Y, Yan X, Nie C, Sun Z, Hao L, Su X (2022) High-efficiency utilization of waste tobacco stems to synthesize novel biomass-based carbon dots for precise detection of tetracycline antibiotic residues. Nanomaterials 12:3214. https://doi.org/10.3390/nano12183241
doi: 10.3390/nano12183241
Liu Y, Cao L, Zan M, Peng J, Wang P, Pang X, Zhang Y, Li L, Dong W, Mei Q (2021) Cyan-emitting silicon quantum dots as a fluorescent probe directly used for highly sensitive and selective detection of chlorogenic acid. Talanta 233:122465. https://doi.org/10.1016/j.talanta.2021.122465
doi: 10.1016/j.talanta.2021.122465
pubmed: 34215102
Liu J, Zhang J, Zhang Y, Wang Y, Wang M, Li Z, Wang G, Su X (2022) A pH-responsive fluorometric and colorimetric system based on silicon quantum dots and 4-nitrophenol for urease activity detection. Talanta 237:122956. https://doi.org/10.1016/j.talanta.2021.122956
doi: 10.1016/j.talanta.2021.122956
pubmed: 34736681
Sullam EM, Adam KM, Liu J, Chen H, Xiao J (2024) Silicon quantum dots-based fluorescent sensor for the detection of cobalt with high sensitivity and selectivity. Chin Chem Lett 35:108476. https://doi.org/10.1016/j.cclet.2023.108476
doi: 10.1016/j.cclet.2023.108476
Wei N, Wei M, Huang B, Guo X, Wang H (2021) One-pot facile synthesis of green-emitting fluorescent silicon quantum dots for the highly selective and sensitive detection of nitrite in food samples. Dyes Pigm 184:108848. https://doi.org/10.1016/j.dyepig.2020.108848
doi: 10.1016/j.dyepig.2020.108848
Liu Y, Zan M, Cao L, Peng J, Wang P, Pang X, Zhang Y, Li L, Mei Q, Dong W (2022) F-doped silicon quantum dots as a novel fluorescence nanosensor for quantitative detection of new coccine and application in food samples. Microchem J 179:107453. https://doi.org/10.1016/j.microc.2022.107453
doi: 10.1016/j.microc.2022.107453
Jia Y, Cheng Z, Wang G, Shuang S, Zhou Y, Dong C, Du F (2023) Nitrogen doped biomass derived carbon dots as a fluorescence dual-mode sensing platform for detection of tetracyclines in biological and food samples. Food Chem 402:134245. https://doi.org/10.1016/j.foodchem.2022.134245
doi: 10.1016/j.foodchem.2022.134245
pubmed: 36174349
Zhang Z, Wei C, Ma W, Li J, Xiao X, Zhao D (2019) One-step hydrothermal synthesis of yellow and green emitting silicon quantum dots with synergistic effect. Nanomaterials 9:466. https://doi.org/10.3390/nano9030466
doi: 10.3390/nano9030466
pubmed: 30897761
pmcid: 6474109
Bai Y, Su Q, Xiao J, Feng F, Yang X (2020) Exploration of synthesizing fluorescent silicon nanoparticles and label-free detection of sulfadiazine sodium. Talanta 220:121410. https://doi.org/10.1016/j.talanta.2020.121410
doi: 10.1016/j.talanta.2020.121410
pubmed: 32928425
Ma S, Chen Y, Feng J, Liu J, Zuo X, Chen X (2016) One-step synthesis of water-dispersible and biocompatible silicon nanoparticles for selective heparin sensing and cell imaging. Anal Chem 88:10474–10481. https://doi.org/10.1021/acs.analchem.6b02448
doi: 10.1021/acs.analchem.6b02448
pubmed: 27689235
Xu X, Ma S, Xiao X, Hu Y, Zhao D (2016) The preparation of high-quality water-soluble silicon quantum dots and their application in the detection of formaldehyde. RSC Adv 6:98899–98907. https://doi.org/10.1039/C6RA24654K
doi: 10.1039/C6RA24654K
Na M, Han Y, Chen Y, Ma S, Liu J, Chen X (2021) Synthesis of silicon nanoparticles emitting yellow-green fluorescence for visualization of pH change and determination of intracellular pH of living cells. Anal Chem 93:5185–5193. https://doi.org/10.1021/acs.analchem.0c05107
doi: 10.1021/acs.analchem.0c05107
pubmed: 33729748
Hu K, Sun S, Wang Y, Wang Y, Zhang J, Zhu X, Niu Y (2021) Preparation and application of silica quantum dots using palygorskite as silicon source. Appl Clay Sci 211:106132. https://doi.org/10.1016/j.clay.2021.106132
doi: 10.1016/j.clay.2021.106132
Mei J, Bao J, Cheng X, Ren D, Xu G, Wei F, Sun Y, Hu Q, Cen Y (2021) Novel dual-emissive fluorescent silicon nanoparticles for detection of enzyme activity in supplements associated with lactose intolerance. Sens Actuators B Chem 329:129164. https://doi.org/10.1016/j.snb.2020.129164
doi: 10.1016/j.snb.2020.129164
Han Y, Chen Y, Feng J, Na M, Liu J, Ma Y, Ma S, Chen X (2018) Investigation of nitrogen content effect in reducing agent to prepare wavelength controllable fluorescent silicon nanoparticles and its application in detection of 2-nitrophenol. Talanta 194:822–829. https://doi.org/10.1016/j.talanta.2018.11.008
doi: 10.1016/j.talanta.2018.11.008
pubmed: 30609611
Wang Y, Tian M, Xie W, Li C, Liu Y (2019) One-step synthesis of amine-functionalized fluorescent silicon nanoparticles for copper(II) ion detection. Anal Bioanal Chem 411:6419–6426. https://doi.org/10.1007/s00216-019-02020-9
doi: 10.1007/s00216-019-02020-9
pubmed: 31392437
Roy D, Fouzder C, Mukhuty A, Pal S, Mondal MK, Kundu R, Chowdhury P (2019) Designed synthesis of dual emitting silicon quantum dot for cell imaging: direct labeling of alpha 2-HS-glycoprotein. Bioconjugate Chem 30:1575–1583. https://doi.org/10.1021/acs.bioconjchem.9b00279
doi: 10.1021/acs.bioconjchem.9b00279
Zhang X, Chen X, Kai S, Wang H, Yang J, Wu F, Chen Z (2015) Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal Chem 87:3360–3365. https://doi.org/10.1021/ac504520g
doi: 10.1021/ac504520g
pubmed: 25671464
Chen H, Wu L, Wan Y, Huang L, Li N, Chen J, Lai G (2019) One-step rapid synthesis of fluorescent silicon nanodots for a hydrogen peroxide-related sensitive and versatile assay based on the inner filter effect. Analyst 144:4006–4012. https://doi.org/10.1039/C9AN00395A
doi: 10.1039/C9AN00395A
pubmed: 31179458
Li D, Li N, Zhao L, Xu S, Sun Y, Ma P, Song D, Wang X (2020) Colorimetric and fluorescent dual-mode measurement of blood glucose by organic silicon nanodots. ACS Appl Nano Mater 3:11600–11607. https://doi.org/10.1021/acsanm.0c02758
doi: 10.1021/acsanm.0c02758
Han Y, Lv W, Chen H, Li H, Chen J, Li Z, Qiu H (2020) Chiral fluorescent silicon nanoparticles for aminopropanol enantiomer: fluorescence discrimination and mechanism identification. Anal Chem 92:3949–3957. https://doi.org/10.1021/acs.analchem.9b05442
doi: 10.1021/acs.analchem.9b05442
pubmed: 32054267
Du L, Li Z, Yao J, Wen G, Dong C, Li H (2019) Enzyme free glucose sensing by amino-functionalized silicon quantum dot. Spectrochim Acta Mol Biomol Spectrosc 216:303–309. https://doi.org/10.1016/j.saa.2019.03.071
doi: 10.1016/j.saa.2019.03.071
Li Q, Wang Y, Jiang M, Cui Y, Yu X, Xu L (2022) Hydrophilic silicon nanoparticles as a turn-off and colorimetric fluorescent probe for curcuminoids detection in food samples and cell imaging. Food Chem 366:130629. https://doi.org/10.1016/j.foodchem.2021.130629
doi: 10.1016/j.foodchem.2021.130629
pubmed: 34314933
Wang Q, Zhang J, Wang A (2013) Alkali activation of halloysite for adsorption and release of ofloxacin. Appl Surf Sci 287:54–61. https://doi.org/10.1016/j.apsusc.2013.09.057
doi: 10.1016/j.apsusc.2013.09.057
White RD, Bavykin DV, Walsh FC (2012) The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions. Nanotechnology 23:065705. https://iopscience.iop.org/article/10.1088/0957-4484/23/6/065705
Mu B, Wang A (2016) Adsorption of dyes onto palygorskite and its composites: a review. J Environ Chem Eng 4:1274–1294. https://doi.org/10.1016/j.jece.2016.01.036
doi: 10.1016/j.jece.2016.01.036
Fu Y, Huang L, Zhao S, Xing X, Lan M, Song X (2021) A carbon dot-based fluorometric probe for oxytetracycline detection utilizing a Förster resonance energy transfer mechanism. Spectrochim Acta Mol Biomol Spectrosc 246:118947. https://doi.org/10.1016/j.saa.2020.118947
doi: 10.1016/j.saa.2020.118947
Zhou J, Zhao R, Liu S, Feng L, Li W, He F, Gai S, Yang P (2021) Europium doped silicon quantum dot as a novel FRET based dual detection probe: sensitive detection of tetracycline, zinc, and cadmium. Small Methods 5:2100812. https://doi.org/10.1002/smtd.202100812
doi: 10.1002/smtd.202100812
Fan Y, Qiao W, Long W, Chen H, Fu H, Zhou C, She Y (2022) Detection of tetracycline antibiotics using fluorescent “Turn-off” sensor based on S, N-doped carbon quantum dots. Spectrochim Acta Mol Biomol Spectrosc 274:121033. https://doi.org/10.1016/j.saa.2022.121033
doi: 10.1016/j.saa.2022.121033
Li Q, Fan P, Hao Z, Ni S, Wu Q, Li L (2024) Fluorimetric determination of tetracycline antibiotics in animal derived foods using boron and nitrogen co-doped ceria-based nanoparticles. Microchim Acta 191:147. https://doi.org/10.1007/s00604-024-06214-6
doi: 10.1007/s00604-024-06214-6
Wang C, Sun Q, Yang M, Liu E, Xue W, Fan J (2022) Preparation of highly luminescent nitrogen-doped carbon quantum dots and their detection of tetracycline antibiotics. Colloids Surf A 653:129982. https://doi.org/10.1016/j.colsurfa.2022.129982
doi: 10.1016/j.colsurfa.2022.129982
Hu F, Fu Q, Li Y, Yan C, Xiao D, Ju P, Hu Z, Li H, Ai S (2024) Zinc-doped carbon quantum dots-based ratiometric fluorescence probe for rapid, specific, and visual determination of tetracycline hydrochloride. Food Chem 431:137097. https://doi.org/10.1016/j.foodchem.2023.137097
doi: 10.1016/j.foodchem.2023.137097
pubmed: 37572485
Pan L, Sun S, Zhang A, Jiang K, Zhang L, Dong C, Huang Q, Wu A, Lin H (2015) Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv Mater 47:7782–7787. https://doi.org/10.1002/adma.201503821
doi: 10.1002/adma.201503821
Liu C, Xiao G, Yang M, Zou B, Zhang Z, Pang D (2018) Mechanofluorochromic carbon nanodots: controllable pressure-triggered blue- and red-shifted photoluminescence. Angew Chem Int Ed 7:1893–1897. https://doi.org/10.1002/anie.201711409
doi: 10.1002/anie.201711409
Hu H, Tian X, Gong Y, Ren G, Liang J (2019) N-doped carbon dots under Xenon lamp irradiation: fluorescence red-shift and its potential mechanism. Spectrochim Acta Mol Biomol Spectrosc 216:91–97. https://doi.org/10.1016/j.saa.2019.03.020
doi: 10.1016/j.saa.2019.03.020