The Atlantic Cod MHC I compartment has the properties needed for cross-presentation in the absence of MHC II.
Animals
Gadus morhua
/ immunology
Cross-Priming
/ immunology
Histocompatibility Antigens Class I
/ metabolism
Histocompatibility Antigens Class II
/ metabolism
Endosomes
/ metabolism
Antigen Presentation
Endoplasmic Reticulum
/ metabolism
Low Density Lipoprotein Receptor-Related Protein-1
/ genetics
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 Oct 2024
25 Oct 2024
Historique:
received:
06
02
2024
accepted:
11
10
2024
medline:
26
10
2024
pubmed:
26
10
2024
entrez:
25
10
2024
Statut:
epublish
Résumé
Atlantic cod has a peculiar immune system, characterized by the loss of Major Histocompatibility Complex (MHC) class II pathway, and an extreme expansion of the MHC class I gene repertoire. This has led to the hypothesis that some of the MHC I variants have replaced MHC II by presenting exogenous-peptides in a process similar to cross-presentation. In mammals, MHC I loads endogenous antigens in the endoplasmic reticulum, but we recently found that different Atlantic cod MHC I gene variants traffic to endolysosomes. There, they colocalize with Tapasin and other components of the peptide-loading complex, indicating a plausible peptide-loading system outside the endoplasmic reticulum. In this study, we further characterize the identity of the Atlantic cod MHC I compartment (cMIC). We found that, similarly to mammalian MHC II compartment, cMIC contains late endosomal markers such as Rab7, LAMP1 and CD63. Furthermore, we identified Hsp90b1 (also known as grp94) and LRP1 (also known as CD91) as interactors of MHC I by mass spectrometry. As these two proteins are involved in cross-presentation in mammals, this further suggests that Atlantic cod MHC I might use a similar mechanism to present exogenous peptides, thus, compensating for the absence of MHC II.
Identifiants
pubmed: 39455705
doi: 10.1038/s41598-024-76225-z
pii: 10.1038/s41598-024-76225-z
doi:
Substances chimiques
Histocompatibility Antigens Class I
0
Histocompatibility Antigens Class II
0
Low Density Lipoprotein Receptor-Related Protein-1
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
25404Informations de copyright
© 2024. The Author(s).
Références
Litman, G. W., Rast, J. P. & Fugmann, S. D. The origins of vertebrate adaptive immunity. Nat. Rev. Immunol. 10, 543–553 (2010).
pubmed: 20651744
pmcid: 2919748
doi: 10.1038/nri2807
Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).
pubmed: 19997068
doi: 10.1038/nrg2703
Neefjes, J., Jongsma, M. L. M., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836 (2011).
pubmed: 22076556
doi: 10.1038/nri3084
Embgenbroich, M. & Burgdorf, S. Current concepts of Antigen Cross-presentation. Front. Immunol. 9, 1643 (2018).
pubmed: 30061897
pmcid: 6054923
doi: 10.3389/fimmu.2018.01643
Colbert, J. D., Cruz, F. M. & Rock, K. L. Cross-presentation of exogenous antigens on MHC I molecules. Curr. Opin. Immunol. 64, 1–8 (2020).
pubmed: 31927332
pmcid: 7343603
doi: 10.1016/j.coi.2019.12.005
Mantegazza, A. R. et al. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 112, 4712–4722 (2008).
pubmed: 18682599
pmcid: 2597138
doi: 10.1182/blood-2008-01-134791
Blander, J. M., Yee Mon, K. J., Jha, A. & Roycroft, D. Chapter Two—The show and tell of cross-presentation. In Advances in Immunology, Vol. 159 (eds. F.W. Alt & K.M. Murphy) 33–114 (Academic Press, 2023).
Flajnik, M. F. A cold-blooded view of adaptive immunity. Nat. Rev. Immunol. 18, 438–453 (2018).
pubmed: 29556016
pmcid: 6084782
doi: 10.1038/s41577-018-0003-9
Star, B. et al. The genome sequence of Atlantic Cod reveals a unique immune system. Nature 477, 207–210 (2011).
pubmed: 21832995
pmcid: 3537168
doi: 10.1038/nature10342
Haase, D. et al. Absence of major histocompatibility complex class II mediated immunity in pipefish, Syngnathus typhle: evidence from deep transcriptome sequencing. Biol. Lett. 9, 20130044 (2013).
pubmed: 23445951
pmcid: 3639783
doi: 10.1098/rsbl.2013.0044
Dubin, A., Jørgensen, T. E., Moum, T., Johansen, S. D. & Jakt, L. M. Complete loss of the MHC II pathway in an anglerfish, Lophius piscatorius. Biol. Lett. 15, 20190594 (2019).
pubmed: 31594494
pmcid: 6832177
doi: 10.1098/rsbl.2019.0594
Roth, O. et al. Evolution of male pregnancy associated with remodeling of canonical vertebrate immunity in seahorses and pipefishes. Proc. Natl. Acad. Sci. 117, 9431–9439 (2020).
pubmed: 32284407
pmcid: 7196912
doi: 10.1073/pnas.1916251117
Swann, J. B., Holland, S. J., Petersen, M., Pietsch, T. W. & Boehm, T. The immunogenetics of sexual parasitism. Science 369, 1608–1615 (2020).
pubmed: 32732279
doi: 10.1126/science.aaz9445
Malmstrøm, M. et al. Evolution of the immune system influences speciation rates in teleost fishes. Nat. Genet. 48, 1204–1210 (2016).
pubmed: 27548311
doi: 10.1038/ng.3645
Tørresen, O. K. et al. An improved genome assembly uncovers prolific tandem repeats in Atlantic Cod. BMC Genom. 18, 95 (2017).
doi: 10.1186/s12864-016-3448-x
Tørresen, O. K. et al. Genomic architecture of haddock (Melanogrammus aeglefinus) shows expansions of innate immune genes and short tandem repeats. BMC Genom. 19, 240 (2018).
doi: 10.1186/s12864-018-4616-y
Bjornestad, S. A. et al. Atlantic Cod (Gadus morhua) MHC I localizes to endolysosomal compartments independently of cytosolic sorting signals. Front. Cell. Dev. Biol. 11, 1050323 (2023).
pubmed: 36760361
pmcid: 9905690
doi: 10.3389/fcell.2023.1050323
Pieters, J. MHC class II compartments: specialized organelles of the endocytic pathway in antigen presenting cells. Biol. Chem. 378, 751–758 (1997).
pubmed: 9377469
Rocha, N. & Neefjes, J. MHC class II molecules on the move for successful antigen presentation. Embo J. 27, 1–5 (2008).
pubmed: 18046453
doi: 10.1038/sj.emboj.7601945
Peters, P. J., Neefjes, J. J., Oorschot, V., Ploegh, H. L. & Geuze, H. J. Segregation of MHC class II molecules from MHC class I molecules in the golgi complex for transport to lysosomal compartments. Nature 349, 669–676 (1991).
pubmed: 1847504
doi: 10.1038/349669a0
Hsing, L. C. & Rudensky, A. Y. The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol. Rev. 207, 229–241 (2005).
pubmed: 16181340
doi: 10.1111/j.0105-2896.2005.00310.x
Kleijmeer, M. J., Raposo, G. & Geuze, H. J. Characterization of MHC class II compartments by immunoelectron microscopy. Methods 10, 191–207 (1996).
pubmed: 8812668
doi: 10.1006/meth.1996.0095
Tulp, A., Verwoerd, D., Dobberstein, B., Ploegh, H. L. & Pieters, J. Isolation and characterization of the intracellular MHC class II compartment. Nature 369, 120–126 (1994).
pubmed: 8177317
doi: 10.1038/369120a0
Honey, K. & Rudensky, A. Y. Lysosomal cysteine proteases regulate antigen presentation. Nat. Rev. Immunol. 3, 472–482 (2003).
pubmed: 12776207
doi: 10.1038/nri1110
Subramanian, M. et al. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J. Clin. Investig. 124, 1296–1308 (2014).
pubmed: 24509082
pmcid: 3934164
doi: 10.1172/JCI72051
Singh-Jasuja, H. et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J. Exp. Med. 191, 1965–1974 (2000).
pubmed: 10839811
pmcid: 2213530
doi: 10.1084/jem.191.11.1965
Jensen, I. et al. Establishing a cell line from Atlantic Cod as a novel tool for in vitro studies. Fish Shellfish Immunol. 34, 199–208 (2013).
pubmed: 23108254
doi: 10.1016/j.fsi.2012.10.022
Datsomor, A. K., Wilberg, R., Torgersen, J. S., Sandve, S. R. & Harvey, T. N. Efficient transfection of Atlantic salmon primary hepatocyte cells for functional assays and gene editing. G3 Genes Genomes Genet. 13, jkad039 (2023).
van de Weijer, M. L., Luteijn, R. D. & Wiertz, E. J. H.J. viral immune evasion: lessons in MHC class I antigen presentation. Semin. Immunol. 27, 125–137 (2015).
pubmed: 25887630
doi: 10.1016/j.smim.2015.03.010
Neefjes, J. CIIV, MIIC and other compartments for MHC class II loading. Eur. J. Immunol. 29, 1421–1425 (1999).
pubmed: 10359095
doi: 10.1002/(SICI)1521-4141(199905)29:05<1421::AID-IMMU1421>3.0.CO;2-C
Stern, L. J., Potolicchio, I. & Santambrogio, L. MHC class II compartment subtypes: structure and function. Curr. Opin. Immunol. 18, 64–69 (2006).
pubmed: 16337363
doi: 10.1016/j.coi.2005.11.005
Nair-Gupta, P. et al. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158, 506–521 (2014).
pubmed: 25083866
pmcid: 4212008
doi: 10.1016/j.cell.2014.04.054
Birkbeck, T. H., Feist, S. W. & Verner-Jeffreys, D. W. Francisella infections in fish and shellfish. J. Fish. Dis. 34, 173–187 (2011).
pubmed: 21306585
doi: 10.1111/j.1365-2761.2010.01226.x
Brodmann, M., Dreier, R. F., Broz, P. & Basler, M. Francisella requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. Nat. Commun. 8, 15853 (2017).
pubmed: 28621333
pmcid: 5481754
doi: 10.1038/ncomms15853
Bakkemo, K. R. et al. Intracellular localisation and innate immune responses following Francisella noatunensis infection of Atlantic Cod (Gadus morhua) macrophages. Fish. Shellfish Immunol. 31, 993–1004 (2011).
pubmed: 21896333
doi: 10.1016/j.fsi.2011.08.020
Wälchli, S. et al. Invariant chain as a vehicle to load antigenic peptides on human MHC class I for cytotoxic T-cell activation. Eur. J. Immunol. 44, 774–784 (2014).
pubmed: 24293164
doi: 10.1002/eji.201343671
Adiko, A. C., Babdor, J., Gutiérrez-Martínez, E., Guermonprez, P. & Saveanu, L. Intracellular transport routes for MHC I and their relevance for antigen cross-presentation. Front. Immunol. 6, 335 (2015).
pubmed: 26191062
pmcid: 4489332
doi: 10.3389/fimmu.2015.00335
Montealegre, S. & van Endert, P. M. Endocytic recycling of MHC class I molecules in non-professional antigen presenting and dendritic cells. Front. Immunol. 9, 3098 (2018).
pubmed: 30666258
doi: 10.3389/fimmu.2018.03098
Joffre, O. P., Segura, E., Savina, A. & Amigorena, S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12, 557–569 (2012).
pubmed: 22790179
doi: 10.1038/nri3254
Lizée, G. et al. Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat. Immunol. 4, 1065–1073 (2003).
pubmed: 14566337
doi: 10.1038/ni989
Basha, G. et al. A CD74-dependent MHC class I endolysosomal cross-presentation pathway. Nat. Immunol. 13, 237–245 (2012).
pubmed: 22306692
pmcid: 4933585
doi: 10.1038/ni.2225
Kirchhausen, T., Macia, E. & Pelish, H. E. Use of dynasore, the small molecule inhibitor of dynamin, in the regulation of endocytosis. Methods Enzymol. 438, 77–93 (2008).
pubmed: 18413242
pmcid: 2796620
doi: 10.1016/S0076-6879(07)38006-3
Preta, G., Cronin, J. G. & Sheldon, I. M. Dynasore—Not just a dynamin inhibitor. Cell. Commun. Signal. 13, 24 (2015).
pubmed: 25889964
pmcid: 4396812
doi: 10.1186/s12964-015-0102-1
Nichols, B. Caveosomes and endocytosis of lipid rafts. J. Cell. Sci. 116, 4707–4714 (2003).
pubmed: 14600257
doi: 10.1242/jcs.00840
Takei, K., Yoshida, Y. & Yamada, H. Regulatory mechanisms of dynamin-dependent endocytosis. J. Biochem. 137, 243–247 (2005).
pubmed: 15809324
doi: 10.1093/jb/mvi052
Kay, R. R. Macropinocytosis biology and mechanisms. Cells Dev. 168, 203713 (2021).
pubmed: 34175511
doi: 10.1016/j.cdev.2021.203713
Ivanov, A. I. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? In Exocytosis and Endocytosis (ed Ivanov, A. I.) 15–33 (Humana, 2008).
doi: 10.1007/978-1-59745-178-9_2
Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in ras-transformed cells. Nature 497, 633–637 (2013).
pubmed: 23665962
pmcid: 3810415
doi: 10.1038/nature12138
Albrecht, L. V. et al. GSK3 inhibits macropinocytosis and lysosomal activity through the wnt destruction complex machinery. Cell. Rep. 32, 107973 (2020).
pubmed: 32726636
pmcid: 7666578
doi: 10.1016/j.celrep.2020.107973
Steffan, J. J., Snider, J. L., Skalli, O., Welbourne, T. & Cardelli, J. A. Na+/H + exchangers and RhoA regulate acidic extracellular pH-induced lysosome trafficking in prostate cancer cells. Traffic 10, 737–753 (2009).
pubmed: 19302267
doi: 10.1111/j.1600-0854.2009.00904.x
Blees, A. et al. Structure of the human MHC-I peptide-loading complex. Nature 551, 525–528 (2017).
pubmed: 29107940
doi: 10.1038/nature24627
Shi, G. P. et al. Role for cathepsin F in invariant chain processing and major histocompatibility complex class II peptide loading by macrophages. J. Exp. Med. 191, 1177–1186 (2000).
pubmed: 10748235
pmcid: 2193169
doi: 10.1084/jem.191.7.1177
Bryant, P. W., Lennon-Duménil, A. M., Fiebiger, E., Lagaudrière-Gesbert, C. & Ploegh, H. L. Proteolysis and antigen presentation by MHC class II molecules. Adv. Immunol. 80, 71–114 (2002).
pubmed: 12078484
pmcid: 7130937
doi: 10.1016/S0065-2776(02)80013-X
Somoza, J. R., Palmer, J. T. & Ho, J. D. The crystal structure of human cathepsin F and its implications for the development of novel immunomodulators. J. Mol. Biol. 322, 559–568 (2002).
pubmed: 12225749
doi: 10.1016/S0022-2836(02)00780-5
Gorza, L. & Vitadello, M. Grp94 (HSP90B1). In Encyclopedia of Signaling Molecules (ed Choi, S.) 2276–2287 (Springer, 2018).
doi: 10.1007/978-3-319-67199-4_77
Labrador-Garrido, A. et al. Chaperome screening leads to identification of Grp94/Gp96 and FKBP4/52 as modulators of the α-synuclein-elicited immune response. Faseb J. 30, 564–577 (2016).
pubmed: 26443817
doi: 10.1096/fj.15-275131
Murshid, A., Gong, J. & Calderwood, S. K. The role of heat shock proteins in antigen cross presentation. Front. Immunol. 3, 63 (2012).
pubmed: 22566944
pmcid: 3342350
doi: 10.3389/fimmu.2012.00063
Robert, J., Ramanayake, T., Maniero, G. D., Morales, H. & Chida, A. S. Phylogenetic conservation of glycoprotein 96 ability to interact with CD91 and facilitate antigen cross-presentation. J. Immunol. 180, 3176–3182 (2008).
pubmed: 18292541
doi: 10.4049/jimmunol.180.5.3176
Berwin, B., Hart, J. P., Pizzo, S. V. & Nicchitta, C. V. Cutting edge: CD91-independent cross-presentation of GRP94(gp96)-associated peptides. J. Immunol. 168, 4282–4286 (2002).
pubmed: 11970968
doi: 10.4049/jimmunol.168.9.4282
Sánchez-Pulido, L., Martín-Belmonte, F., Valencia, A. & Alonso, M. A. MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem. Sci. 27, 599–601 (2002).
pubmed: 12468223
doi: 10.1016/S0968-0004(02)02229-6
Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017).
pubmed: 28813417
pmcid: 5706633
doi: 10.1038/nature23643
Miao, B. et al. CMTM6 shapes antitumor T cell response through modulating protein expression of CD58 and PD-L1. Cancer Cell 41, 1817–1828e1819 (2023).
pubmed: 37683639
pmcid: 11113010
doi: 10.1016/j.ccell.2023.08.008
Malmstrøm, M., Jentoft, S., Gregers, T. F. & Jakobsen, K. S. Unraveling the evolution of the Atlantic Cod’s (Gadus morhua L.) alternative immune strategy. PLoS ONE 8, e74004 (2013).
pubmed: 24019946
pmcid: 3760826
doi: 10.1371/journal.pone.0074004
Kleijmeer, M. et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell. Biol. 155, 53–63 (2001).
pubmed: 11581285
pmcid: 2150788
doi: 10.1083/jcb.200103071
van Niel, G. et al. Dendritic cells regulate exposure of MHC class II at their plasma membrane by Oligoubiquitination. Immunity 25, 885–894 (2006).
pubmed: 17174123
doi: 10.1016/j.immuni.2006.11.001
ten Broeke, T., Wubbolts, R. & Stoorvogel, W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb. Perspect. Biol. 5, a016873 (2013).
pubmed: 24296169
pmcid: 3839614
doi: 10.1101/cshperspect.a016873
Yadati, T., Houben, T., Bitorina, A. & Shiri-Sverdlov, R. The Ins and outs of cathepsins: physiological function and role in Disease Management. Cells 9 (2020).
Conus, S. & Simon, H. U. Cathepsins and their involvement in immune responses. Swiss Med. Wkly. 140, w13042 (2010).
pubmed: 20648403
Blander, J. M. Different routes of MHC-I delivery to phagosomes and their consequences to CD8 T cell immunity. Semin Immunol. 66, 101713 (2023).
pubmed: 36706521
pmcid: 10023361
doi: 10.1016/j.smim.2023.101713
Guermonprez, P. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003).
pubmed: 14508489
doi: 10.1038/nature01911
Houde, M. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–406 (2003).
pubmed: 14508490
doi: 10.1038/nature01912
Mayor, S., Parton, R. G. & Donaldson, J. G. Clathrin-independent pathways of endocytosis. Cold Spring Harb. Perspect. Biol. 6 (2014).
Cebrian, I. et al. Sec22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell 147, 1355–1368 (2011).
pubmed: 22153078
doi: 10.1016/j.cell.2011.11.021
Ellesat, K. S., Yazdani, M., Holth, T. F. & Hylland, K. Species-dependent sensitivity to contaminants: an approach using primary hepatocyte cultures with three marine fish species. Mar. Environ. Res. 72, 216–224 (2011).
pubmed: 21963059
doi: 10.1016/j.marenvres.2011.09.003
Holth, T. F. et al. Environmentally realistic exposure to weathered North Sea oil: sublethal effects in Atlantic Cod (Gadus morhua) and turbot (Scophthalmus maximus). J. Toxicol. Environ. Health A 80, 895–906 (2017).
pubmed: 28837403
doi: 10.1080/15287394.2017.1352195
Elbaz-Alon, Y. et al. PDZD8 interacts with Protrudin and Rab7 at ER-late endosome membrane contact sites associated with mitochondria. Nat. Commun. 11, 3645 (2020).
pubmed: 32686675
pmcid: 7371716
doi: 10.1038/s41467-020-17451-7
Bulankina, A. V. et al. TIP47 functions in the biogenesis of lipid droplets. J. Cell. Biol. 185, 641–655 (2009).
pubmed: 19451273
pmcid: 2711566
doi: 10.1083/jcb.200812042
Skjeldal, F. M. et al. The fusion of early endosomes induces molecular-motor-driven tubule formation and fission. J. Cell. Sci. 125, 1910–1919 (2012).
pubmed: 22357949
Raiborg, C., Wesche, J., Malerød, L. & Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding hrs in dynamic microdomains. J. Cell. Sci. 119, 2414–2424 (2006).
pubmed: 16720641
doi: 10.1242/jcs.02978
Falcón-Pérez, J. M., Nazarian, R., Sabatti, C. & Dell’Angelica, E. C. Distribution and dynamics of Lamp1-containing endocytic organelles in fibroblasts deficient in BLOC-3. J. Cell. Sci. 118, 5243–5255 (2005).
pubmed: 16249233
doi: 10.1242/jcs.02633
Blott, E. J., Bossi, G., Clark, R., Zvelebil, M. & Griffiths, G. M. Fas ligand is targeted to secretory lysosomes via a proline-rich domain in its cytoplasmic tail. J. Cell. Sci. 114, 2405–2416 (2001).
pubmed: 11559749
doi: 10.1242/jcs.114.13.2405
Progida, C., Nielsen, M. S., Koster, G., Bucci, C. & Bakke, O. Dynamics of Rab7b-Dependent transport of sorting receptors. Traffic 13, 1273–1285 (2012).
pubmed: 22708738
doi: 10.1111/j.1600-0854.2012.01388.x
Brudal, E. et al. Establishment of three Francisella infections in zebrafish embryos at different temperatures. Infect. Immun. 82, 2180–2194 (2014).
pubmed: 24614659
pmcid: 4019159
doi: 10.1128/IAI.00077-14
Bolte, S. & CordeliÈRes, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).
pubmed: 17210054
doi: 10.1111/j.1365-2818.2006.01706.x
Grimholt, U. et al. A comprehensive analysis of teleost MHC class I sequences. BMC Evol. Biol. 15, 32 (2015).
pubmed: 25888517
pmcid: 4364491
doi: 10.1186/s12862-015-0309-1
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
doi: 10.1186/1471-2105-10-421
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
pubmed: 27004904
pmcid: 8210823
doi: 10.1093/molbev/msw054
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308
doi: 10.1093/bioinformatics/btp616
Love, M. I., Huber, W. & Anders, S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).
pubmed: 34723319
doi: 10.1093/nar/gkab1038