Multifunctional nanoplatform with near-infrared triggered nitric-oxide release for enhanced tumor ferroptosis.
Ferroptosis
/ drug effects
Animals
Nitric Oxide
/ metabolism
Mice
Humans
Cell Line, Tumor
Glutathione
/ metabolism
Infrared Rays
Arginine
/ chemistry
Indocyanine Green
/ chemistry
Nanoparticles
/ chemistry
Mice, Inbred BALB C
Sorafenib
/ pharmacology
Neoplasms
/ drug therapy
Tumor Microenvironment
/ drug effects
Tannins
/ chemistry
Ferroptosis
GSH depletion
Metal-phenolic networks
Nitric-oxide
Journal
Journal of nanobiotechnology
ISSN: 1477-3155
Titre abrégé: J Nanobiotechnology
Pays: England
ID NLM: 101152208
Informations de publication
Date de publication:
26 Oct 2024
26 Oct 2024
Historique:
received:
04
08
2024
accepted:
20
10
2024
medline:
26
10
2024
pubmed:
26
10
2024
entrez:
26
10
2024
Statut:
epublish
Résumé
Ferroptosis has emerged as a promising strategy for cancer treatment. Nevertheless, the efficiency of ferroptosis-mediated therapy remains a challenge due to high glutathione (GSH) levels and insufficient endogenous hydrogen peroxide in the tumor microenvironment. Herein, we presented a nitric-oxide (NO) boost-GSH depletion strategy for enhanced ferroptosis therapy through a multifunctional nanoplatform with near-infrared (NIR) triggered NO release. The nanoplatform, IS@ATF, was designed that self-assembled by loading the NO donor L-arginine (L-Arg), ferroptosis inducer sorafenib (SRF), and indocyanine green (ICG) onto tannic acid (TA)-Fe
Identifiants
pubmed: 39456042
doi: 10.1186/s12951-024-02942-2
pii: 10.1186/s12951-024-02942-2
doi:
Substances chimiques
Nitric Oxide
31C4KY9ESH
Glutathione
GAN16C9B8O
Arginine
94ZLA3W45F
Indocyanine Green
IX6J1063HV
Sorafenib
9ZOQ3TZI87
Tannins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
656Subventions
Organisme : National Natural Science Foundation of China
ID : 82303821
Organisme : Project of Basic Research Fund of Henan Institute of Medical and Pharmacological Sciences
ID : 2023BP0103, 2024BP0201
Informations de copyright
© 2024. The Author(s).
Références
Yang H, Yao X, Liu Y, Shen X, Li M, Luo Z. Ferroptosis nanomedicine: clinical challenges and opportunities for modulating tumor metabolic and immunological landscape. ACS Nano. 2023;17:15328–53.
pubmed: 37573530
doi: 10.1021/acsnano.3c04632
Zou Y, Henry WS, Ricq EL, Graham ET, Phadnis VV, Maretich P, Paradkar S, Boehnke N, Deik AA, Reinhardt F, et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature. 2020;585:603–8.
pubmed: 32939090
pmcid: 8051864
doi: 10.1038/s41586-020-2732-8
Liang C, Zhang X, Yang M, Dong X. Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 2019;31:e1904197.
pubmed: 31595562
doi: 10.1002/adma.201904197
Zhu P, Pu YY, Wang M, Wu WC, Qin HL, Shi JL. MnOOH-catalyzed autoxidation of glutathione for reactive oxygen species production and nanocatalytic tumor innate immunotherapy. J Am Chem Soc. 2023;145:5803–15.
pubmed: 36848658
doi: 10.1021/jacs.2c12942
Li SL, Chu X, Dong HL, Hou HY, Liu Y. Recent advances in augmenting Fenton chemistry of nanoplatforms for enhanced chemodynamic therapy. Coordin Chem Rev. 2023;479:215004.
doi: 10.1016/j.ccr.2022.215004
Zheng JS, Conrad M. The metabolic underpinnings of ferroptosis. Cell Metab. 2020;32:920–37.
pubmed: 33217331
doi: 10.1016/j.cmet.2020.10.011
Liang DG, Minikes AM, Jiang XJ. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 2022;82:2215–27.
pubmed: 35390277
pmcid: 9233073
doi: 10.1016/j.molcel.2022.03.022
Zhu XY, Wu JB, Liu RX, Xiang HD, Zhang WQ, Chang QC, Wang SS, Jiang R, Zhao F, Li QQ, et al. Engineering single-atom iron nanozymes with radiation-enhanced self-cascade catalysis and self-supplied H
pubmed: 36278792
doi: 10.1021/acsnano.2c07691
Yang ZR, Yang CY, Yang D, Zhang Y, Yang QZ, Qu FY, Guo W. L-arginine-modified CoWO4/FeWO4 S-Scheme heterojunction enhances ferroptosis against solid tumor. Adv Healthc Mater. 2023;12:e2203092.
pubmed: 36907173
doi: 10.1002/adhm.202203092
Fan Q, Xiong W, Zhou H, Yang J, Feng J, Li Z, Wu L, Hu F, Duan X, Li B, et al. An AND logic gate for magnetic-resonance-imaging-guided ferroptosis therapy of tumors. Adv Mater. 2023;35:e2305932.
pubmed: 37717205
doi: 10.1002/adma.202305932
Yang J, Feng J, Yang S, Xu Y, Shen Z. Exceedingly small magnetic iron oxide nanoparticles for T(1) -weighted magnetic resonance imaging and imaging-guided therapy of tumors. Small. 2023;19:e2302856.
pubmed: 37596716
doi: 10.1002/smll.202302856
Li YL, Wang XL, Ding BB, He C, Zhang C, Li JT, Wang HN, Li ZB, Wang G, Wang YW, et al. Synergistic Apoptosis-Ferroptosis: oxaliplatin loaded amorphous iron oxide nanoparticles for high-efficiency therapy of orthotopic pancreatic cancer and CA19-9 levels decrease. Chem Eng J. 2023;464:142690.
doi: 10.1016/j.cej.2023.142690
Du JH, Zhou MT, Chen Q, Tao YC, Ren J, Zhang Y, Qin HL. Disrupting intracellular iron homeostasis by engineered metal-organic framework for nanocatalytic tumor therapy in synergy with autophagy amplification-promoted ferroptosis. Adv Funct Mater. 2023;33:2215244.
doi: 10.1002/adfm.202215244
Kudarha R, Dhas N, Mutalik S. Distinct features of iron based metal organic frameworks (MOFs) for ferroptosis mediated cancer therapy: a comprehensive review. Coordin Chem Rev. 2023;494:215330.
doi: 10.1016/j.ccr.2023.215330
Xie WS, Guo ZH, Zhao LY, Wei Y. Metal-phenolic networks: facile assembled complexes for cancer theranostics. Theranostics. 2021;11:6407–26.
pubmed: 33995665
pmcid: 8120219
doi: 10.7150/thno.58711
Li J, Zhou Y, Liu J, Yang X, Zhang K, Lei L, Hu H, Zhang H, Ouyang L, Gao H. Metal-phenolic networks with ferroptosis to deliver NIR-responsive CO for synergistic therapy. J Control Release. 2022;352:313–27.
pubmed: 36272661
doi: 10.1016/j.jconrel.2022.10.025
Shan X, Li S, Sun B, Chen Q, Sun J, He Z, Luo C. Ferroptosis-driven nanotherapeutics for cancer treatment. J Control Release. 2020;319:322–32.
pubmed: 31917296
doi: 10.1016/j.jconrel.2020.01.008
Zhang WX, Li Y, Ke D, Gao YR, Fei T, Wang GQ, Shu Y, Wang JH. GSH-depleting metal-polyphenol-network nanoparticles with dual enzyme activities induce enhanced ferroptosis. Biomater Sci. 2023;11:6906–18.
pubmed: 37655451
doi: 10.1039/D3BM01000G
Li Y, Fan WZ, Gu X, Liu SP, He TT, Gou SQ, Meng WL, Li M, Liu XH, Ren Y et al. Biodegradable ferric phosphate nanocarriers with tumor-specific activation and glutathione depletion for tumor self-enhanced ferroptosis and chemotherapy. Adv Funct Mater. 2024; 2313540.
Gao D, Asghar S, Hu RF, Chen S, Niu RX, Liu J, Chen ZP, Xiao YY. Recent advances in diverse nanosystems for nitric oxide delivery in cancer therapy. Acta Pharm Sin B. 2023;13:1498–521.
pubmed: 37139410
doi: 10.1016/j.apsb.2022.11.016
Zhao ZQ, Shan XZ, Zhang HY, Shi XB, Huang PQ, Sun J, He ZG, Luo C, Zhang SW. Nitric oxide-driven nanotherapeutics for cancer treatment. J Control Release. 2023;362:151–69.
pubmed: 37633361
doi: 10.1016/j.jconrel.2023.08.038
Wu Y, Xie HL, Li YP, Bao XY, Lu GL, Wen JY, Gao Y, Li YP, Zhang ZW. Nitric oxide-loaded bioinspired lipoprotein normalizes tumor vessels to improve intratumor delivery and chemotherapy of albumin-bound paclitaxel nanoparticles. Nano Lett. 2023;23:939–47.
pubmed: 36701555
doi: 10.1021/acs.nanolett.2c04312
Wen LW, Liu HY, Hu C, Wei ZX, Meng Y, Lu CX, Su YH, Lu LG, Liang H, Xu QB, et al. Thermoacoustic imaging-guided thermo-chemotherapy for hepatocellular carcinoma sensitized by a microwave-responsive nitric oxide nanogenerator. ACS Appl Mater Interfaces. 2023;15:10477–91.
pubmed: 36790347
doi: 10.1021/acsami.2c22523
Yu WJ, Jia F, Fu JZ, Chen YH, Huang Y, Jin Q, Wang YX, Ji J. Enhanced transcutaneous chemodynamic therapy for melanoma treatment through cascaded Fenton-like reactions and nitric oxide delivery. ACS Nano. 2023;17:15713–23.
pubmed: 37565803
doi: 10.1021/acsnano.3c02964
He M, Song YY, Xu W, Zhang XL, Dong CM. Four birds with one stone: a multifunctional polypeptide nanocomposite to unify ferroptosis, nitric oxide, and photothermia for amplifying antitumor immunity. Adv Funct Mater. 2023;33:2304216.
doi: 10.1002/adfm.202304216
Wang CY, Tian G, Yu X, Zhang X. Recent advances in functional nanomaterials for catalytic generation of nitric oxide: a mini review. Small. 2023;19:e2207261.
pubmed: 36808830
doi: 10.1002/smll.202207261
Yu J, Zhang RL, Chen BH, Liu XL, Jia Q, Wang XF, Yang Z, Ning PB, Wang ZL, Yang Y. Injectable reactive oxygen species-responsive hydrogel dressing with sustained nitric oxide release for bacterial ablation and wound healing. Adv Funct Mater. 2022;32:2202857.
doi: 10.1002/adfm.202202857
Wang Y, Tang QS, Wu RQ, Sun SH, Zhang JX, Chen J, Gong M, Chen CY, Liang XL. Ultrasound-triggered piezocatalysis for selectively controlled NO gas and chemodrug release to enhance drug penetration in pancreatic cancer. ACS Nano. 2023;17:3557–73.
pubmed: 36775922
doi: 10.1021/acsnano.2c09948
Shi H, Xiong CF, Zhang LJ, Cao HC, Wang R, Pan P, Guo HY, Liu T. Light-triggered nitric oxide nanogenerator with high L-arginine loading for synergistic photodynamic/gas/photothermal therapy. Adv Healthc Mater. 2023;12:e2300012.
pubmed: 36929147
doi: 10.1002/adhm.202300012
Li G, Lu X, Zhang S, Zhang J, Fu X, Zhang M, Teng L, Sun F. Multi-enzyme cascade-triggered nitric oxide release nanoplatform combined with chemo starvation-like therapy for multidrug-resistant cancers. ACS Appl Mater Interfaces. 2023;15:31285–99.
pubmed: 37344958
doi: 10.1021/acsami.3c05337
Chen X, Li JY, Roy S, Ullah Z, Gu JS, Huang HY, Yu C, Wang XJ, Wang H, Zhang YH et al. Development of polymethine dyes for NIR-II fluorescence imaging and therapy. Adv Healthc Mater. 2024:e2304506.
Liang JT, Li L, Tian HL, Wang ZH, Liu GW, Duan XR, Guo MW, Liu JQ, Zhang W, Nice EC, et al. Drug repurposing-based brain-targeting self-assembly nanoplatform using enhanced ferroptosis against glioblastoma. Small. 2023;19:e2303073.
pubmed: 37460404
doi: 10.1002/smll.202303073
Wang K, Jiang L, Qiu L. Near infrared light triggered ternary synergistic cancer therapy via L-arginine-loaded nanovesicles with modification of PEGylated indocyanine green. Acta Biomater. 2022;140:506–17.
pubmed: 34902616
doi: 10.1016/j.actbio.2021.12.012
Prince Y, Hiremath N, Vankayala R. Near-infrared light activatable niosomes loaded with indocyanine green and plasmonic gold nanorods for theranostic applications. Biomater Sci. 2023;11:7759–67.
pubmed: 37877932
doi: 10.1039/D3BM01187A
Wu H, Wang C, Sun J, Sun L, Wan J, Wang S, Gu D, Yu C, Yang C, He J, et al. Self-assembled and self-monitored sorafenib/indocyanine green nanodrug with synergistic antitumor activity mediated by hyperthermia and reactive oxygen species-induced apoptosis. ACS Appl Mater Interfaces. 2019;11:43996–4006.
pubmed: 31682099
doi: 10.1021/acsami.9b18086
Wang X, Li H, Meng F, Luo L. Bioadhesive metal-phenolic nanoparticles for enhanced NIR imaging-guided locoregional photothermal/antiangiogenic therapy. J Mater Chem B. 2021;9:4710–7.
pubmed: 34076029
doi: 10.1039/D1TB00599E
Wang H, Hu H, Yang H, Li Z. Hydroxyethyl starch based smart nanomedicine. RSC Adv. 2021;11:3226–40.
pubmed: 35424303
pmcid: 8694170
doi: 10.1039/D0RA09663F
Chen J, Zhang Z, Li Y, Zeng H, Li Z, Wang C, Xu C, Deng Q, Wang Q, Yang X, et al. Precise fibrin decomposition and tumor mechanics modulation with hydroxyethyl starch-based smart nanomedicine for enhanced antitumor efficacy. J Mater Chem B. 2022;10:8193–210.
pubmed: 36172808
doi: 10.1039/D2TB01812H
Aparecida Stahl M, Luisa Ludtke F, Grimaldi R, Lucia Gigante M, Paula Badan Ribeiro A. Characterization and stability of alpha-tocopherol loaded solid lipid nanoparticles formulated with different fully hydrogenated vegetable oils. Food Chem. 2024;439:138149.
pubmed: 38064825
doi: 10.1016/j.foodchem.2023.138149
Li S, Chen C, Zhang Z, Wang D, Lv S. Illustration and application of enhancing effect of arginine on interactions between nano-clays: self-healing hydrogels. Soft Matter. 2019;15:303–11.
pubmed: 30556077
doi: 10.1039/C8SM02188K
Liu ZD, Liu SA, Liu B, Bian YL, Yuan M, Yang CZ, Meng Q, Chen CX, Ma PA, Lin J. Fe(III)-naphthazarin metal-phenolic networks for glutathione-depleting enhanced ferroptosis-apoptosis combined cancer therapy. Small. 2023;19:e2207825.
pubmed: 36772903
doi: 10.1002/smll.202207825
Feng W, Shi W, Wang Z, Cui Y, Shao X, Liu S, Rong L, Liu Y, Zhang H. Enhancing tumor therapy of Fe(III)-shikonin supramolecular nanomedicine via triple ferroptosis amplification. ACS Appl Mater Interfaces. 2022;14:37540–52.
pubmed: 35944147
doi: 10.1021/acsami.2c11130
Mo ZM, Li QT, Zhao K, Xu Q, Hu H, Chen X, Luo YX, Chi B, Liu LP, Fang XF, et al. A nanoarchitectonic approach enables triple modal synergistic therapies to enhance antitumor effects. ACS Appl Mater Interfaces. 2022;14:10001–14.
pubmed: 35172581
doi: 10.1021/acsami.1c20416
Shi H, Wang R, Cao HC, Guo HY, Pan P, Xiong CF, Zhang LJ, Yang Q, Wei S, Liu T. A metal-polyphenol-based oxygen economizer and Fenton reaction amplifier for self-enhanced synergistic photothermal/chemodynamic/chemotherapy. Adv Healthc Mater. 2023;12:e2300054.
pubmed: 36977362
doi: 10.1002/adhm.202300054
Mao GP, Xin DD, Wang Q, Lai DM. Sodium molybdate inhibits the growth of ovarian cancer cells via inducing both ferroptosis and apoptosis. Free Radical Bio Med. 2022;182:79–92.
doi: 10.1016/j.freeradbiomed.2022.02.023
Kagan VE, Mao GW, Qu F, Angeli JPF, Doll S, St Croix C, Dar HH, Liu B, Tyurin VA, Ritov VB, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81–90.
pubmed: 27842066
doi: 10.1038/nchembio.2238
Quiroga J, Alarcon P, Manosalva C, Taubert A, Hermosilla C, Hidalgo MA, Carretta MD, Burgos RA. Glycolysis and mitochondrial function regulate the radical oxygen species production induced by platelet-activating factor in bovine polymorphonuclear leukocytes. Vet Immunol Immunopathol. 2020;226:110074.
pubmed: 32540687
doi: 10.1016/j.vetimm.2020.110074
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release. 2023;361:212–35.
pubmed: 37517543
doi: 10.1016/j.jconrel.2023.07.039