The association between dietary polyphenol intake and the odds of metabolic syndrome.
Blood pressure
Fasting blood sugar
High-density lipoprotein cholesterol
Metabolic syndrome
Polyphenols
Triglyceride
Waist circumference
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
26 Oct 2024
26 Oct 2024
Historique:
received:
18
07
2024
accepted:
22
10
2024
medline:
27
10
2024
pubmed:
27
10
2024
entrez:
27
10
2024
Statut:
epublish
Résumé
Oxidative stress plays a role in the pathophysiology of metabolic syndrome (MetS), and one of the most important features of polyphenols is their antioxidant properties. However, there is no universal consensus on the effectiveness of polyphenols in treating Mets. Therefore, the present study aimed to investigate the association between polyphenols and MetS in an Iranian sample. This cross-sectional study was conducted on an adult population sample from Shiraz, in southern Iran. MetS was calculated using the criteria of the Adult Treatment Panel III (ATP III), which defines MetS as the presence of three or more of the specified risk factors. A validated food frequency questionnaire (FFQ) was used to measure the participant's food intake. The association between polyphenol intake and the odds on MetS and its components was assessed using logistic regression. In both univariate and multivariate models, the association between polyphenol intake and the risk of MetS was not significant. However, after adjusting for potential confounders in the multivariate model, each unit change in flavonol, flavanone and isoflavones intake was associated with a lower, higher, and higher odds of MetS, respectively (flavonols: odds ratio (OR) = 0.926, 95% confidence interval (CI) 0.891-0.963, P < 0.001-flavanones: OR = 1.007, 95% CI: 1.001-1.014, P = 0.034-isoflavones: OR = 4.920, 95% CI: 1.057-22.894, P = 0.042). Additionally, no significant association was found between polyphenol intake and the risk of MetS components. However, in the multivariate model, after adjusting for potential confounders, a significant association was observed between polyphenol intake and lower odds of high waist circumference (OR = 0.998, 95% CI: 0.996-0.999, P = 0.032). The present study did not reveal a significant association between overall polyphenol intake and the odds of MetS. However, certain subclasses of polyphenols appear to be associated with the likelihood of MetS and its components.
Identifiants
pubmed: 39462087
doi: 10.1038/s41598-024-77335-4
pii: 10.1038/s41598-024-77335-4
doi:
Substances chimiques
Polyphenols
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
25559Informations de copyright
© 2024. The Author(s).
Références
McCracken, E., Monaghan, M. & Sreenivasan, S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 36(1), 14–20 (2018).
pubmed: 29241747
doi: 10.1016/j.clindermatol.2017.09.004
Finicelli, M. et al. Metabolic syndrome, Mediterranean diet, and polyphenols: evidence and perspectives. J. Cell. Physiol. 234(5), 5807–5826 (2019).
pubmed: 30317573
doi: 10.1002/jcp.27506
Nolan, P. B., Carrick-Ranson, G., Stinear, J. W., Reading, S. A. & Dalleck, L. C. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: a pooled analysis. Prev. Med. Rep. 7, 211–215 (2017).
pubmed: 28794957
pmcid: 5540707
doi: 10.1016/j.pmedr.2017.07.004
Farmanfarma, K. K. et al. Prevalence of metabolic syndrome in Iran: a meta-analysis of 69 studies. Diabetes Metab. Syndr. Clin. Res. Rev. 13(1), 792–799 (2019).
doi: 10.1016/j.dsx.2018.11.055
Lee, S-H., Tao, S. & Kim, H-S. The prevalence of metabolic syndrome and its related risk complications among koreans. Nutrients. 11(8), 1755 (2019).
pubmed: 31366117
pmcid: 6724018
doi: 10.3390/nu11081755
Liu, K., Luo, M. & Wei, S. The bioprotective effects of polyphenols on metabolic syndrome against oxidative stress: Evidences and perspectives. Oxid. Med. Cell. Longev. (2019).
Amiot, M., Riva, C. & Vinet, A. Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes. Rev. 17(7), 573–586 (2016).
pubmed: 27079631
doi: 10.1111/obr.12409
Chiva-Blanch, G. & Badimon, L. Effects of polyphenol intake on metabolic syndrome: current evidences from human trials. Oxid. Med. Cell. Longev. (2017).
Medina-Remón, A. et al. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: a substudy of the PREDIMED trial. Br. J. Clin. Pharmacol. 83(1), 114–128 (2017).
Del Rio, D. et al. Dietary (poly) phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox. Signal. 18(14), 1818–1892 (2013).
pubmed: 22794138
pmcid: 3619154
doi: 10.1089/ars.2012.4581
Andriantsitohaina, R. et al. Molecular mechanisms of the cardiovascular protective effects of polyphenols. Br. J. Nutr. 108(9), 1532–1549 (2012).
pubmed: 22935143
doi: 10.1017/S0007114512003406
Munir, K. M., Chandrasekaran, S., Gao, F. & Quon, M. J. Mechanisms for food polyphenols to ameliorate insulin resistance and endothelial dysfunction: therapeutic implications for diabetes and its cardiovascular complications. Am. J. Physiol. Endocrinol. Metab. 305(6), E679–E686 (2013).
pubmed: 23900418
pmcid: 4073986
doi: 10.1152/ajpendo.00377.2013
Xu, Q. & Si, L-Y. Resveratrol role in cardiovascular and metabolic health and potential mechanisms of action. Nutr. Res. 32(9), 648–658 (2012).
pubmed: 23084637
doi: 10.1016/j.nutres.2012.07.002
Rodrigo, R., Gil, D., Miranda-Merchak, A. & Kalantzidis, G. Antihypertensive role of polyphenols. Adv. Clin. Chem. 58, 225 (2012).
pubmed: 22950347
doi: 10.1016/B978-0-12-394383-5.00014-X
Cassidy, A. et al. Habitual intake of flavonoid subclasses and incident hypertension in adults. Am. J. Clin. Nutr. 93(2), 338–347 (2011).
pubmed: 21106916
doi: 10.3945/ajcn.110.006783
Knekt, P. et al. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 76(3), 560–568 (2002).
pubmed: 12198000
doi: 10.1093/ajcn/76.3.560
Goodman-Gruen, D. & Kritz-Silverstein, D. Usual dietary isoflavone intake is associated with cardiovascular disease risk factors in postmenopausal women. J. Nutr. 131(4), 1202–1206 (2001).
pubmed: 11285326
doi: 10.1093/jn/131.4.1202
de Kleijn, M. J., van der Schouw, Y. T., Wilson, P. W., Grobbee, D. E. & Jacques, P. F. Dietary intake of phytoestrogens is associated with a favorable metabolic cardiovascular risk profile in postmenopausal US women: the Framingham study. J. Nutr. 132(2), 276–282 (2002).
pubmed: 11823590
doi: 10.1093/jn/132.2.276
Van der Schouw, Y. T., Sampson, L., Willett, W. C. & Rimm, E. B. The usual intake of lignans but not that of isoflavones may be related to cardiovascular risk factors in US men. J. Nutr. 135(2), 260–266 (2005).
pubmed: 15671223
doi: 10.1093/jn/135.2.260
Liu, Y-J. et al. Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin. Nutr. 33(1), 59–63 (2014).
pubmed: 23591151
doi: 10.1016/j.clnu.2013.03.011
Grosso, G. et al. Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur. J. Nutr. 56, 1409–1420 (2017).
pubmed: 26913852
doi: 10.1007/s00394-016-1187-z
Huang, P. L. A comprehensive definition for metabolic syndrome. Dis. Models Mech. 2(5–6), 231–237 (2009).
doi: 10.1242/dmm.001180
Mirmiran, P., Esfahani, F. H., Mehrabi, Y., Hedayati, M. & Azizi, F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 13(5), 654–662 (2010).
pubmed: 19807937
doi: 10.1017/S1368980009991698
Rothwell, J. A. et al. Phenol-Explorer 3.0: a major update of the phenol-explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, bat070 (2013).
Roberts, C. K. & Sindhu, K. K. Oxidative stress and metabolic syndrome. Life Sci. 84(21–22), 705–712 (2009).
pubmed: 19281826
doi: 10.1016/j.lfs.2009.02.026
Lakka, T. A. et al. Sedentary lifestyle, poor cardiorespiratory fitness, and the metabolic syndrome. Med. Sci. Sports Exerc. 35(8), 1279–1286 (2003).
pubmed: 12900679
doi: 10.1249/01.MSS.0000079076.74931.9A
Zheng, X-X. et al. Effects of green tea catechins with or without caffeine on glycemic control in adults: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 97(4), 750–762 (2013).
pubmed: 23426037
doi: 10.3945/ajcn.111.032573
Akilen, R., Tsiami, A., Devendra, D. & Robinson, N. Cinnamon in glycaemic control: systematic review and meta analysis. Clin. Nutr. 31(5), 609–615 (2012).
pubmed: 22579946
doi: 10.1016/j.clnu.2012.04.003
Zhang, Y-B. et al. Soy isoflavone supplementation could reduce body weight and improve glucose metabolism in non-asian postmenopausal women—a meta-analysis. Nutrition. 29(1), 8–14 (2013).
pubmed: 22858192
doi: 10.1016/j.nut.2012.03.019
Onakpoya, I., Spencer, E., Thompson, M. & Heneghan, C. The effect of chlorogenic acid on blood pressure: a systematic review and meta-analysis of randomized clinical trials. J. Hum. Hypertens. 29(2), 77–81 (2015).
pubmed: 24943289
doi: 10.1038/jhh.2014.46
Basu, A. et al. Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome. Nutrition 27(2), 206–213 (2011).
pubmed: 20605696
pmcid: 2952043
doi: 10.1016/j.nut.2010.01.015
Driessen, M., Koppes, L., Veldhuis, L., Samoocha, D. & Twisk, J. Coffee consumption is not related to the metabolic syndrome at the age of 36 years: the Amsterdam Growth and Health Longitudinal Study. Eur. J. Clin. Nutr. 63(4), 536–542 (2009).
pubmed: 18270523
doi: 10.1038/ejcn.2008.6
Saklayen, M. G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 20(2), 1–8 (2018).
doi: 10.1007/s11906-018-0812-z
Popiolek-Kalisz, J. The relationship between Dietary Flavonols Intake and metabolic syndrome in Polish adults. Nutrients 15(4), 854 (2023).
pubmed: 36839212
pmcid: 9966903
doi: 10.3390/nu15040854
Hejazi, J., Hosseinpour-Niazi, S., Yuzbashian, E., Mirmiran, P. & Azizi, F. The protective effects of dietary intake of flavonoids and its subclasses on metabolic syndrome incidence. Int. J. Food Sci. Nutr. 73(1), 116–126 (2022).
pubmed: 34096437
doi: 10.1080/09637486.2021.1928008
Torres, S., Fabersani, E., Marquez, A. & Gauffin-Cano, P. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur. J. Nutr. 58, 27–43 (2019).
pubmed: 30043184
doi: 10.1007/s00394-018-1790-2
Landberg, R. et al. Selected dietary flavonoids are associated with markers of inflammation and endothelial dysfunction in US women. J. Nutr. 141(4), 618–625 (2011).
pubmed: 21325476
pmcid: 3057665
doi: 10.3945/jn.110.133843
Zhang, J. et al. Structurally different flavonoid subclasses attenuate high-fat and high-fructose diet induced metabolic syndrome in rats. J. Agric. Food Chem. 66(46), 12412–12420 (2018).
pubmed: 30360615
doi: 10.1021/acs.jafc.8b03574
Oh, J. S. et al. Association between dietary flavanones intake and lipid profiles according to the presence of metabolic syndrome in Korean women with type 2 diabetes mellitus. Nutr. Res. Pract. 10(1), 67–73 (2016).
pubmed: 26865918
doi: 10.4162/nrp.2016.10.1.67
Zhao, Z. et al. The association between dietary intake of flavonoids and its subclasses and the risk of metabolic syndrome. Front. Nutr. 10 (2023).
Rizza, S. et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 96(5), E782–E792 (2011).
pubmed: 21346065
pmcid: 3085197
doi: 10.1210/jc.2010-2879
Jung, U. et al. Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin. Nutr. 22(6), 561–568 (2003).
pubmed: 14613759
doi: 10.1016/S0261-5614(03)00059-1
Fraga, L. N. et al. Blood pressure and body fat% reduction is mainly related to flavanone phase II conjugates and minor extension by phenolic acid after long-term intake of orange juice. Food Funct. 12(22), 11278–11289 (2021).
pubmed: 34713884
doi: 10.1039/D1FO02664J
Liu, I-M., Tzeng, T-F., Liou, S-S. & Lan, T-W. Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a high-fructose diet in rats. Life Sci. 81(21–22), 1479–1488 (2007).
pubmed: 17976658
doi: 10.1016/j.lfs.2007.08.045
Kim, K., Vance, T. M. & Chun, O. K. Greater flavonoid intake is associated with improved CVD risk factors in US adults. Br. J. Nutr. 115(8), 1481–1488 (2016).
pubmed: 26931451
doi: 10.1017/S0007114516000519
Marseglia, L. et al. Oxidative stress in obesity: a critical component in human diseases. Int. J. Mol. Sci. 16(1), 378–400 (2014).
pubmed: 25548896
pmcid: 4307252
doi: 10.3390/ijms16010378
Grosso, G. et al. Mediterranean diet and cardiovascular risk factors: a systematic review. Crit. Rev. Food Sci. Nutr. 54(5), 593–610 (2014).
pubmed: 24261534
doi: 10.1080/10408398.2011.596955
Grosso, G. et al. Beneficial effects of the Mediterranean diet on metabolic syndrome. Curr. Pharm. Design 20(31), 5039–5044 (2014).
doi: 10.2174/1381612819666131206112144