Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
28 Oct 2024
Historique:
received: 01 03 2024
accepted: 16 10 2024
medline: 29 10 2024
pubmed: 29 10 2024
entrez: 29 10 2024
Statut: epublish

Résumé

Exploring microorganisms with downstream synthetic advantages in lignin valorization is an effective strategy to increase target product diversity and yield. This study ingeniously engineers the non-lignin-degrading bacterium Ralstonia eutropha H16 (also known as Cupriavidus necator H16) to convert lignin, a typically underutilized by-product of biorefinery, into valuable bioplastic polyhydroxybutyrate (PHB). The aromatic metabolism capacities of R. eutropha H16 for different lignin-derived aromatics (LDAs) are systematically characterized and complemented by integrating robust functional modules including O-demethylation, aromatic aldehyde metabolism and the mitigation of by-product inhibition. A pivotal discovery is the regulatory element PcaQ, which is highly responsive to the aromatic hub metabolite protocatechuic acid during lignin degradation. Based on the computer-aided design of PcaQ, we develop a hub metabolite-based autoregulation (HMA) system. This system can control the functional genes expression in response to heterologous LDAs and enhance metabolism efficiency. Multi-module genome integration and directed evolution further fortify the strain's stability and lignin conversion capacities, leading to PHB production titer of 2.38 g/L using heterologous LDAs as sole carbon source. This work not only marks a leap in bioplastic production from lignin components but also provides a strategy to redesign the non-LDAs-degrading microbes for efficient lignin valorization.

Identifiants

pubmed: 39468081
doi: 10.1038/s41467-024-53609-3
pii: 10.1038/s41467-024-53609-3
doi:

Substances chimiques

Lignin 9005-53-2
protocatechuic acid 36R5QJ8L4B
Hydroxybenzoates 0
Hydroxybutyrates 0
Polyesters 0
Biodegradable Plastics 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9288

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : Nos. 32170122

Informations de copyright

© 2024. The Author(s).

Références

Questell-Santiago, Y. M., Galkin, M. V., Barta, K. & Luterbacher, J. S. Stabilization strategies in biomass depolymerization using chemical functionalization. Nat. Rev. Chem. 4, 311–330 (2020).
pubmed: 37127959 doi: 10.1038/s41570-020-0187-y
Abu-Omar, M. M. et al. Guidelines for performing lignin-first biorefining. Energy Environ. Sci. 14, 262–292 (2021).
doi: 10.1039/D0EE02870C
Bruijnincx, P. C., Rinaldi, R. & Weckhuysen, B. M. Unlocking the potential of a sleeping giant: lignins as sustainable raw materials for renewable fuels, chemicals and materials. Green. Chem. 17, 4860–4861 (2015).
doi: 10.1039/C5GC90055G
Weiland, F., Kohlstedt, M. & Wittmann, C. Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. Metab. Eng. 71, 13–41 (2022).
pubmed: 34864214 doi: 10.1016/j.ymben.2021.11.011
Li, F. et al. Microbial lignin valorization through depolymerization to aromatics conversion. Trends Biotechnol. 40, 1469–1487 (2022).
pubmed: 36307230 doi: 10.1016/j.tibtech.2022.09.009
Kamimura, N., Sakamoto, S., Mitsuda, N., Masai, E. & Kajita, S. Advances in microbial lignin degradation and its applications. Curr. Opin. Biotechnol. 56, 179–186 (2019).
pubmed: 30530243 doi: 10.1016/j.copbio.2018.11.011
Cai, C., Xu, Z., Zhou, H., Chen, S. & Jin, M. Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation. Sci. Adv. 7, eabg4585 (2021).
pubmed: 34516898 pmcid: 8442903 doi: 10.1126/sciadv.abg4585
Vethaak, A. D. & Legler, J. Microplastics and human health. Science 371, 672–674 (2021).
pubmed: 33574197 doi: 10.1126/science.abe5041
Leal Filho, W. et al. An assessment of attitudes towards plastics and bioplastics in Europe. Sci. Total Environ. 755, 142732 (2021).
doi: 10.1016/j.scitotenv.2020.142732
Rosenboom, J. G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).
pubmed: 35075395 pmcid: 8771173 doi: 10.1038/s41578-021-00407-8
Saratale, R. G. et al. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresour. Technol. 325, 124685 (2021).
doi: 10.1016/j.biortech.2021.124685
Liu, Z. H. et al. Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization. Nat. Commun. 12, 3912 (2021).
pubmed: 34162838 pmcid: 8222318 doi: 10.1038/s41467-021-23920-4
Linger, J. G. et al. Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl Acad. Sci. Usa. 111, 12013–12018 (2014).
pubmed: 25092344 pmcid: 4143016 doi: 10.1073/pnas.1410657111
Tan, D., Wang, Y., Tong, Y. & Chen, G. Q. Grand challenges for industrializing polyhydroxyalkanoates (PHAs). Trends biotechnol. 39, 953–963 (2021).
pubmed: 33431229 doi: 10.1016/j.tibtech.2020.11.010
Cywar, R. M., Rorrer, N. A., Hoyt, C. B., Beckham, G. T. & Chen, E. Y. X. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 7, 83–103 (2022).
doi: 10.1038/s41578-021-00363-3
Pohlmann, A. et al. Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat. Biotechnol. 24, 1257–1262 (2006).
pubmed: 16964242 doi: 10.1038/nbt1244
Erickson, E. et al. Critical enzyme reactions in aromatic catabolism for microbial lignin conversion. Nat. Catal. 5, 86–98 (2022).
doi: 10.1038/s41929-022-00747-w
Fetherolf, M. M. et al. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin. Proc. Natl Acad. Sci. Usa. 117, 25771–25778 (2020).
pubmed: 32989155 pmcid: 7568313 doi: 10.1073/pnas.1916349117
Mallinson, S. J. et al. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. Nat. Commun. 9, 2487 (2018).
pubmed: 29950589 pmcid: 6021390 doi: 10.1038/s41467-018-04878-2
Wu, W., Liu, F. & Singh, S. Toward engineering E. coli with an autoregulatory system for lignin valorization. Proc. Natl Acad. Sci. Usa. 115, 2970–2975 (2018).
pubmed: 29500185 pmcid: 5866589 doi: 10.1073/pnas.1720129115
Li, H. & Liao, J. C. A synthetic anhydrotetracycline-controllable gene expression system in Ralstonia eutropha H16. ACS Synth. Biol. 4, 101–106 (2015).
pubmed: 24702232 doi: 10.1021/sb4001189
Bi, C. et al. Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its application to engineering hydrocarbon biofuel production. Microb. Cell Fact. 12, 1–10 (2013).
doi: 10.1186/1475-2859-12-107
Dvorak, P. et al. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21 (DE3) carrying a synthetic metabolic pathway. Microb. Cell Fact. 14, 1–15 (2015).
doi: 10.1186/s12934-015-0393-3
Li, J. et al. Construction of a p-coumaric and ferulic acid auto-regulatory system in Pseudomonas putida KT2440 for protocatechuate production from lignin-derived aromatics. Bioresour. Technol. 344, 126221 (2022).
pubmed: 34728357 doi: 10.1016/j.biortech.2021.126221
Calvey, C. H. et al. Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering. Metab. Eng. 75, 78–90 (2023).
pubmed: 36368470 doi: 10.1016/j.ymben.2022.10.016
Singh, A. K., Bilal, M., Iqbal, H. M., Meyer, A. S. & Raj, A. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. Sci. Total Environ. 777, 145988 (2021).
pubmed: 33684751 doi: 10.1016/j.scitotenv.2021.145988
Rodriguez, A. et al. Base-catalyzed depolymerization of solid lignin-rich streams enables microbial conversion. ACS Sustain. Chem. Eng. 5, 8171–8180 (2017).
doi: 10.1021/acssuschemeng.7b01818
Zhang, C. & Wang, F. Catalytic lignin depolymerization to aromatic chemicals. Acc. Chem. Res. 53, 470–484 (2020).
pubmed: 31999099 doi: 10.1021/acs.accounts.9b00573
Zhang, W. et al. Isolation and characterization of a novel laccase for lignin degradation, LacZ1. Appl. Environ. Microbiol. 87, e01355–01321 (2021).
pubmed: 34524901 pmcid: 8580002 doi: 10.1128/AEM.01355-21
Chio, C., Sain, M. & Qin, W. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sust. Energ. Rev. 107, 232–249 (2019).
doi: 10.1016/j.rser.2019.03.008
Du, B. et al. Effect of varying feedstock–pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol. Bioeng. 107, 430–440 (2010).
pubmed: 20552667 doi: 10.1002/bit.22829
Morya, R., Kumar, M., Singh, S. S. & Thakur, I. S. Genomic analysis of Burkholderia sp. ISTR5 for biofunneling of lignin-derived compounds. Biotechnol. Biofuels 12, 1–14 (2019).
doi: 10.1186/s13068-019-1606-5
Yoshikata, T. et al. Three-component O-demethylase system essential for catabolism of a lignin-derived biphenyl compound in Sphingobium sp. strain SYK-6. Appl. Environ. Microb. 80, 7142–7153 (2014).
doi: 10.1128/AEM.02236-14
Johnson, A. O., Gonzalez-Villanueva, M., Tee, K. L. & Wong, T. S. An engineered constitutive promoter set with broad activity range for Cupriavidus necator H16. ACS Synth. Biol. 7, 1918–1928 (2018).
pubmed: 29949349 doi: 10.1021/acssynbio.8b00136
Notonier, S. et al. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4, 6-dicarboxylic acid. Metab. Eng. 65, 111–122 (2021).
pubmed: 33741529 doi: 10.1016/j.ymben.2021.02.005
Niks, D., Duvvuru, J., Escalona, M. & Hille, R. Spectroscopic and kinetic properties of the molybdenum-containing, NAD+-dependent formate dehydrogenase from Ralstonia eutropha. J. Biol. Chem. 291, 1162–1174 (2016).
pubmed: 26553877 doi: 10.1074/jbc.M115.688457
Hanko, E. K. et al. A genome-wide approach for identification and characterisation of metabolite-inducible systems. Nat. Commun. 11, 1213 (2020).
pubmed: 32139676 pmcid: 7057948 doi: 10.1038/s41467-020-14941-6
Zhang, F., Carothers, J. M. & Keasling, J. D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354–359 (2012).
pubmed: 22446695 doi: 10.1038/nbt.2149
MacLean, A. M., Haerty, W., Golding, G. B. & Finan, T. M. The LysR-type PcaQ protein regulates expression of a protocatechuate-inducible ABC-type transport system in Sinorhizobium meliloti. Microbiol 157, 2522–2533 (2011).
doi: 10.1099/mic.0.050542-0
Sumbalova, L., Stourac, J., Martinek, T., Bednar, D. & Damborsky, J. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res. 46, W356–W362 (2018).
pubmed: 29796670 pmcid: 6030891 doi: 10.1093/nar/gky417
Wendisch, V. F., Kim, Y. & Lee, J. H. Chemicals from lignin: recent depolymerization techniques and upgrading extended pathways. Curr. Opin. Green. Sustain. Chem. 14, 33–39 (2018).
doi: 10.1016/j.cogsc.2018.05.006
Simon, O., Klaiber, I., Huber, A. & Pfannstiel, J. Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin. J. Proteom. 109, 212–227 (2014).
doi: 10.1016/j.jprot.2014.07.006
Gruber, S., Hagen, J., Schwab, H. & Koefinger, P. Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16. J. Biotechnol. 192, 410–418 (2014).
pubmed: 25284803 doi: 10.1016/j.jbiotec.2014.09.023
Bleem, A. C. et al. Evolution and engineering of pathways for aromatic O-demethylation in Pseudomonas putida KT2440. Metab. Eng. 84, 145–157 (2024).
pubmed: 38936762 doi: 10.1016/j.ymben.2024.06.009
Lee, J. A., Stolyar, S. & Marx, C. J. An aerobic link between lignin degradation and C1 metabolism: growth on methoxylated aromatic compounds by members of the genus Methylobacterium. bioRxiv https://doi.org/10.3389/fmicb.2022.849573 (2019).
Mutanda, I., Sun, J., Jiang, J. & Zhu, D. Bacterial membrane transporter systems for aromatic compounds: regulation, engineering, and biotechnological applications. Biotechnol. Adv. 59, 107952 (2022).
pubmed: 35398204 doi: 10.1016/j.biotechadv.2022.107952
Sáez‐Sáez, J., Munro, L. J., Møller‐Hansen, I., Kell, D. B. & Borodina, I. Identification of transporters involved in aromatic compounds tolerance through screening of transporter deletion libraries. Micro. Biotechnol. 17, e14460 (2024).
doi: 10.1111/1751-7915.14460
Lv, X., Xue, H., Qin, L. & Li, C. Transporter engineering in microbial cell factory boosts biomanufacturing capacity. BioDes. Res. 2022, 871087 (2022).
doi: 10.34133/2022/9871087
Jiang, X., Zhai, R., Leng, Y., Deng, Q. & Jin, M. Understanding the toxicity of lignin-derived phenolics towards enzymatic saccharification of lignocellulose for rationally developing effective in-situ mitigation strategies to maximize sugar production from lignocellulosic biorefinery. Bioresour. Technol. 349, 126813 (2022).
pubmed: 35134522 doi: 10.1016/j.biortech.2022.126813
Werner, A. Z. et al. Lignin conversion to β-ketoadipic acid by Pseudomonas putida via metabolic engineering and bioprocess development. Sci. Adv. 9, eadj0053 (2023).
pubmed: 37672573 pmcid: 10482344 doi: 10.1126/sciadv.adj0053
Suzuki, Y. et al. Lignin valorization through efficient microbial production of β-ketoadipate from industrial black liquor. Bioresour. Technol. 337, 125489 (2021).
pubmed: 34320768 doi: 10.1016/j.biortech.2021.125489
Salvachúa, D. et al. Metabolic engineering of Pseudomonas putida for increased polyhydroxyalkanoate production from lignin. Micro. Biotechnol. 13, 290–298 (2020).
doi: 10.1111/1751-7915.13481
Wada, A. et al. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Metab. Eng. 64, 167–179 (2021).
pubmed: 33549838 doi: 10.1016/j.ymben.2021.01.013
Budde, C. F., Riedel, S. L., Willis, L. B., Rha, C. & Sinskey, A. J. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl. Environ. Microb. 77, 2847–2854 (2011).
doi: 10.1128/AEM.02429-10
Tang, R., Peng, X., Weng, C. & Han, Y. The overexpression of phasin and regulator genes promoting the synthesis of polyhydroxybutyrate in Cupriavidus necator H16 under nonstress conditions. Appl. Environ. Microb. 88, e01458–01421 (2022).
doi: 10.1128/AEM.01458-21
Chek, M. F., Hiroe, A., Hakoshima, T., Sudesh, K. & Taguchi, S. PHA synthase (PhaC): interpreting the functions of bioplastic-producing enzyme from a structural perspective. Appl. Microbiol. Biotechnol. 103, 1131–1141 (2019).
pubmed: 30511262 doi: 10.1007/s00253-018-9538-8
Overhage, J., Steinbuchel, A. & Priefert, H. Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16. Appl. Environ. Microb. 68, 4315–4321 (2002).
doi: 10.1128/AEM.68.9.4315-4321.2002
González-Villanueva, M. et al. Adaptive laboratory evolution of Cupriavidus necator H16 for carbon co-utilization with glycerol. Int. J. Mol. Sci. 20, 5737 (2019).
pubmed: 31731699 pmcid: 6888959 doi: 10.3390/ijms20225737
Fukui, T., Mukoyama, M., Orita, I. & Nakamura, S. Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 98, 7559–7568 (2014).
pubmed: 24878751 doi: 10.1007/s00253-014-5831-3
Machovina, M. M. et al. Enabling microbial syringol conversion through structure-guided protein engineering. Proc. Natl Acad. Sci. Usa. 116, 13970–13976 (2019).
pubmed: 31235604 pmcid: 6628648 doi: 10.1073/pnas.1820001116
Abe, T., Masai, E., Miyauchi, K., Katayama, Y. & Fukuda, M. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6. J. bacteriol. 187, 2030–2037 (2005).
pubmed: 15743951 pmcid: 1064056 doi: 10.1128/JB.187.6.2030-2037.2005
Lanfranchi, E., Trajković, M., Barta, K., de Vries, J. G. & Janssen, D. B. Exploring the selective demethylation of aryl methyl ethers with a Pseudomonas Rieske monooxygenase. ChemBioChem 20, 118–125 (2019).
pubmed: 30362644 doi: 10.1002/cbic.201800594
Gascoyne, J. L., Bommareddy, R. R., Heeb, S. & Malys, N. Engineering Cupriavidus necator H16 for the autotrophic production of (R)-1, 3-butanediol. Metab. Eng. 67, 262–276 (2021).
pubmed: 34224897 pmcid: 8449065 doi: 10.1016/j.ymben.2021.06.010
Bleem, A. et al. Multiplexed fitness profiling by RB-TnSeq elucidates pathways for lignin-related aromatic catabolism in Sphingobium sp. SYK-6. Cell Rep. 42, 112847 (2023).
pubmed: 37515767 doi: 10.1016/j.celrep.2023.112847
Ellis, E. S. et al. Engineering a cytochrome P450 for demethylation of lignin-derived aromatic aldehydes. JACS Au 1, 252–261 (2021).
pubmed: 34467290 pmcid: 8395679 doi: 10.1021/jacsau.0c00103
Araki, T. et al. The syringate O-demethylase gene of Sphingobium sp. strain SYK-6 is regulated by DesX, while other vanillate and syringate catabolism genes are regulated by DesR. Appl. Environ. Microb. 86, e01712–e01720 (2020).
doi: 10.1128/AEM.01712-20
Preissl, S., Gaulton, K. J. & Ren, B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet. 24, 21–43 (2023).
pubmed: 35840754 doi: 10.1038/s41576-022-00509-1
Zhao, S. et al. A single-cell massively parallel reporter assay detects cell-type-specific gene regulation. Nat. Genet. 55, 346–354 (2023).
pubmed: 36635387 pmcid: 9931678 doi: 10.1038/s41588-022-01278-7
Wang, T., Tague, N., Whelan, S. A. & Dunlop, M. J. Programmable gene regulation for metabolic engineering using decoy transcription factor binding sites. Nucleic Acids Res. 49, 1163–1172 (2021).
pubmed: 33367820 doi: 10.1093/nar/gkaa1234
Teng, Y. et al. Biosensor-enabled pathway optimization in metabolic engineering. Curr. Opin. Biotechnol. 75, 102696 (2022).
pubmed: 35158314 pmcid: 9177593 doi: 10.1016/j.copbio.2022.102696
Chen, X. et al. Densifying Lignocellulosic biomass with alkaline Chemicals (DLC) pretreatment unlocks highly fermentable sugars for bioethanol production from corn stover. Green. Chem. 23, 4828–4839 (2021).
doi: 10.1039/D1GC01362A
Xue, L. et al. A key O-demethylase in the degradation of guaiacol by Rhodococcus opacus PD630. Appl. Environ. Microb. 89, e00522–e00523 (2023).
doi: 10.1128/aem.00522-23
Green, M. R. & Sambrook, J. Molecular cloning. A Laboratory Manual 4th edition. www.cshlpress.org (Cold Spring Harbor Laboratory Press, 2012).
Schäfer, C., Friedrich, B. & Lenz, O. Novel, oxygen-insensitive group 5 [NiFe]-hydrogenase in Ralstonia eutropha. Appl. Environ. Microb. 79, 5137–5145 (2013).
doi: 10.1128/AEM.01576-13
Chiappori, F., D’Ursi, P., Merelli, I., Milanesi, L. & Rovida, E. In silico saturation mutagenesis and docking screening for the analysis of protein-ligand interaction: the Endothelial Protein C Receptor case study. BMC Bioinforma. 10, 1–8 (2009).
doi: 10.1186/1471-2105-10-S12-S3
Bendl, J. et al. HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering. Nucleic Acids Res. 44, W479–W487 (2016).
pubmed: 27174934 pmcid: 4987947 doi: 10.1093/nar/gkw416
Braunegg, G., Sonnleitner, B. & Lafferty, R. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6, 29–37 (1978).
doi: 10.1007/BF00500854

Auteurs

Yiquan Zhao (Y)

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Le Xue (L)

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Zhiyi Huang (Z)

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Zixian Lei (Z)

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Shiyu Xie (S)

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Zhenzhen Cai (Z)

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Xinran Rao (X)

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Ze Zheng (Z)

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Ning Xiao (N)

National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.

Xiaoyu Zhang (X)

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Fuying Ma (F)

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Hongbo Yu (H)

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Shangxian Xie (S)

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China. shangxian_xie@hust.edu.cn.
National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China. shangxian_xie@hust.edu.cn.

Articles similaires

Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation

A key role for P2RX5 in brown adipocyte differentiation and energy homeostasis.

Maria Razzoli, Seth McGonigle, Bhavani Shankar Sahu et al.
1.00
Animals Adipocytes, Brown Mice Cell Differentiation Male
Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis

Classifications MeSH