Osseodensification versus piezoelectric internal sinus elevation (PISE) technique in delayed implant placement (a randomized controlled clinical trial).


Journal

BMC oral health
ISSN: 1472-6831
Titre abrégé: BMC Oral Health
Pays: England
ID NLM: 101088684

Informations de publication

Date de publication:
28 Oct 2024
Historique:
received: 31 05 2024
accepted: 26 09 2024
medline: 29 10 2024
pubmed: 29 10 2024
entrez: 29 10 2024
Statut: epublish

Résumé

Transalveolar sinus elevation is a minimally invasive technique aimed at augmenting the vertical bone height in the posterior maxilla, facilitating successful implant placement in areas with insufficient bone volume. This study compares the efficacy of osseodensification and piezoelectric internal sinus elevation (PISE) techniques in delayed implant placement. The primary objective was to radiographically assess vertical bone gain and bone density, while secondary objectives included clinical assessment of primary implant stability and post-operative satisfaction of both patients and operators. The study population of a total of 16 patients was randomly divided into two groups. Group 1 underwent osseodensification sinus lift using sticky bone as a graft material, whereas Group 2 received PISE with the same graft material. Results indicated that the osseodensification technique led to greater bone gain, improved bone density, and shorter surgical duration. Additionally, osseodensification was associated with enhanced rapid healing and higher patient satisfaction. Conversely, the PISE technique demonstrated superior primary stability of implants on the day of surgery. These findings suggest that while both techniques are effective, osseodensification may offer advantages in terms of bone gain, density, and patient satisfaction, making it a reliable method for enhancing rapid healing in delayed implant placement. the study was registered on clinicaltrials.gov at 26

Identifiants

pubmed: 39468538
doi: 10.1186/s12903-024-04964-6
pii: 10.1186/s12903-024-04964-6
doi:

Substances chimiques

Dental Implants 0

Banques de données

ClinicalTrials.gov
['NCT06055127']

Types de publication

Journal Article Randomized Controlled Trial Comparative Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

1306

Informations de copyright

© 2024. The Author(s).

Références

French D, Ofec R, Levin L. Long term clinical performance of 10 871 dental implants with up to 22 years of follow-up: A cohort study in 4247 patients. Clin Implant Dent Relat Res. 2021;23(3):289–97.
doi: 10.1111/cid.12994 pubmed: 33768695 pmcid: 8359846
Fernandes GVO, Costa BMNGN, Trindade HF, Castilho RM, Fernandes JCH. Comparative analysis between extra-short implants (≤6 mm) and 6 mm-longer implants: A meta-analysis of randomized controlled trial. Aust Dent J. 2022;67(3):194-211.
Fernandes PRE, et al. Clinical performance comparing titanium and titanium-zirconium or zirconia dental implants: A systematic review of randomized controlled trials. Dent J. 2022;10:83.
doi: 10.3390/dj10050083
Turkyilmaz I, Soganci G. Rationale for Dental Implants. In: Current Concepts in Dental Implantology. InTech; 2015. Available from: https://doi.org/10.5772/59815
Mehrotra S, Varghese J. Technical concepts in the management of posterior maxillary implants: a review update. Curr Oral Health Rep. 2024;11(1):40-58. Available from: https://doi.org/10.1007/s40496-023-00360-1
Zhang X, Yuan Q, Xu D, Lyu M. Maxillary sinus floor augmentation: a review of current evidence on anatomical factors and a decision tree. Int J Oral Sci. 2023;15:41. Available from: https://doi.org/10.1038/s41368-023-00248-x
Galindo-Moreno P, Padial-Molina M, Avila G, Rios HF, Hernández-Cortés P, Wang H-L. Complications associated with implant migration into the maxillary sinus cavity. Clin Oral Implants Res. 2011;23(10):1152–60. https://doi.org/10.1111/j.1600-0501.2011.02278.x .
doi: 10.1111/j.1600-0501.2011.02278.x pubmed: 22092923
Karacayli U, Dikicier E, Dikicier S. Dental implant placement in inadequate posterior maxilla. In: Current Concepts in Dental Implantology. InTech; 2015. Available from: https://doi.org/10.5772/59458
Nader N, Aboul Hosn M, Younes R. Crestal Sinus Floor Elevation (SFE) Approach: Overview and Recent Developments. In: Sinus Grafting Techniques. Springer; 2014. p. 105-43. Available from: https://doi.org/10.1007/978-3-319-11448-4_6
Barbu HM, Iancu SA, Rapani A, Stacchi C. Guided bone regeneration with concentrated growth factor enriched bone graft matrix (sticky bone) vs. bone-shell technique in horizontal ridge augmentation: A retrospective study. J Clin Med. 2021;10(17):3953. Available from: https://doi.org/10.3390/jcm10173953
Dubey S, Bhargava D. Evidence of bone formation after Schneiderian membrane tenting without bone grafting for dental implantology. Sch J Dent Sci (SJDS). 2017;4(7):327-8. Available from: https://saspublishers.com/media/articles/SJDS_47327-328.pdf
Ali SA, Karthigeyan S, Deivanai M, Kumar A. Implant rehabilitation for atrophic maxilla: a review. J Indian Prosthodont Soc. 2014;14(3):196-207. Available from: https://doi.org/10.1007/s13191-014-0360-4
Aguilar M. Sinus lift procedures: an overview of current techniques. Academia.edu. 2016 Aug 24. Available from: https://www.academia.edu/27992399/Sinus_Lift_Procedures_An_Overview_of_Current_Techniques_KEYWORDS_Sinus_lift_Sinus_reconstruction_Bone_morphogenic_protein_Osteotomy
Floodeen E. Direct sinus lift. Springer EBooks. 2021;69-76. Available from: https://doi.org/10.1007/978-3-030-75750-2_10
Wimalarathna A. Indirect sinus lift: an overview of different techniques. Biomed J Sci Tech Res. 2021;33(4). Available from: https://doi.org/10.26717/bjstr.2021.33.005447
Torrella F, Pitarch J, Cabanes G, Anitua E. Ultrasonic ostectomy for the surgical approach of the maxillary sinus: a technical note. Int J Oral Maxillofac Implants. 1998;13(5):697-700. Available from: https://pubmed.ncbi.nlm.nih.gov/9796155/
Tomaso Vercellotti | Piezoelectric Bone Surgery. Quintessence Publishing Company, Ltd. Available from: https://www.quintessence-publishing.com/gbr/en/product/piezoelectric-bone-surgery
Vercellotti T, De Paoli S, Nevins M. The piezoelectric bony window osteotomy and sinus membrane elevation: introduction of a new technique for simplification of the sinus augmentation procedure. Int J Periodontics Restorative Dent. 2001;21(6):561-7. Available from: https://pubmed.ncbi.nlm.nih.gov/11794567
Huwais S, Meyer E. A novel osseous densification approach in implant osteotomy preparation to increase biomechanical primary stability, bone mineral density, and bone-to-implant contact. Int J Oral Maxillofac Implants. 2017;32(1):27-36. Available from: https://doi.org/10.11607/jomi.4817
Seo DJ, Moon SY, You JS, Lee WP, Oh JS. The effect of under-drilling and osseodensification drilling on low-density bone: A comparative ex vivo study. Appl Sci. 2022;12(3):1163.
doi: 10.3390/app12031163
Gehrke SA, et al. Effects of the healing chambers in implant macrogeometry design in a low-density bone using conventional and undersized drilling. J Int Soc Prev Commun Dent. 2021;11(4):437–47.
doi: 10.4103/jispcd.JISPCD_96_21
Barberá-Millán J, et al. Evaluation of the primary stability in dental implants placed in low density bone with a new drilling technique, Osseodensification: An in vitro study. Med Oral Patol Oral Cir Bucal. 2021;26(3):e361–7.
doi: 10.4317/medoral.24231 pubmed: 33037795
Mello-Machado RC, et al. Osseodensification enables bone healing chambers with improved low-density bone site primary stability: An in vivo study. Sci Rep. 2021;11(1):15436.
doi: 10.1038/s41598-021-94886-y pubmed: 34326400 pmcid: 8322171
Gaikwad AM, Joshi AA, Nadgere JB. Biomechanical and histomorphometric analysis of endosteal implants placed by using the osseodensification technique in animal models: A systematic review and meta-analysis. J Prosthet Dent. 2022;127(1):61–70.
doi: 10.1016/j.prosdent.2020.07.004 pubmed: 33139057
Bergamo ETP, et al. Osseodensification effect on implants primary and secondary stability: Multicenter controlled clinical trial. Clin Implant Dent Relat Res. 2021;23(3):317–28.
doi: 10.1111/cid.13007 pubmed: 34047046 pmcid: 8362055
Padhye NM, Padhye AM, Bhatavadekar NB. Osseodensification—a systematic review and qualitative analysis of published literature. J Oral Biol Craniofac Res. 2020;10(1):375–80. https://doi.org/10.1016/j.jobcr.2019.10.002 .
doi: 10.1016/j.jobcr.2019.10.002 pubmed: 31737477
Zaia B, Zaidan PS. Maxillary sinus floor augmentation through bone densification. J Surg Surg Res. 2020;6:149–51. https://doi.org/10.17352/2455-2968.000119 .
doi: 10.17352/2455-2968.000119
Sulyhan-Sulyhan K, Barberá-Millán J, Larrazábal-Morón C, Espinosa-Giménez J, Gómez-Adrián MD. Radiographic study of transcrestal sinus floor elevation using osseodensification technique with graft material: a pilot study. Biomimetics. 2024;9(5):276. https://doi.org/10.3390/biomimetics9050276 .
doi: 10.3390/biomimetics9050276 pubmed: 38786485 pmcid: 11118885
Sohn DS, Huang B, Kim J, Park WE, Park CC. Utilization of autologous concentrated growth factors (CGF) enriched bone graft matrix (sticky bone) and CGF-enriched fibrin membrane in implant dentistry. J Implant Adv Clin Dent. 2011;7(10):11-29. Available from: https://www.researchgate.net/publication/288554903_Utilization_of_Autologous_Concentrated_Growth_Factors_CGF_Enriched_Bone_Graft_Matrix_Sticky_Bone_and_CGF-Enriched_Fibrin_Membrane_in_Implant_Dentistry
Mourão CF, Valiense H, Melo ER, Mourão NB, Maia MD. Obtention of injectable platelets rich-fibrin (i-PRF) and its polymerization with bone graft: technical note. Rev Col Bras Cir. 2015;42(6):421–3. https://doi.org/10.1590/0100-69912015006014 .
doi: 10.1590/0100-69912015006014 pubmed: 26814997
Kim J. Utilization of autologous concentrated growth factors (CGF) enriched bone graft matrix (sticky bone) and CGF-enriched fibrin membrane in implant dentistry. J Implant Adv Clin Dent. 2015;7:11-29. Available from: https://www.researchgate.net/publication/288554903_Utilization_of_Autologous_Concentrated_Growth_Factors_CGF_Enriched_Bone_Graft_Matrix_Sticky_Bone_and_CGF-Enriched_Fibrin_Membrane_in_Implant_Dentistry
Hadziabdic N. PRF and sticky bone as regenerative materials in oral surgery. In: Craniofacial Surgery - Recent Advances, New Perspectives and Applications. IntechOpen; 2022. Available from: https://www.intechopen.com/chapters/84935
Xie Y, Qin Y, Wei M, Niu W. Application of sticky bone combined with concentrated growth factor (CGF) for horizontal alveolar ridge augmentation of anterior teeth: a randomized controlled clinical study. BMC Oral Health. 2024;24(1):431. https://doi.org/10.1186/s12903-024-04229-2 .
doi: 10.1186/s12903-024-04229-2 pubmed: 38589825 pmcid: 11003068
Gheno E, Alves GG, Ghiretti R, Mello-Machado RC, Signore A, Lourenço ES, et al. “Sticky Bone” preparation device: a pilot study on the release of cytokines and growth factors. Materials (Basel). 2022;15(4):1474. https://doi.org/10.3390/ma15041474 .
doi: 10.3390/ma15041474 pubmed: 35208017
Hashem AH, Khedr MF, Hosny MM, El-Destawy MT, Hashem MI. Effect of different crestal sinus lift techniques for implant placement in the posterior maxilla of deficient height: a randomized clinical trial. Appl Sci. 2023;13(11):6668. https://doi.org/10.3390/app13116668 .
doi: 10.3390/app13116668
Versah LLC. Universal Densah® Bur Kit with Tapered Pilot Drill (Regular and Short Densah® Burs). Versah; 2023. Available from: https://versah.com/shop-densah-burs/
Osstell. The Osstell ISQ Scale. Available from: https://www.osstell.com/clinical-guidelines/the-osstell-isq-scale/
Acteon. Piezotome® Solo M+. Available from: https://www.acteongroup.com/us/my-products/ultrasonics/piezotome-solo-m
Acteon. Intralift™ Kit. Available from: https://www.henryschein.com/us-en/dental/p/small-equipment/implant-related/sl-intralift-kit-2/1170193
Lim WH, Kim HJ, Kim YK, Lee JY. Tooth loss may be the cause of maxillary sinus pneumatization, which later results in fusion of the alveolar crest and floor of the sinus and in multiple cases, insufficient vertical bone volume and height. J Oral Maxillofac Surg. 2021;79(5):e1–6.
Cooper LF, Rahman A, Moriarty JD, Chaffee NR. Immediate mandibular rehabilitation with endosseous implants: simultaneous extraction, implant placement, and loading. Int J Oral Maxillofac Implants. 2019;34(3):e1–8.
Amid R, Mirfakhraei A, Amid P. Tilted implants as an alternative to sinus lift: a systematic review. J Oral Maxillofac Surg. 2021;79(4):e1–7.
Chrcanovic BR, Abreu MH, Custódio AL. Survival and complications of zygomatic implants: a systematic review. Int J Oral Maxillofac Surg. 2016;45(7):e1–9.
Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P. Interventions for replacing missing teeth: short implants versus standard length implants for oral rehabilitation. Cochrane Database Syst Rev. 2015;7:CD003879.
Boyne PJ, James RA. Grafting of the maxillary sinus floor with autogenous marrow and bone. J Oral Surg. 1980;38(8):613-6. Available from: https://pubmed.ncbi.nlm.nih.gov/6993637/
Shenoy S, Talwar A, Thomas B, Ramesh A, Vamsi R. Direct vs indirect sinus elevation: a literature review. J Maxillofac Oral Surg. 2020;5:15–21.
Wang M, He J, Liu X. Maxillary sinus floor elevation using the lateral window osteotomy versus crestal window technique with endoscopy and hydraulic pressure. Acta Microscopica. 2020;29:642–9.
Lafzi A, Atarbashi-Moghadam F, Amid R, Sijanivandi S. Different techniques in transalveolar maxillary sinus elevation: a literature review. J Adv Periodontol Implant Dent. 2021;13(1):35–42. https://doi.org/10.34172/japid.2021.004 .
doi: 10.34172/japid.2021.004 pubmed: 35919916 pmcid: 9327482
Tatum H. Maxillary and sinus implant reconstructions. Dent Clin North Am. 1986;30(2):207-29. Available from: https://pubmed.ncbi.nlm.nih.gov/3516738/
Nkenke E, Schlegel A, Schultze-Mosgau S, Neukam FW, Wiltfang J. The endoscopically controlled osteotome sinus floor elevation: a preliminary prospective study. Int J Oral Maxillofac Implants. 2002;17(4):557-66. Available from: https://pubmed.ncbi.nlm.nih.gov/12182299/
Stricker A, Voss PJ, Gutwald R, Schramm A, Schmelzeisen R. Maxillary sinus floor augmentation with autogenous bone grafts to enable placement of SLA-surfaced implants: preliminary results after 15–40 months. Clin Oral Implants Res. 2003;14(2):207–12. https://doi.org/10.1034/j.1600-0501.2003.140211.x .
doi: 10.1034/j.1600-0501.2003.140211.x pubmed: 12656881
Summers RB. Sinus floor elevation with osteotomes. J Esthet Restor Dent. 1998;10(3):164–71. https://doi.org/10.1111/j.1708-8240.1998.tb00352.x .
doi: 10.1111/j.1708-8240.1998.tb00352.x
Summers RB. A new concept in maxillary implant surgery: the osteotome technique. Compend Contin Educ Dent. 1994;15(2):152, 154-6, 158 passim; quiz 162. Available from: https://pubmed.ncbi.nlm.nih.gov/8055503/
Vitkov L, Gellrich NC, Hannig M. Sinus floor elevation via hydraulic detachment and elevation of the Schneiderian membrane. Clin Oral Implants Res. 2005;16(5):615–21. https://doi.org/10.1111/j.1600-0501.2005.01161.x .
doi: 10.1111/j.1600-0501.2005.01161.x pubmed: 16164470
Muronoi M, Xu H, Shimizu Y, Ooya K. Simplified procedure for augmentation of the sinus floor using a haemostatic nasal balloon. Br J Oral Maxillofac Surg. 2003;41(2):120–1. https://doi.org/10.1016/s0266-4356(03)00040-8 .
doi: 10.1016/s0266-4356(03)00040-8 pubmed: 12694707
Soltan M, Smiler DG. Antral membrane balloon elevation. J Oral Implantol. 2005;31(2):85–90. https://doi.org/10.1563/0-773.1 .
doi: 10.1563/0-773.1 pubmed: 15871527
Kfir E, Kfir V, Kaluski E, Mazor Z, Goldstein M. Minimally invasive antral membrane balloon elevation for single-tooth implant placement. Quintessence Int. 2011;42(8):645-50. Available from: https://pubmed.ncbi.nlm.nih.gov/21842004/
Barone A, Santini S, Marconcini S, Giacomelli L, Gherlone E, Covani U. Osteotomy and membrane elevation during the maxillary sinus augmentation procedure. Clin Oral Implants Res. 2008;19(5):511–5. https://doi.org/10.1111/j.1600-0501.2007.01498.x .
doi: 10.1111/j.1600-0501.2007.01498.x pubmed: 18371101
Troedhan A, Kurrek A, Wainwright M. Biological principles and physiology of bone regeneration under the Schneiderian membrane after sinus lift surgery: a radiological study in 14 patients. Int J Dent. 2012;2012:576238. https://doi.org/10.1155/2012/576238 .
doi: 10.1155/2012/576238 pubmed: 22754571 pmcid: 3382962
Troedhan A, Kurrek A, Wainwright M, Jank S. Schneiderian membrane detachment using transcrestal hydrodynamic ultrasonic cavitational sinus lift: a human cadaver head study and histologic analysis. J Oral Maxillofac Surg. 2014;72(8):1503.e1-1503.e10. https://doi.org/10.1016/j.joms.2014.02.021 .
doi: 10.1016/j.joms.2014.02.021 pubmed: 24746398
Catros S, Montaudon M, Bou C, Da Costa Noble R, Fricain JC, Ella B. Comparison of conventional transcrestal sinus lift and ultrasound-enhanced transcrestal hydrodynamic cavitational sinus lift for the filling of subantral space: a human cadaver study. J Oral Implantol. 2015;41(6):657–61. https://doi.org/10.1563/aaid-joi-d-14-00038 .
doi: 10.1563/aaid-joi-d-14-00038 pubmed: 25232940
Huwais S, Mazor Z, Ioannou A, Gluckman H, Neiva R. A multicenter retrospective clinical study with up-to-5-year follow-up utilizing a method that enhances bone density and allows for transcrestal sinus augmentation through compaction grafting. Int J Oral Maxillofac Implants. 2018;33(6):1305–11. https://doi.org/10.11607/jomi.6770 .
doi: 10.11607/jomi.6770 pubmed: 30427961
Kim J. Utilization of autologous concentrated growth factors (CGF) enriched bone graft matrix (sticky bone) and CGF-enriched fibrin membrane in implant dentistry. J Implant Adv Clin Dent. 2015;7:11–29.
Hadziabdic N. PRF and sticky bone as regenerative materials in oral surgery. In: Craniofacial Surgery - Recent Advances, New Perspectives and Applications. IntechOpen; 2022. Available from: https://www.intechopen.com/chapters/84935
El-Ghobashy M, Shaaban A, Melek L. Osseodensification by Densah burs versus osteotome for transcrestal maxillary sinus lifting with simultaneous implant placement. Alex Dent J. 2022;0(0). Available from: https://doi.org/10.21608/adjalexu.2022.111046.1238
Fahmy N, Abdulla N, Elsheikh S, ElAshwah A. Evaluation of transcrestal hydrodynamic piezoelectric internal sinus elevation with simultaneous implant placement: a clinical and radiographic study. Alex Dent J. 2022;0(0). Available from: https://doi.org/10.21608/adjalexu.2021.104745.1226
Fayek MF, Hammad I, Hassan KS, Kotb SH. Comparing the hydrodynamic piezoelectric technique with osseodensification for the assessment of internal sinus lifting: a randomized clinical trial. Res Sq. 2024. Available from: https://doi.org/10.21203/rs.3.rs-4132878/v1
Ahmed AK. Assessment of dental implants placed in posterior maxillary ridge using Densah burs versus standard drills: a randomized clinical trial. M.Sc. Thesis. Implantology Department, Faculty of Oral and Dental Medicine, Cairo University, Egypt. 2019.

Auteurs

Mohammed Samir (M)

AinShams University, Cairo, Egypt. MohamedSamirRamadan@dent.asu.edu.eg.

Mohamed Wagdy Bissar (MW)

Periodontology and Oral diagnosis, Faculty of Dentistry, AinShams University, Cairo, Egypt.

Hala Ahmed Abuel-Ela (HA)

Periodontology and Oral diagnosis, Faculty of Dentistry, AinShams University, Cairo, Egypt.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH