Antimicrobial surface coating in the emergency department as protective technology for infection control (ASEPTIC): a pilot randomized controlled trial.
Antimicrobial coating
Disinfection (MeSH term)
Emergency Service, Hospital (MeSH term)
Infection Control (MeSH term)
Strechers (MeSH term)
Surface cleaning
Journal
Antimicrobial resistance and infection control
ISSN: 2047-2994
Titre abrégé: Antimicrob Resist Infect Control
Pays: England
ID NLM: 101585411
Informations de publication
Date de publication:
29 Oct 2024
29 Oct 2024
Historique:
received:
01
06
2024
accepted:
06
10
2024
medline:
29
10
2024
pubmed:
29
10
2024
entrez:
29
10
2024
Statut:
epublish
Résumé
We examined the effectiveness of an antimicrobial surface coating for continual disinfection of high touch-frequency surfaces in the emergency department (ED). Following a preliminary observation identifying stretcher rails as the surface with highest touch-frequency in the ED, we conducted a pilot randomized controlled trial involving 96 stretcher rails. The stretchers were randomized to receive an antimicrobial surface coating or placebo coating. Routine cleaning of stretchers subsequently continued as per hospital protocol in both arms. Sampling for total aerobic, gram-positive halophilic, gram-negative and methicillin-resistant Staphylococcus aureus bacteria was performed pre- and post-treatment at 24 h, 7 days and 180 days. Individuals who applied the coating and outcome assessors were blinded to the allocated arms. The primary outcome is contamination of antimicrobial versus placebo rails measured as colony forming units per cm Baseline total aerobic bacteria was comparable between placebo and intervention arms (0.84 versus 1.32 CFU/cm This is the first double-blinded, placebo-controlled, randomized trial to evaluate an antimicrobial surface coating on high touch-frequency surfaces in the emergency department. Total aerobic bacteria found on antimicrobial-coated patient transport stretcher rails was significantly lower than placebo rails at 24 h.
Identifiants
pubmed: 39468577
doi: 10.1186/s13756-024-01481-7
pii: 10.1186/s13756-024-01481-7
doi:
Substances chimiques
Anti-Infective Agents
0
Types de publication
Journal Article
Randomized Controlled Trial
Langues
eng
Sous-ensembles de citation
IM
Pagination
129Informations de copyright
© 2024. The Author(s).
Références
World Health Organization. Antimicrobial resistance. Published 2021. Accessed June 21. 2023. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
Cai Y, Venkatachalam I, Tee NW, et al. Prevalence of Healthcare-Associated infections and Antimicrobial Use among Adult inpatients in Singapore Acute-Care hospitals: results from the First National Point Prevalence Survey. Clin Infect Dis off Publ Infect Dis Soc Am. 2017;64(suppl2):S61–7. https://doi.org/10.1093/cid/cix103 .
doi: 10.1093/cid/cix103
Donskey CJ. Does improving surface cleaning and disinfection reduce health care-associated infections? Am J Infect Control. 2013;41(5 Suppl):S12–9. https://doi.org/10.1016/j.ajic.2012.12.010 .
doi: 10.1016/j.ajic.2012.12.010
pubmed: 23465603
Hota B. Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis off Publ Infect Dis Soc Am. 2004;39(8):1182–9. https://doi.org/10.1086/424667 .
doi: 10.1086/424667
Boyce JM. Environmental contamination makes an important contribution to hospital infection. J Hosp Infect. 2007;65(Suppl 2):50–4. https://doi.org/10.1016/S0195-6701(07)60015-2 .
doi: 10.1016/S0195-6701(07)60015-2
pubmed: 17540242
Peters A, Schmid MN, Parneix P, et al. Impact of environmental hygiene interventions on healthcare-associated infections and patient colonization: a systematic review. Antimicrob Resist Infect Control. 2022;11(1):38. https://doi.org/10.1186/s13756-022-01075-1 .
doi: 10.1186/s13756-022-01075-1
pubmed: 35183259
pmcid: 8857881
World Health Organization. Guidelines on core components of infection prevention and control programmes at the national and acute health care facility level. 2016. Accessed June 21, 2023. https://apps.who.int/iris/bitstream/handle/10665/251730/9789241549929-eng.pdf
Dancer SJ. Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin Microbiol Rev. 2014;27(4):665–90. https://doi.org/10.1128/CMR.00020-14 .
doi: 10.1128/CMR.00020-14
pubmed: 25278571
pmcid: 4187643
Boyce JM. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control. 2016;5(1):10. https://doi.org/10.1186/s13756-016-0111-x .
doi: 10.1186/s13756-016-0111-x
pubmed: 27069623
pmcid: 4827199
Attaway HH 3rd, Fairey S, Steed LL, Salgado CD, Michels HT, Schmidt MG. Intrinsic bacterial burden associated with intensive care unit hospital beds: effects of disinfection on population recovery and mitigation of potential infection risk. Am J Infect Control. 2012;40(10):907–12. https://doi.org/10.1016/j.ajic.2011.11.019 .
doi: 10.1016/j.ajic.2011.11.019
pubmed: 22361357
Peters A, Parneix P, Kiernan M, Severin JA, Gauci T, Pittet D. New frontiers in healthcare environmental hygiene: thoughts from the 2022 healthcare cleaning forum. Antimicrob Resist Infect Control. 2023;12(1):7. https://doi.org/10.1186/s13756-022-01185-w .
doi: 10.1186/s13756-022-01185-w
pubmed: 36750872
pmcid: 9902814
Vijayan PP, Abraham PGC. Nanocoatings: Universal antiviral surface solution against COVID-19. Prog Org Coat. 2022;163:106670. https://doi.org/10.1016/j.porgcoat.2021.106670 .
doi: 10.1016/j.porgcoat.2021.106670
Hardison RL, Ryan SP, Limmer RA, et al. Residual antimicrobial coating efficacy against SARS-CoV-2. J Appl Microbiol. 2022;132(4):3375–86. https://doi.org/10.1111/jam.15437 .
doi: 10.1111/jam.15437
pubmed: 34981882
pmcid: 9547327
Ikner LA, Torrey JR, Gundy PM, Gerba CP. Efficacy of an antimicrobial surface coating against human coronavirus 229E and SARS-CoV-2. Am J Infect Control. 2021;49(12):1569–71. https://doi.org/10.1016/j.ajic.2021.08.031 .
doi: 10.1016/j.ajic.2021.08.031
pubmed: 34499978
pmcid: 8420084
Salgado CD, Sepkowitz KA, John JF, et al. Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol. 2013;34(5):479–86. https://doi.org/10.1086/670207 .
doi: 10.1086/670207
pubmed: 23571364
Tamimi AH, Carlino S, Gerba CP. Long-term efficacy of a self-disinfecting coating in an intensive care unit. Am J Infect Control. 2014;42(11):1178–81. https://doi.org/10.1016/j.ajic.2014.07.005 .
doi: 10.1016/j.ajic.2014.07.005
pubmed: 25444265
Perez V, Mena KD, Watson HN, Prater RB, McIntyre JL. Evaluation and quantitative microbial risk assessment of a unique antimicrobial agent for hospital surface treatment. Am J Infect Control. 2015;43(11):1201–7. https://doi.org/10.1016/j.ajic.2015.06.013 .
doi: 10.1016/j.ajic.2015.06.013
pubmed: 26231547
Fitton K, Barber KR, Karamon A, Zuehlke N, Atwell S, Enright S. Long-acting water-stable organosilane agent and its sustained effect on reducing microbial load in an intensive care unit. Am J Infect Control. 2017;45(11):1214–7. https://doi.org/10.1016/j.ajic.2017.06.014 .
doi: 10.1016/j.ajic.2017.06.014
pubmed: 28732741
Link T, Kleiner C, Mancuso MP, Dziadkowiec O, Halverson-Carpenter K. Determining high touch areas in the operating room with levels of contamination. Am J Infect Control. 2016;44(11):1350–5. https://doi.org/10.1016/j.ajic.2016.03.013 .
doi: 10.1016/j.ajic.2016.03.013
pubmed: 27160980
Wang TZ, Simon MS, Westblade LF, Saiman L, Furuya EY, Calfee DP. Quantitative characterization of high-touch surfaces in emergency departments and hemodialysis facilities. Infect Control Hosp Epidemiol. 2021;42(4):474–6. https://doi.org/10.1017/ice.2020.466 .
doi: 10.1017/ice.2020.466
pubmed: 33021193
ERST ASIA PACIFIC. Safety Data Sheet. Accessed September 30. 2023. https://www.erstapac.com/resistobac-safety-data-sheet
Dancer SJ. How do we assess hospital cleaning? A proposal for microbiological standards for surface hygiene in hospitals. J Hosp Infect. 2004;56(1):10–5. https://doi.org/10.1016/j.jhin.2003.09.017 .
doi: 10.1016/j.jhin.2003.09.017
pubmed: 14706265
White LF, Dancer SJ, Robertson C, McDonald J. Are hygiene standards useful in assessing infection risk? Am J Infect Control. 2008;36(5):381–4. https://doi.org/10.1016/j.ajic.2007.10.015 .
doi: 10.1016/j.ajic.2007.10.015
pubmed: 18538706
Schmidt MG, Attaway HH, Fairey SE, Howard J, Mohr D, Craig S. Self-Disinfecting Copper beds Sustain Terminal Cleaning and Disinfection effects throughout Patient Care. Appl Environ Microbiol. 2019;86(1). https://doi.org/10.1128/AEM.01886-19 .
Rutala WA, Weber DJ. Best practices for disinfection of noncritical environmental surfaces and equipment in health care facilities: a bundle approach. Am J Infect Control. 2019;47:A96–105. https://doi.org/10.1016/j.ajic.2019.01.014 .
doi: 10.1016/j.ajic.2019.01.014
Peters A, Otter J, Moldovan A, Parneix P, Voss A, Pittet D. Keeping hospitals clean and safe without breaking the bank; summary of the Healthcare Cleaning Forum 2018. Antimicrob Resist Infect Control. 2018;7(1):132. https://doi.org/10.1186/s13756-018-0420-3 .
doi: 10.1186/s13756-018-0420-3
pmcid: 6225655
Doll M, Stevens M, Bearman G. Environmental cleaning and disinfection of patient areas. Int J Infect Dis. 2018;67:52–7. https://doi.org/10.1016/j.ijid.2017.10.014 .
doi: 10.1016/j.ijid.2017.10.014
pubmed: 29102556
Baxa D, Shetron-Rama L, Golembieski M, et al. In vitro evaluation of a novel process for reducing bacterial contamination of environmental surfaces. Am J Infect Control. 2011;39(6):483–7. https://doi.org/10.1016/j.ajic.2010.10.015 .
doi: 10.1016/j.ajic.2010.10.015
pubmed: 21616563
Jose A, Gizdavic-Nikolaidis M, Swift S. Antimicrobial Coatings: reviewing options for Healthcare Applications. Appl Microbiol. 2023;3(1):145–74. https://doi.org/10.3390/applmicrobiol3010012 .
doi: 10.3390/applmicrobiol3010012
El-Wahab HA, Attia M, Hassan W, Nasser A. Preparation, characterization and evaluation of some acrylate polymers nanoparticles as binder to improving the physical properties of water based paints. Int J Nanopart Nanotechnol. 2019;5:2–18.
Ling ML, Apisarnthanarak A, Thu LTA, Villanueva V, Pandjaitan C, Yusof MY. APSIC guidelines for environmental cleaning and decontamination. Antimicrob Resist Infect Control. 2015;4:58. https://doi.org/10.1186/s13756-015-0099-7 .
doi: 10.1186/s13756-015-0099-7
pubmed: 26719796
pmcid: 4696151
Behzadinasab S, Williams MD, Aktuglu M, Falkinham JOIII, Ducker WA. Porous Antimicrobial Coatings for Killing microbes within minutes. ACS Appl Mater Interfaces. 2023;15(12):15120–8. https://doi.org/10.1021/acsami.2c22240 .
doi: 10.1021/acsami.2c22240
pubmed: 36920368
Kurashige EJO, Oie S, Furukawa H. Contamination of environmental surfaces by methicillin-resistant Staphylococcus aureus (MRSA) in rooms of inpatients with MRSA-positive body sites. Brazilian J Microbiol [publication Brazilian Soc Microbiol. 2016;47(3):703–5. https://doi.org/10.1016/j.bjm.2016.04.002 .
doi: 10.1016/j.bjm.2016.04.002
Popovich KJ, Aureden K, Ham DC, et al. SHEA/IDSA/APIC Practice recommendation: strategies to prevent methicillin-resistant Staphylococcus aureus transmission and infection in acute-care hospitals: 2022 update. Infect Control Hosp Epidemiol. 2023;44(7):1–29. https://doi.org/10.1017/ice.2023.102 .
doi: 10.1017/ice.2023.102
Liang SY, Jansson DR, Hogan PG, et al. Emergency Department Environmental Contamination with Methicillin-Resistant Staphylococcus aureus after Care of colonized patients. Ann Emerg Med. 2019;74(1):50–5. https://doi.org/10.1016/j.annemergmed.2018.12.014 .
doi: 10.1016/j.annemergmed.2018.12.014
pubmed: 30732980
pmcid: 6599550
Lei H, Jones RM, Li Y. Exploring surface cleaning strategies in hospital to prevent contact transmission of methicillin-resistant Staphylococcus aureus. BMC Infect Dis. 2017;17(1):85. https://doi.org/10.1186/s12879-016-2120-z .
doi: 10.1186/s12879-016-2120-z
pubmed: 28100179
pmcid: 5242018