Unveiling the composition of bio-earth from landfill mining and microplastic pollution.


Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
29 Oct 2024
Historique:
received: 13 08 2024
accepted: 10 10 2024
medline: 30 10 2024
pubmed: 30 10 2024
entrez: 30 10 2024
Statut: epublish

Résumé

Landfill mining is the prominent solution for the recovery of resources from legacy waste. The bio-earth recovered from landfill mining is being utilized for a variety of applications like application as fertilizer. The presence of microplastic in the recovered bio-earth disrupts its usefulness. This study investigated the composition and microplastic pollution in bio-earth derived from landfill mining at the Bhandewadi landfill, Nagpur, India. Results provided insights into its characterization and presence of microplastic. The average moisture content of the bio-earth was 25.2 ± 1.1% with total organic carbon of 14.3 ± 0.6%. The bio-earth exhibited a C:N ratio of 16.9 ± 5.0, volatile solid content of 24.6 ± 1.0%, and ash content of 75.4 ± 1.0%. Bulk density was 434.3 ± 37.2 kg/m

Identifiants

pubmed: 39472313
doi: 10.1007/s10661-024-13229-2
pii: 10.1007/s10661-024-13229-2
doi:

Substances chimiques

Microplastics 0
Water Pollutants, Chemical 0
Soil Pollutants 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1121

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Abebe, T., & Asfaw, B. T. (2020). Recovery of liquid hydrocarbon fuels from polypropylene waste plastics via catalytic pyrolysis. Journal of Catalyst and Catalysis, 7(1), 33–48. https://engineeringjournals.stmjournals.in/index.php/JoCC/article/view/3761 . Accessed 18 Dec 2023.
Alzuhairi, M. A. H., Al-Ghaban, A. M., & Almutalabi, S. N. (2016). Chemical recycling of polyethylene terephthalate (PET) as additive for asphalt. ZANCO Journal of Pure and Applied Sciences, 28(2), 675–679. https://doi.org/10.1051/matecconf/201816201042
doi: 10.1051/matecconf/201816201042
APHA. (2012). Standard methods for the examination of water and waste water. 22nd Edition, American Public Health Association, American Water Works Association, Water Environment Federation. http://www.standardmethods.org/ . Accessed 22 Jan 2024.
Arpia, A. A., Chen, W.-H., Ubando, A. T., Naqvi, S. R., & Culaba, A. B. (2021). Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: A state-of-the-art review. Journal of Hazardous Materials, 418, 126381. https://doi.org/10.1016/j.jhazmat.2021.126381
doi: 10.1016/j.jhazmat.2021.126381
Atuanya, E. I., Aborisade, W. T., & Nwogu, N. A. (2012). Impact of plastic enriched composting on soil structure, fertility and growth of maize plants. https://doi.org/10.5829/idosi.ejas.2012.4.3.270
Bandow, N., Will, V., Wachtendorf, V., Simon, F.-G., Bandow, N., Will, V., Wachtendorf, V., & Simon, F.-G. (2017). Contaminant release from aged microplastic. Environmental Chemistry, 14(6), 394–405. https://doi.org/10.1071/EN17064
doi: 10.1071/EN17064
Beinabaj, S. M., Heydariyan, H., Mohammad Aleii, H., & Hosseinzadeh, A. (2023). Concentration of heavy metals in leachate, soil, and plants in Tehran’s landfill: Investigation of the effect of landfill age on the intensity of pollution. Heliyon, 9(1), e13017. https://doi.org/10.1016/j.heliyon.2023.e13017
doi: 10.1016/j.heliyon.2023.e13017
Bhatnagar, A., Kaczala, F., Burlakovs, J., Kriipsalu, M., Hogland, M., & Hogland, W. (2017). Hunting for valuables from landfills and assessing their market opportunities A case study with Kudjape landfill in Estonia. Waste Management & Research, 35(6), 627–635. https://doi.org/10.1177/0734242X17697816
doi: 10.1177/0734242X17697816
BIS (2016). Bureau of Indian Standard. No. 16556. Municipal Solid Waste Compost, Manure Grade - Specification.
Bodîrlău, R., Teacă, C. A., & Spiridon, I. (2009). Preparation and characterization of composites comprising modified hardwood and wood polymers/poly (vinyl chloride). BioResources, 4(4). https://doi.org/10.15376/biores.4.4.1285-1304
Boots, B., Russell, C. W., & Green, D. S. (2019). Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science & Technology, 53(19), 11496–11506. https://doi.org/10.1021/acs.est.9b03304
doi: 10.1021/acs.est.9b03304
Braun, M., Mail, M., Heyse, R., & Amelung, W. (2021). Plastic in compost: Prevalence and potential input into agricultural and horticultural soils. Science of the Total Environment, 760, 143335. https://doi.org/10.1016/j.scitotenv.2020.143335
doi: 10.1016/j.scitotenv.2020.143335
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9), 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635
doi: 10.1021/acssuschemeng.9b06635
Chavan, D., Lakshmikanthan, P., Mondal, P., Kumar, S., & Kumar, R. (2019). Determination of ignition temperature of municipal solid waste for understanding surface and sub-surface landfill fire. Waste Management, 97, 123–130. https://doi.org/10.1016/j.wasman.2019.08.002
doi: 10.1016/j.wasman.2019.08.002
Chavan, D., Manjunatha, G. S., Singh, D., Periyaswami, L., Kumar, S., & Kumar, R. (2022). Estimation of spontaneous waste ignition time for prevention and control of landfill fire. Waste Management, 139, 258–268. https://doi.org/10.1016/j.wasman.2021.11.044
doi: 10.1016/j.wasman.2021.11.044
CPCB. (2019). Guidelines for disposal of legacy waste (old municipal solid waste). https://cpcb.nic.in/uploads/LegacyWasteBiomining_guidelines_29.04.2019.pdf . Accessed 18 Dec 2023.
CPCB. (2020). Annual report 2019–20 on implementation of plastic waste management rules, 2016. https://cpcb.nic.in/uploads/plasticwaste/Annual_Report_2019-20_PWM.pdf . Accessed 18 Dec 2023.
CPHEEO (2000). Central Public Health and Environmental Engineering Organisation. Manual on Municipal Solid Waste Management. Ministry of Urban Development, Govt. of India, New Delhi, India.
Datta, M., Somani, M., Ramana, G. V., & Sreekrishnan, T. R. (2021). Feasibility of re-using soil-like material obtained from mining of old MSW dumps as an earth-fill and as compost. Process Safety and Environmental Protection, 147, 477–487. https://doi.org/10.1016/j.psep.2020.09.051
doi: 10.1016/j.psep.2020.09.051
de Souza Machado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R., & Rillig, M. C. (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52(17), 9656–9665. https://doi.org/10.1021/acs.est.8b02212
doi: 10.1021/acs.est.8b02212
Dehghani, S., Moore, F., & Akhbarizadeh, R. (2017). Microplastic pollution in deposited urban dust, Tehran metropolis. Iran. Environmental Science and Pollution Research, 24, 20360–20371. https://doi.org/10.1007/s11356-017-9674-1
doi: 10.1007/s11356-017-9674-1
Depan, D., Chirdon, W., & Khattab, A. (2021). Morphological and chemical analysis of low-density polyethylene crystallized on carbon and clay nanofillers. Polymers, 13(10), 1558. https://doi.org/10.3390/polym13101558
doi: 10.3390/polym13101558
Edo, C., Fernández-Piñas, F., & Rosal, R. (2022). Microplastics identification and quantification in the composted organic fraction of municipal solid waste. Science of The Total Environment, 813, 151902. https://doi.org/10.13140/RG.2.2.31092.55687
doi: 10.13140/RG.2.2.31092.55687
Fernandes, E. M. S., de Souza, A. G., Barbosa, R. F. da S., & Rosa, Dos D. S. (2022). Municipal park grounds and microplastics contamination. Journal of Polymers and the Environment, 30(12), 5202–5210. https://doi.org/10.1007/s10924-022-02580-5
Fuller, S., & Gautam, A. (2016). A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science & Technology, 50(11), 5774–5780. https://doi.org/10.1021/acs.est.6b00816
doi: 10.1021/acs.est.6b00816
Goel, G., & Kalamdhad, A. S. (2017). Degraded municipal solid waste as partial substitute for manufacturing fired bricks. Construction and Building Materials, 155, 259–266. https://doi.org/10.1016/j.conbuildmat.2017.08.067
doi: 10.1016/j.conbuildmat.2017.08.067
Goli, V. S. N. S., Paleologos, E. K., Farid, A., Mohamed, A.-M. O., O’Kelly, B. C., El Gamal, M. M., Vaverková, M. D., Jiang, N.-J., Wang, J. J., & Xiao, L. (2022). Extraction, characterisation and remediation of microplastics from organic solid matrices. Environmental Geotechnics, 40(XXXX), 1–34. https://doi.org/10.1680/jenge.21.00072
Goli, V. S. N. S., & Singh, D. N. (2023). Extraction and characterization of microplastics in Landfill-Mined-Soil-like-Fractions: A novel methodology. Chemical Engineering Journal, 452, 139217. https://doi.org/10.1016/j.cej.2022.139217
doi: 10.1016/j.cej.2022.139217
Golwala, H., Zhang, X., Iskander, S. M., & Smith, A. L. (2021). Solid waste: An overlooked source of microplastics to the environment. Science of the Total Environment, 769, 144581. https://doi.org/10.1016/j.scitotenv.2020.144581
doi: 10.1016/j.scitotenv.2020.144581
Gonzalez-Canche, N. G., Flores-Johnson, E. A., Cortes, P., & Carrillo, J. G. (2018). Evaluation of surface treatments on 5052–H32 aluminum alloy for enhancing the interfacial adhesion of thermoplastic-based fiber metal laminates. International Journal of Adhesion and Adhesives, 82, 90–99. https://doi.org/10.1016/j.ijadhadh.2018.01.003
doi: 10.1016/j.ijadhadh.2018.01.003
Gui, J., Sun, Y., Wang, J., Chen, X., Zhang, S., & Wu, D. (2021). Microplastics in composting of rural domestic waste: Abundance, characteristics, and release from the surface of macroplastics. Environmental Pollution, 274, 116553. https://doi.org/10.1016/j.envpol.2021.116553
doi: 10.1016/j.envpol.2021.116553
He, P., Chen, L., Shao, L., Zhang, H., & Lü, F. (2019). Municipal solid waste (MSW) landfill: A source of microplastics?-Evidence of microplastics in landfill leachate. Water Research, 159, 38–45. https://doi.org/10.1016/j.watres.2019.04.060
doi: 10.1016/j.watres.2019.04.060
Hogland, W., Marques, M., & Nimmermark, S. (2004). Landfill mining and waste characterization: A strategy for remediation of contaminated areas. Journal of Material Cycles and Waste Management, 6, 119–124. https://doi.org/10.1007/s10163-003-0110-x
doi: 10.1007/s10163-003-0110-x
Hu, E., Yuan, H., Du, Y., & Chen, X. (2021). LDPE and HDPE microplastics differently affect the transport of tetracycline in saturated porous media. Materials, 14(7), 1757. https://doi.org/10.3390/ma14071757
doi: 10.3390/ma14071757
Huerta-Lwanga, E., Mendoza-Vega, J., Ribeiro, O., Gertsen, H., Peters, P., & Geissen, V. (2021). Is the polylactic acid fiber in green compost a risk for Lumbricus terrestris and Triticum aestivum? Polymers, 13(5), 703. https://doi.org/10.3390/polym13050703
doi: 10.3390/polym13050703
Hull, R. M., Krogmann, U., & Strom, P. F. (2005). Composition and characteristics of excavated materials from a New Jersey landfill. Journal of Environmental Engineering, 131(3), 478–490. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:3(478)
doi: 10.1061/(ASCE)0733-9372(2005)131:3(478)
Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. (2018). Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices. Environmental Science & Technology, 52(13), 7409–7417. https://doi.org/10.1021/acs.est.8b01517
doi: 10.1021/acs.est.8b01517
Iqbal, S., Xu, J., Allen, S. D., Khan, S., Nadir, S., Arif, M. S., & Yasmeen, T. (2020). Unraveling consequences of soil micro-and nano-plastic pollution on soil-plant system: Implications for nitrogen (N) cycling and soil microbial activity. Chemosphere, 260, 127578. https://doi.org/10.1016/j.chemosphere.2020.127578
doi: 10.1016/j.chemosphere.2020.127578
ISO (2022). Fertilizers, soil conditioners and beneficial substances — Classification. Reference number ISO 7851:2022(E).
Jain, M. S., Jambhulkar, R., & Kalamdhad, A. S. (2018). Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties. Bioresource Technology, 253, 204–213. https://doi.org/10.1016/j.biortech.2018.01.038
doi: 10.1016/j.biortech.2018.01.038
Jani, Y., Kaczala, F., Marchand, C., Hogland, M., Kriipsalu, M., Hogland, W., & Kihl, A. (2016). Characterisation of excavated fine fraction and waste composition from a Swedish landfill. Waste Management & Research, 34(12), 1292–1299. https://doi.org/10.1177/0734242X16670000
doi: 10.1177/0734242X16670000
Joseph, K., Nagendran, R., Palanivelu, K., Thanasekaran, K., & Visvanathan, C. (2004). Dumpsite rehabilitation and landfill mining. CES, Anna University, Chennai, India under ARRPET. Available at: https://niua.in/csc/assets/pdf/key-documents/phase-2/Waste/Dumpsite-Rehabilitation-Manual.pdf
Jung, M. R., Horgen, F. D., Orski, S. V., Rodriguez, V., Beers, K. L., Balazs, G. H., Jones, T. T., Work, T. M., Brignac, K. C., & Royer, S.-J. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin, 127, 704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061
doi: 10.1016/j.marpolbul.2017.12.061
Kaartinen, T., Sormunen, K., & Rintala, J. (2013). Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining. Journal of Cleaner Production, 55, 56–66. https://doi.org/10.1016/j.jclepro.2013.02.036
doi: 10.1016/j.jclepro.2013.02.036
Khalid, N., Noman, A., Aqeel, M., Masood, A., & Tufail, A. (2019). Phytoremediation potential of Xanthium strumarium for heavy metals contaminated soils at roadsides. International Journal of Environmental Science and Technology, 16, 2091–2100. https://doi.org/10.1007/s13762-018-1825-5
doi: 10.1007/s13762-018-1825-5
Khatoon, Z., Huang, S., Rafique, M., Fakhar, A., Kamran, M. A., & Santoyo, G. (2020). Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. Journal of Environmental Management, 273, 111118.
doi: 10.1016/j.jenvman.2020.111118
Kim, E., Lee, D.-H., Won, S., & Ahn, H. (2016). Evaluation of optimum moisture content for composting of beef manure and bedding material mixtures using oxygen uptake measurement. Asian-Australasian Journal of Animal Sciences, 29(5), 753.
doi: 10.5713/ajas.15.0875
Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: A review. Critical Reviews in Environmental Science and Technology, 32(4), 297–336. https://doi.org/10.1080/10643380290813462
doi: 10.1080/10643380290813462
Koelmans, A. A., Bakir, A., Burton, G. A., & Janssen, C. R. (2016). Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environmental Science & Technology, 50(7), 3315–3326. https://doi.org/10.1021/acs.est.5b06069
doi: 10.1021/acs.est.5b06069
Kumar, R., Manna, C., Padha, S., Verma, A., Sharma, P., Dhar, A., Ghosh, A., & Bhattacharya, P. (2022). Micro (nano) plastics pollution and human health: How plastics can induce carcinogenesis to humans? Chemosphere, 298, 134267. https://doi.org/10.1016/j.chemosphere.2022.134267
doi: 10.1016/j.chemosphere.2022.134267
Kundu, D., Banerjee, S., Karmakar, S., & Banerjee, R. (2021). Enrichment of N and bioavailability of P and K of lemon wastes through biotechnological intervention with special reference to Mung bean production. Bioresource Technology Reports, 15, 100794. https://doi.org/10.1016/j.biteb.2021.100794
doi: 10.1016/j.biteb.2021.100794
Kurian, J., Esakku, S., Palanivelu, K., & Selvam, A. (2003). Studies on landfill mining at solid waste dumpsites in India. Proceedings Sardinia, 3, 248–255. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3c60340b65c543619812463a75e4caae14410075 . Accessed 7 Nov 2023.
Lee, J. G., Cho, S. R., Jeong, S. T., Hwang, H. Y., & Kim, P. J. (2019). Different response of plastic film mulching on greenhouse gas intensity (GHGI) between chemical and organic fertilization in maize upland soil. Science of the Total Environment, 696, 133827. https://doi.org/10.1016/j.scitotenv.2019.133827
doi: 10.1016/j.scitotenv.2019.133827
Leege, P. B., & Thompson, W. H. (1997). Test methods for the examination of composting and compost. US Composting Council. https://doi.org/10.1007/978-94-011-5068-2_22
Li, G., Lao, W., Qin, T., & Huang, L. (2015). Rapid determination of biomass and polypropylene in three types of wood plastic composites (WPCs) using FTIR spectroscopy and partial least squares regression (PLSR). Holzforschung, 69(4), 399–404. https://doi.org/10.1515/hf-2014-0157
doi: 10.1515/hf-2014-0157
Li, X., Li, Y., Lv, D., Li, Y., & Wu, J. (2020). Nitrogen and phosphorus removal performance and bacterial communities in a multi-stage surface flow constructed wetland treating rural domestic sewage. Science of the Total Environment, 709, 136235. https://doi.org/10.1016/j.scitotenv.2019.136235
doi: 10.1016/j.scitotenv.2019.136235
Löder, M. G. J., Kuczera, M., Mintenig, S., Lorenz, C., & Gerdts, G. (2015). Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environmental Chemistry, 12(5), 563–581. https://doi.org/10.1071/EN14205
doi: 10.1071/EN14205
Mahar, R. B., Liu, J., Li, H., & Nie, Y. (2009). Bio-pretreatment of municipal solid waste prior to landfilling and its kinetics. Biodegradation, 20, 319–330. https://doi.org/10.1007/s10532-008-9222-2
doi: 10.1007/s10532-008-9222-2
Mahesh, S., Nk, G., & S, M. (2023). Identification of microplastics from urban informal solid waste landfill soil; MP associations with COD and chloride. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 87(1). https://doi.org/10.2166/wst.2022.412
Manikandan, S., Karmegam, N., Subbaiya, R., Devi, G. K., Arulvel, R., Ravindran, B., & Awasthi, M. K. (2021). Emerging nano-structured innovative materials as adsorbents in wastewater treatment. Bioresource Technology, 320, 124394. https://doi.org/10.1016/j.biortech.2020.124394
doi: 10.1016/j.biortech.2020.124394
Manohar, C. M., Prabhawathi, V., Sivakumar, P. M., & Doble, M. (2015). Design of a papain immobilized antimicrobial food package with curcumin as a crosslinker. PLoS ONE, 10(4), e0121665. https://doi.org/10.1371/journal.pone.0121665
doi: 10.1371/journal.pone.0121665
Mondal, T., Choudhury, M., Kundu, D., Dutta, D., & Samanta, P. (2023). Landfill: An eclectic review on structure, reactions and remediation approach. Waste Management, 164, 127–142. https://doi.org/10.1016/j.wasman.2023.03.034
doi: 10.1016/j.wasman.2023.03.034
Mönkäre, T. J., Palmroth, M. R., & Rintala, J. A. (2017). Screening biological methods for laboratory scale stabilization of fine fraction from landfill mining. Waste Management, 60, 739–747. https://doi.org/10.1016/j.wasman.2016.11.015
doi: 10.1016/j.wasman.2016.11.015
Monteiro, S. S., Rocha-Santos, T., Prata, J. C., Duarte, A. C., Girão, A. V., Lopes, P., Cristovão, T., & da Costa, J. P. (2022). A straightforward method for microplastic extraction from organic-rich freshwater samples. Science of the Total Environment, 815, 152941. https://doi.org/10.1016/j.scitotenv.2022.152941
doi: 10.1016/j.scitotenv.2022.152941
Mulay, Y., Owal, S., Chougule, P., & Pandit, A. (2020). Composting of floral waste by using indigenously isolated microbial consortium: An approach towards the Environment sustainability and waste management. Int J Environ Agric Res, 6(4), 20–26. https://doi.org/10.5281/zenodo.3933077
doi: 10.5281/zenodo.3933077
Narmadha, V. V., Jose, J., Patil, S., Farooqui, M. O., Srimuruganandam, B., Saravanadevi, S., & Krishnamurthi, K. (2020). Assessment of microplastics in roadside suspended dust from urban and rural environment of Nagpur, India. International Journal of Environmental Research, 14, 629–640. https://doi.org/10.1007/s41742-020-00283-0
doi: 10.1007/s41742-020-00283-0
Natesan, U., Vaikunth, R., Kumar, P., Ruthra, R., & Srinivasalu, S. (2021). Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater. Chemosphere, 277, 130263. https://doi.org/10.1016/j.chemosphere.2021.130263
doi: 10.1016/j.chemosphere.2021.130263
Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1–3), 33–50. https://doi.org/10.1016/S0304-3894(02)00282-0
doi: 10.1016/S0304-3894(02)00282-0
O’Brien, B. J. (2019). Physicochemical properties of residuals from anaerobic digestion of dairy manure and food waste: Nutrient cycling implications and opportunities for edible mushroom cultivation. The University of Vermont and State Agricultural College. https://core.ac.uk/download/pdf/215155319.pdf . Accessed 12 Jan 2024.
Olejnik, D. (2024). Evaluation of the heavy metals content in sewage sludge from selected rural and urban wastewater treatment plants in Poland in terms of its suitability for agricultural use. Sustainability, 16(12), 5198. https://doi.org/10.3390/su16125198
doi: 10.3390/su16125198
Pappu, A., Saxena, M., & Asolekar, S. R. (2007). Solid wastes generation in India and their recycling potential in building materials. Building and Environment, 42(6), 2311–2320. https://doi.org/10.1016/j.buildenv.2006.04.015
doi: 10.1016/j.buildenv.2006.04.015
Paszkiewicz, S., Szymczyk, A., Pawlikowska, D., Irska, I., Taraghi, I., Pilawka, R., Gu, J., Li, X., Tu, Y., & Piesowicz, E. (2017). Synthesis and characterization of poly (ethylene terephthalate-co-1, 4-cyclohexanedimethylene terephtlatate)-block-poly (tetramethylene oxide) copolymers. RSC Advances, 7(66), 41745–41754. https://doi.org/10.1039/C7RA07172H
doi: 10.1039/C7RA07172H
Pattnaik, S., & Reddy, M. V. (2010). Assessment of municipal solid waste management in Puducherry (Pondicherry), India. Resources, Conservation and Recycling, 54(8), 512–520. https://doi.org/10.1016/j.resconrec.2009.10.008
doi: 10.1016/j.resconrec.2009.10.008
Pereira, A. P. dos S., Silva, M. H. P. da, Lima, É. P., Paula, A. dos S., & Tommasini, F. J. (2017). Processing and characterization of PET composites reinforced with geopolymer concrete waste. Materials Research, 20, 411–420. https://doi.org/10.1590/1980-5373-MR-2017-0734
Pramila, R., & Ramesh, K. V. (2011). Biodegradation of low density polyethylene (LDPE) by fungi isolated from municipal landfill area. J. Microbiol. Biotechnol. Res, 1(4), 131–136. https://doi.org/10.1016/j.wasman.2009.09.027
Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150–159. https://doi.org/10.1016/j.trac.2018.10.029
doi: 10.1016/j.trac.2018.10.029
Prechthai, T., Padmasri, M., & Visvanathan, C. (2008). Quality assessment of mined MSW from an open dumpsite for recycling potential. Resources, Conservation and Recycling, 53(1–2), 70–78. https://doi.org/10.1016/j.resconrec.2008.09.002
doi: 10.1016/j.resconrec.2008.09.002
Puthcharoen, A., & Leungprasert, S. (2019). Determination of microplastics in soil and leachate from the landfills. Thai Environmental Engineering Journal, 33(3), 39–46.
Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., & Spooren, J. (2013). Characterization of landfilled materials: Screening of the enhanced landfill mining potential. Journal of Cleaner Production, 55, 72–83. https://doi.org/10.1016/j.jclepro.2012.06.012
doi: 10.1016/j.jclepro.2012.06.012
Rajandas, H., Parimannan, S., Sathasivam, K., Ravichandran, M., & Yin, L. S. (2012). A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation. Polymer Testing, 31(8), 1094–1099. https://doi.org/10.1016/j.polymertesting.2012.07.015
doi: 10.1016/j.polymertesting.2012.07.015
Ramesh, S., Winie, T., & Arof, A. K. (2007). Investigation of mechanical properties of polyvinyl chloride-polyethylene oxide (PVC-PEO) based polymer electrolytes for lithium polymer cells. European Polymer Journal, 43(5), 1963–1968.
Rillig, M. C. (2012). Microplastic in terrestrial ecosystems and the soil? ACS Publications. https://doi.org/10.1021/es302011r
doi: 10.1021/es302011r
Rillig, M. C., Ryo, M., Lehmann, A., Aguilar-Trigueros, C. A., Buchert, S., Wulf, A., Iwasaki, A., Roy, J., & Yang, G. (2019). The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366(6467), 886–890. https://doi.org/10.1126/science.aay2832
doi: 10.1126/science.aay2832
Rochman. (2018). Microplastics research-from sink to source. Science (New York, N.Y.), 360(6384). https://doi.org/10.1126/science.aar7734
Rong, L., Zhang, C., Jin, D., & Dai, Z. (2017). Assessment of the potential utilization of municipal solid waste from a closed irregular landfill. Journal of Cleaner Production, 142, 413–419. https://doi.org/10.1126/science.aar7734
doi: 10.1126/science.aar7734
Sahu, A. K., Sudhakar, K., & Sarviya, R. M. (2019). Influence of UV light on the thermal properties of HDPE/carbon black composites. Case Studies in Thermal Engineering, 15, 100534. https://doi.org/10.1016/j.csite.2019.100534
doi: 10.1016/j.csite.2019.100534
Sakthipriya, N. (2022). Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis. Science of the Total Environment, 809, 151160. https://doi.org/10.1016/j.scitotenv.2021.151160
doi: 10.1016/j.scitotenv.2021.151160
Saldarriaga, J. F., Aguado, R., Atxutegi, A., Bilbao, J., & Olazar, M. (2018). Kinetic modelling of pine sawdust combustion in a conical spouted bed reactor. Fuel, 227, 256–266. https://doi.org/10.1016/j.fuel.2018.04.060
doi: 10.1016/j.fuel.2018.04.060
Samanta, P., Dey, S., Kundu, D., Dutta, D., Jambulkar, R., Mishra, R., Ghosh, A. R., & Kumar, S. (2022). An insight on sampling, identification, quantification and characteristics of microplastics in solid wastes. Trends in Environmental Analytical Chemistry, e00181. https://doi.org/10.1016/j.teac.2022.e00181
Scheurer, M., & Bigalke, M. (2018). Microplastics in Swiss floodplain soils. Environmental Science & Technology, 52(6), 3591–3598. https://doi.org/10.1016/j.teac.2022.e00181
doi: 10.1016/j.teac.2022.e00181
Schwinghammer, L., Krause, S., & Schaum, C. (2021). Determination of large microplastics: Wet-sieving of dewatered digested sludge, co-substrates, and compost. Water Science and Technology, 84(2), 384–392. https://doi.org/10.2166/wst.2020.582
doi: 10.2166/wst.2020.582
Scopetani, C., Chelazzi, D., Mikola, J., Leiniö, V., Heikkinen, R., Cincinelli, A., & Pellinen, J. (2020). Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Science of the Total Environment, 733, 139338. https://doi.org/10.1016/j.scitotenv.2020.139338
doi: 10.1016/j.scitotenv.2020.139338
Shakir, A. A., Naganathan, S., & Mustapha, K. N. (2013). Properties of bricks made using fly ash, quarry dust and billet scale. Construction and Building Materials, 41, 131–138. https://doi.org/10.1016/j.conbuildmat.2012.11.077
doi: 10.1016/j.conbuildmat.2012.11.077
Shi, J., Wang, J., Lv, J., Wang, Z., Peng, Y., Shang, J., & Wang, X. (2022). Microplastic additions alter soil organic matter stability and bacterial community under varying temperature in two contrasting soils. Science of the Total Environment, 838, 156471. https://doi.org/10.1016/j.scitotenv.2022.156471
doi: 10.1016/j.scitotenv.2022.156471
Sholokhova, A., Ceponkus, J., Sablinskas, V., & Denafas, G. (2021). Abundance and characteristics of microplastics in treated organic wastes of Kaunas and Alytus regional waste management centres, Lithuania. Environmental Science and Pollution Research, 1–10. https://doi.org/10.1007/s11356-021-17378-6
Sholokhova, A., Denafas, G., Ceponkus, J., & Omelianenko, T. (2023). Microplastics in landfill bodies: Abundance, spatial distribution and effect of landfill age. Sustainability, 15(6), 1–12.
doi: 10.3390/su15065017
da Silva Vallada, D., Mendes Moraes, C. A., & Santos da Silva, P. R. (2020). Thermal pyrolysis of LDPE and LLDPE films in post-consumer packaging. Revista Eletrônica Em Gestão, Educação e Tecnologia Ambiental, 24. https://doi.org/10.5902/2236117062698
Singh, A., & Chandel, M. K. (2020). Effect of ageing on waste characteristics excavated from an Indian dumpsite and its potential valorisation. Process Safety and Environmental Protection, 134, 24–35. https://doi.org/10.1016/j.psep.2019.11.025
doi: 10.1016/j.psep.2019.11.025
Singh, A., & Chandel, M. K. (2023). Physicochemical and biological assessment of legacy waste for application as soil conditioner. Environmental Science and Pollution Research, 30(11), 29699–29710. https://doi.org/10.1007/s11356-022-24295-9
doi: 10.1007/s11356-022-24295-9
Singh, J., & Kalamdhad, A. S. (2013). Assessment of bioavailability and leachability of heavy metals during rotary drum composting of green waste (Water hyacinth). Ecological Engineering, 52, 59–69. https://doi.org/10.1016/j.ecoleng.2012.12.090
doi: 10.1016/j.ecoleng.2012.12.090
Singh, J., & Kalamdhad, A. S. (2014). Effect of carbide sludge (lime) on bioavailability and leachability of heavy metals during rotary drum composting of water hyacinth. Chemical Speciation & Bioavailability, 26(2), 76–84. https://doi.org/10.3184/095422914X13952534949370
doi: 10.3184/095422914X13952534949370
Soltanian, S., Kalogirou, S. A., Ranjbari, M., Amiri, H., Mahian, O., Khoshnevisan, B., Jafary, T., Nizami, A.-S., Gupta, V. K., & Aghaei, S. (2022). Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review. Renewable and Sustainable Energy Reviews, 156, 111975. https://doi.org/10.1016/j.rser.2021.111975
doi: 10.1016/j.rser.2021.111975
Somani, M., Datta, M., Ramana, G. V., & Sreekrishnan, T. R. (2018). Investigations on fine fraction of aged municipal solid waste recovered through landfill mining: Case study of three dumpsites from India. Waste Management & Research, 36(8), 744–755. https://doi.org/10.1177/0734242X18782393
doi: 10.1177/0734242X18782393
Su, Y., Zhang, Z., Wu, D., Zhan, L., Shi, H., & Xie, B. (2019). Occurrence of microplastics in landfill systems and their fate with landfill age. Water Research, 164, 114968. https://doi.org/10.1016/j.watres.2019.114968
doi: 10.1016/j.watres.2019.114968
Su, Y., Zhang, Z., Zhu, J., Shi, J., Wei, H., Xie, B., & Shi, H. (2021). Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process. Environmental Pollution, 270, 116278. https://doi.org/10.1016/j.envpol.2020.116278
doi: 10.1016/j.envpol.2020.116278
Syakti, A. D. (2017). Microplastics monitoring in marine environment. Omni-Akuatika, 13(2). https://doi.org/10.20884/1.oa.2017.13.2.430
van Schothorst, B., Beriot, N., Huerta Lwanga, E., & Geissen, V. (2021). Sources of light density microplastic related to two agricultural practices: The use of compost and plastic mulch. Environments, 8(4), 36. https://doi.org/10.3390/environments8040036
doi: 10.3390/environments8040036
Wan, Y., Chen, X., Liu, Q., Hu, H., Wu, C., & Xue, Q. (2022). Informal landfill contributes to the pollution of microplastics in the surrounding environment. Environmental Pollution, 293, 118586. https://doi.org/10.1016/j.envpol.2021.118586
doi: 10.1016/j.envpol.2021.118586
Wander, M. (2004). Soil organic matter fractions and their relevance to soil function. Soil Organic Matter in Sustainable Agriculture. CRC Press, Boca Raton, FL, 67–102. https://doi.org/10.1201/9780203496374
Wang, J., Peng, J., Tan, Z., Gao, Y., Zhan, Z., Chen, Q., & Cai, L. (2017). Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere, 171, 248–258. https://doi.org/10.1016/j.chemosphere.2016.12.074
doi: 10.1016/j.chemosphere.2016.12.074
Wang, W., Zhang, Z., Gao, J., & Wu, H. (2024). The impacts of microplastics on the cycling of carbon and nitrogen in terrestrial soil ecosystems: Progress and prospects. Science of the Total Environment, 915, 169977. https://doi.org/10.1016/j.scitotenv.2024.169977
doi: 10.1016/j.scitotenv.2024.169977
Wei, Y., Zhao, Y., Shi, M., Cao, Z., Lu, Q., Yang, T., Fan, Y., & Wei, Z. (2018). Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology, 247, 190–199. https://doi.org/10.1016/j.biortech.2017.09.092
doi: 10.1016/j.biortech.2017.09.092
Wu, L., Ma, L. Q., & Martinez, G. A. (2000). Comparison of methods for evaluating stability and maturity of biosolids compost. Wiley Online Library. https://doi.org/10.2134/jeq2000.00472425002900020008x
Xiao, M., Shahbaz, M., Liang, Y., Yang, J., Wang, S., Chadwicka, D. R., Jones, D., Chen, J., & Ge, T. (2021). Effect of microplastics on organic matter decomposition in paddy soil amended with crop residues and labile C: A three-source-partitioning study. Journal of Hazardous Materials, 416, 126221. https://doi.org/10.1016/j.jhazmat.2021.126221
doi: 10.1016/j.jhazmat.2021.126221
Zhang, G., Liu, D., Lin, J., Kumar, A., Jia, K., Tian, X., Yu, Z., & Zhu, B. (2023). Priming effects induced by degradable microplastics in agricultural soils. Soil Biology and Biochemistry, 180, 109006. https://doi.org/10.1016/j.soilbio.2023.109006
doi: 10.1016/j.soilbio.2023.109006
Zhong, H., Yang, S., Zhu, L., Liu, C., Zhang, Y., & Zhang, Y. (2021). Effect of microplastics in sludge impacts on the vermicomposting. Bioresource Technology, 326, 124777. https://doi.org/10.1016/j.biortech.2021.124777
doi: 10.1016/j.biortech.2021.124777

Auteurs

Rohit Jambhulkar (R)

Waste Re-Processing Division (WRD), CSIR - National Environmental Engineering Research Institute (CSIR - NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.

Nidhi Sharma (N)

Waste Re-Processing Division (WRD), CSIR - National Environmental Engineering Research Institute (CSIR - NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
Institute of Environment and Sustainable Development (IESD), Banaras Hindu University (BHU), Varanasi, 221 005, Uttar Pradesh, India.

Debajyoti Kundu (D)

Waste Re-Processing Division (WRD), CSIR - National Environmental Engineering Research Institute (CSIR - NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.

Sunil Kumar (S)

Waste Re-Processing Division (WRD), CSIR - National Environmental Engineering Research Institute (CSIR - NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India. s_kumar@neeri.res.in.

Articles similaires

Animals Lung India Sheep Transcriptome
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH