An evaluation of glass beads from the southwestern coastal state of Goa, India, as a potential pollutant in marine ecosystem.
Environment
Glass beads
Marine
Road
Toxic
Journal
Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350
Informations de publication
Date de publication:
30 Oct 2024
30 Oct 2024
Historique:
received:
03
10
2024
accepted:
21
10
2024
medline:
30
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
Glass beads laid on the road, mainly used for better visibility, can contribute to harmful anthropogenic waste to the marine environment, and it is a prerequisite to distinguish the chemical properties associated with it. This is the first systematic approach and evaluation of the toxic and non-toxic characteristics of the glass beads from the Indian coastal region (Goa state), which originated from the wearing of road paint over a period. Glass beads ranging from a few hundred to ~ 1000 µm were found on various beaches far from the roadside throughout the coastal state. Examination of these glass beads revealed the possible contribution of toxic elements such as arsenic, lead, cadmium, chromium, and barium beyond the global regulatory limit. Mercury and other analyzed elements are within acceptable limits. However, a quantitative assessment of their environmental impact indicates that glass beads can impact the marine ecosystem and increase the background level of environmental pollutants.
Identifiants
pubmed: 39472331
doi: 10.1007/s10661-024-13288-5
pii: 10.1007/s10661-024-13288-5
doi:
Substances chimiques
Water Pollutants, Chemical
0
Arsenic
N712M78A8G
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1127Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
AASHTO M (247)-13 (2018). Standard specification for glass beads used in pavement markings, American Association of State and Highway Transportation Officials, Washington, District of Columbia, United States.
ABNT, NBR 16184 (2013). Sinalizaçao ˜ horizontal vi´ aria — esferas e microesferas de vidro — requisitos e m´ etodos de ensaio (in Portuguese), Associaç˜ ao Brasileira de Normas T´ ecnicas.
Asdrubali, F., Buratti, C., Moretti, E., D'Alessandro, F., & Schiavoni, S. (2013). Assessment of the performance of road markings in urban areas: The outcomes of the CIVITAS renaissance project. The Open Transportation Journal, 7(1), 7–19.
Brownlee, D. E., Bates, B., & Schramm, L. (1997). The elemental composition of stony cosmic spherules. Meteoritics & Planetary Science, 32(2), 157–175.
doi: 10.1111/j.1945-5100.1997.tb01257.x
Burghardt, T. E., Babić, D., & Pashkevich, A. (2021). Performance and environmental assessment of prefabricated retroreflective spots for road marking. Case Studies in Construction Materials, 15, e00555.
doi: 10.1016/j.cscm.2021.e00555
Burghardt, T. E., Ettinger, K., Köck, B., & Hauzenberger, C. (2022a). Glass beads for road markings and other industrial usage: Crystallinity and hazardous elements. Case Studies in Construction Materials, 17, e01213.
Burghardt, T. E., Pashkevich, A., Babić, D., Mosböck, H., Babić, D., & Żakowska, L. (2022b). Microplastics and road markings: The role of glass beads and loss estimation. Transportation Research Part d: Transport and Environment, 102, 103123.
doi: 10.1016/j.trd.2021.103123
Chen, S., Bi, H., Jianping, H., & Lin, J. (2020). Anthropogenic dust: Sources, characteristics, and impacts. In AGU Fall Meeting Abstracts, 2020, A007-0012.
Choubane, B., Sevearance, J., Lee, H. S., Upshaw, P., & Fletcher, J. (2013). Repeatability and reproducibility of mobile retroreflectivity units for measurement of pavement markings. Transportation Research Record, 2337(1), 74–82.
doi: 10.3141/2337-10
CSIRO. (2013). Australian paint approval scheme. Specification AP-S0042. Glass beads for use in pavement marking paints. Commonwealth Scientific and Industrial Research Organisation, Materials Science and Engineering Division.
Das, S., Sultana, K. W., Ndhlala, A. R., Mondal, M., & Chandra, I. (2023). Heavy metal pollution in the environment and its impact on health: Exploring green technology for remediation. Environmental Health Insights, 17, 11786302231201259.
Dos Santos, É. J., Herrmann, A. B., Prado, S. K., et al. (2013). Determination of toxic elements in glass beads used for pavement marking by ICP OES. Microchemical Journal, 108, 233–238.
doi: 10.1016/j.microc.2012.11.003
Duty, S. S. (2006). Buyers beware of foreign glass beads: Assessing the potential risks of importing products into North America for metal finishing applications. Metal Finishing, 104(4), 33–34.
doi: 10.1016/S0026-0576(06)80093-0
European Commission (2017) EU green public procurement criteria for paints, varnishes and road marking. Commission Staff Working Document SWD (2017) 484 Final. European Commission.
EN 1423 (European standard) (2012). Road marking materials. Drop on materials. Glass beads, antiskid aggregates and mixtures of the two, European Committee for Standardization.
Flint Trading, Inc. (2008). Glass beads and heavy metals. Thomasville, NC.
French, B. M., & Koeberl, C. (2010). The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth-Science Reviews, 98(1–2), 123–170.
doi: 10.1016/j.earscirev.2009.10.009
Fulke, A. B., Ratanpal, S., & Sonker, S. (2024). Understanding heavy metal toxicity: Implications on human health, marine ecosystems and bioremediation strategies. Marine Pollution Bulletin, 206, 116707.
doi: 10.1016/j.marpolbul.2024.116707
Gałuszka, A., & Migaszewski, Z. M. (2017). Glass microspheres as a potential indicator of the anthropocene: A first study in an urban environment. The Holocene, 28(2), 323–329.
doi: 10.1177/0959683617721332
Genge, M. J., Engrand, C., Gounelle, M., & Taylor, S. (2008). The classification of micrometeorites. Meteoritics & Planetary Science, 43(3), 497–515.
doi: 10.1111/j.1945-5100.2008.tb00668.x
Glass, B. P., Huber, H., & Koeberl, C. (2004). Geochemistry of Cenozoic microtektites and clinopyroxene-bearing spherules. Geochimica Et Cosmochimica Acta, 68(19), 3971–4006.
doi: 10.1016/j.gca.2004.02.026
Goddu, S. R., Appel, E., Jordanova, D., & Wehland, F. (2004). Magnetic properties of road dust from Visakhapatnam (India)––Relationship to industrial pollution and road traffic. Phys Chem Earth, Parts a/b/c, 29(13–14), 985–995.
doi: 10.1016/j.pce.2004.02.002
Grosges, T. (2008). Retroreflection of glass beads for traffic road stripe paints. Optical Materials, 30(10), 1549–1554.
doi: 10.1016/j.optmat.2007.09.010
Hayden, J. S. (2004). Ecologically friendly optical glasses. Optics and Photonics News, 15(8), 36–41.
doi: 10.1364/OPN.15.8.000036
Hynes, M. J., & Jonson, B. (1997). Lead, glass and the environment. Chemical Society Reviews, 26(2), 133–146.
doi: 10.1039/cs9972600133
IRC (Indian Road Congress): 35 (2015). Code of practice for road markings, second revision.
Jahan, K., Axe, L. B., Sandhu, N. K., Ndiba, P. K., Ramanujachary, K. V., & Magdaleno, T. F. (2010). Heavy metal contamination in highway marking glass beads. Rowan University.
Kim, W., Doh, S. J., & Yu, Y. (2009). Anthropogenic contribution of magnetic particulates in urban roadside dust. Atmospheric Environ., 43(19), 3137–3144.
doi: 10.1016/j.atmosenv.2009.02.056
KS L 2521 (2019). Korean Standards Association Glass beads for traffic paints (in Korean) Korean Standards Association.
Mangalgiri, K., 2012. Heavy metals in glass beads used in pavement markings (Doctoral dissertation, Texas A & M University).
Migaszewski, Z. M., Gałuszka, A., Dołęgowska, S., & Michalik, A. (2021). Glass microspheres in road dust of the city of Kielce (south-central Poland) as markers of traffic-related pollution. Journal of Hazardous Materials, 413, 125355.
doi: 10.1016/j.jhazmat.2021.125355
Migaszewski, Z. M., Gałuszka, A., Dołęgowska, S., & Michalik, A. (2022). Abundance and fate of glass microspheres in river sediments and roadside soils: Lessons from the Świętokrzyskie region case study (south-central Poland). Science of the Total Environment, 821, 153410.
doi: 10.1016/j.scitotenv.2022.153410
Miller, T. R. (1992). Benefit–cost analysis of lane marking. Transportation Research Record: Journal of the Transportation Research Board, 1334, 38–45.
Misra, S., Newsom, H. E., Prasad, M. S., Geissman, J. W., Dube, A., & Sengupta, D. (2009). Geochemical identification of impactor for Lonar crater. India. Meteorit. Planet. Sci., 44(7), 1001–1018.
doi: 10.1111/j.1945-5100.2009.tb00784.x
Mok, W. J., Ghaffar, M. A., Noor, M. I. M., Lananan, F., & Azra, M. N., 2023. Understanding climate change and heavy metals in coastal areas: A macroanalysis assessment. Water, 15(5), 891. MDPI AG.
Morel, F., Milligan, A., & Saito, M. (2006). Marine bioinorganic chemistry. The Oceans and Marine Geochemistry, 6, 113.
Niyogi, A., Pati, J. K., Patel, S. C., Panda, D., & Patil, S. K. (2011). Anthropogenic and impact spherules: Morphological similarity and chemical distinction–A case study from India and its implications. Journal of Earth System Science, 120(6), 1043–1054.
doi: 10.1007/s12040-011-0125-y
Niyogi, A., Patia, J. K., Pandab, D., Chakarvortya, M., & Usmania, M. (2014). Micro-chemical analysis of anthropogenic spherules and its role in spherule type discrimination. Journal of the Indian Chemical Society, 91, 569–573.
Pattan, J. N., Prasad, M. S., & Babu, E. V. S. S. K. (2010). Correlation of the oldest Toba Tuff to sediments in the central Indian Ocean Basin. Journal of Earth System Science, 119(4), 531–539.
doi: 10.1007/s12040-010-0027-4
Pouchou, J. L., & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In Electron probe quantitation (pp. 31–75). Springer.
Prasad, M. S., Rudraswami, N. G., & Panda, D. K. (2013). Micrometeorite flux on Earth during the last~ 50,000 years. Journal of Geophysical Research (Planets), 118(11), 2381–2399.
doi: 10.1002/2013JE004460
Prasad, M. S., & Sudhakar, M. (1996). Australasian microtektites from the Central Indian Basin: Implications for ejecta distribution patterns. Current Science, 70, 74–77.
Retting, R. A., McGee, H. W., & Farmer, C. M. (2000). Influence of experimental pavement markings on urban freeway exit-ramp traffic speeds. Transportation Research Record, 1705(1), 116–121.
doi: 10.3141/1705-17
Rudraswami, N. G., Fernandes, D., & Pandey, M. (2020). Probing the nature of extraterrestrial dust reaching the Earth’s surface collected from the Maitri station. Antarctica. Meteoritics & Planetary Science, 55(10), 2256–2266.
doi: 10.1111/maps.13574
Rudraswami, N. G., Prasad, M. S., Dey, S., Plane, J. M. C., Feng, W., & Taylor, S. (2015). Evaluating changes in the elemental composition of micrometeorites during entry into the Earth’s atmosphere. The Astrophysical Journal, 814(1), 78.
doi: 10.1088/0004-637X/814/1/78
Sandhu, N. K. (2013). Leaching of metals and metalloids from highway marking glass beads and the potential environmental impact. PhD Thesis.
Sandhu, N. K., Axe, L., Ndiba, P. K., & Jahan, K. (2013a). Metal and metalloid concentrations in domestic and imported glass beads used for highway marking. Environmental Engineering Science, 30(7), 387–392.
doi: 10.1089/ees.2013.0023
Sandhu, N. K., Axe, L. B., Jahan, K., Ramanujachary, K. V., & Magdaleno, T. F. (2013b). Leaching of arsenic, lead, and antimony from highway-marking glass beads. Journal of Environmental Engineering, 139(9), 1168–1177.
doi: 10.1061/(ASCE)EE.1943-7870.0000721
Schnell, T., Aktan, F., & Lee, Y. C. (2003). Nighttime visibility and retroreflectance of pavement markings in dry, wet, and rainy conditions. Transportation Research Record, 1824(1), 144–155.
doi: 10.3141/1824-16
Shetye, S. S., Rudraswami, N. G., Nandakumar, K., & Manjrekar, S. (2019). Anthropogenic spherules in Zuari estuary, south west coast of India. Marine Pollution Bulletin, 143, 1–5.
doi: 10.1016/j.marpolbul.2019.03.058
Shin, S. Y., Lee, J. I., Chung, W. J., Cho, S. H., & Choi, Y. G. (2019). Assessing the refractive index of glass beads for use in road-marking applications via retroreflectance measurement. Current Optics and Photonics, 3(5), 415–422.
Simonson, B. M. (2003). Petrographic criteria for recognizing certain types of impact spherules in well-preserved Precambrian successions. Astrobiology, 3(1), 49–65.
doi: 10.1089/153110703321632417
Simonson, B.M., McDonald, I., Shukolyukov, A., Koeberl, C., Reimold, W.U., & Lugmair, G.W. (2009). Geochemistry of 2.63–2.49 Ga impact spherule layers and implications for stratigraphic correlations and impact processes. Precambrian Research, 175(1–4), 51–76.
State of California (2009). Specification #8010–004, Specification for Glass Spheres (Beads), State of California, Department of Transportation Administration, Division of Procurement and Contracts.
Turner, A., & Keene, J. (2023). Glass microbeads in coastal sediments as a proxy for traffic-related particulate contamination. Marine Pollution Bulletin, 188, 114663.
Van Achterbergh, E., Ryan, C. G., & Griffin, W. L. (1999). GLITTER: Online interactive data reduction for the laser ablation inductively coupled plasma mass spectrometry microprobe. In Ninth Annual VM Goldschmidt Conference (p. 7215).
Weiss, B. P., Pedersen, S., Garrick-Bethell, I., Stewart, S. T., Louzada, K. L., Maloof, A. C., & Swanson-Hysell, N. L. (2010). Paleomagnetism of impact spherules from Lonar crater, India and a test for impact-generated fields. Earth and Planetary Science Letters, 298(1–2), 66–76.
doi: 10.1016/j.epsl.2010.07.028
Wenzel, K. M., Burghardt, T. E., Pashkevich, A., & Buckermann, W. A. (2022). Glass beads for road markings: Surface damage and retroreflection decay study. Applied Sciences, 12(4), 2258.
doi: 10.3390/app12042258
Yang, T., Liu, Q., Li, H., Zeng, Q., & Chan, L. (2010). Anthropogenic magnetic particles and heavy metals in the road dust: Magnetic identification and its implications. Atmospheric Environment, 44(9), 1175–1185.
doi: 10.1016/j.atmosenv.2009.12.028