A phosphate starvation induced small RNA promotes Bacillus biofilm formation.


Journal

NPJ biofilms and microbiomes
ISSN: 2055-5008
Titre abrégé: NPJ Biofilms Microbiomes
Pays: United States
ID NLM: 101666944

Informations de publication

Date de publication:
29 Oct 2024
Historique:
received: 16 11 2023
accepted: 13 10 2024
medline: 30 10 2024
pubmed: 30 10 2024
entrez: 30 10 2024
Statut: epublish

Résumé

Currently, almost all known regulators involved in bacterial phosphorus metabolism are proteins. In this study, we identified a conserved new small regulatory RNA (sRNA), named PhoS, encoded in the 3' untranslated region (UTR) of the phoPR genes in Bacillus velezensis and B. subtilis. Expression of phoS is strongly induced upon phosphorus scarcity and stimulated by the transcription factor PhoP. Conversely, PhoS positively regulates PhoP translation by binding to the ribosome binding site (RBS) of phoP mRNA. PhoS can promote Bacillus biofilm formation through, at least in part, enhancing the expression of the matrix-related genes, such as the eps genes and the tapA-sipW-tasA operon. The positive regulation of phoP expression by PhoS contributes to the promoting effect of PhoS on biofilm formation. sRNAs regulating biofilm formation have rarely been reported in gram-positive Bacillus species. Here we highlight the significance of sRNAs involved in two important biological processes: phosphate metabolism and biofilm formation.

Identifiants

pubmed: 39472585
doi: 10.1038/s41522-024-00586-6
pii: 10.1038/s41522-024-00586-6
doi:

Substances chimiques

Phosphates 0
Bacterial Proteins 0
RNA, Bacterial 0
PhoP protein, Bacteria 125360-99-8
RNA, Small Untranslated 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

115

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 31970097

Informations de copyright

© 2024. The Author(s).

Références

Hulett, F. M. in Bacillus subtilis and Other Gram-positive Bacteria : Biochemistry, Physiology and Molecular Biology (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 229–235 (American Society for Microbiology, 1993).
Pedreira, T., Elfmann, C. & Stülke, J. The current state of Subti Wiki, the database for the model organism Bacillus subtilis. Nucleic Acids Res. 50, D875–D882 (2022).
pubmed: 34664671 doi: 10.1093/nar/gkab943
Martín, J. F. Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. J. Bacteriol. 186, 5197–5201 (2004).
pubmed: 15292120 pmcid: 490900 doi: 10.1128/JB.186.16.5197-5201.2004
Jia, T. et al. The phosphate-induced small RNA EsrL promotes E. coli virulence, biofilm formation, and intestinal colonization. Sci. Signal. 16, eabm0488 (2023).
pubmed: 36626577 doi: 10.1126/scisignal.abm0488
Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R. & Kovacs, A. T. Bacillus subtilis biofilm formation and social interactions. Nat. Rev. Microbiol. 19, 600–614 (2021).
pubmed: 33824496 doi: 10.1038/s41579-021-00540-9
Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 11, 157–168 (2013).
pubmed: 23353768 pmcid: 3936787 doi: 10.1038/nrmicro2960
Böhning, J. et al. Donor-strand exchange drives assembly of the TasA scaffold in Bacillus subtilis biofilms. Nat. Commun. 13, 7082 (2022).
pubmed: 36400765 pmcid: 9674648 doi: 10.1038/s41467-022-34700-z
Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R. & Kolter, R. Fruiting body formation by Bacillus subtilis. Proc. Natl Acad. Sci. USA 98, 11621–11626 (2001).
pubmed: 11572999 pmcid: 58779 doi: 10.1073/pnas.191384198
Kearns, D. B., Chu, F., Branda, S. S., Kolter, R. & Losick, R. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55, 739–749 (2005).
pubmed: 15661000 doi: 10.1111/j.1365-2958.2004.04440.x
Romero, D., Aguilar, C., Losick, R. & Kolter, R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl Acad. Sci. USA 107, 2230–2234 (2010).
pubmed: 20080671 pmcid: 2836674 doi: 10.1073/pnas.0910560107
Jackson, D. W. et al. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J. Bacteriol. 184, 290–301 (2002).
pubmed: 11741870 pmcid: 134780 doi: 10.1128/JB.184.1.290-301.2002
Lapouge, K., Schubert, M., Allain, F. H. & Haas, D. Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol. Microbiol. 67, 241–253 (2008).
pubmed: 18047567 doi: 10.1111/j.1365-2958.2007.06042.x
Mika, F. et al. Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli. Mol. Microbiol. 84, 51–65 (2012).
pubmed: 22356413 pmcid: 3465796 doi: 10.1111/j.1365-2958.2012.08002.x
Monteiro, C. et al. Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium. RNA Biol. 9, 489–502 (2012).
pubmed: 22336758 doi: 10.4161/rna.19682
Thomason, M. K., Fontaine, F., De Lay, N. & Storz, G. A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol. Microbiol. 84, 17–35 (2012).
pubmed: 22289118 pmcid: 3312966 doi: 10.1111/j.1365-2958.2012.07965.x
Papenfort, K., Förstner, K. U., Cong, J. P., Sharma, C. M. & Bassler, B. L. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc. Natl Acad. Sci. USA 112, E766–E775 (2015).
pubmed: 25646441 pmcid: 4343088 doi: 10.1073/pnas.1500203112
Bak, G. et al. Identification of novel sRNAs involved in biofilm formation, motility, and fimbriae formation in Escherichia coli. Sci. Rep. 5, 15287 (2015).
pubmed: 26469694 pmcid: 4606813 doi: 10.1038/srep15287
Raad, N., Tandon, D., Hapfelmeier, S. & Polacek, N. The stationary phase-specific sRNA FimR2 is a multifunctional regulator of bacterial motility, biofilm formation and virulence. Nucleic Acids Res. 50, 11858–11875 (2022).
pubmed: 36354005 pmcid: 9723502 doi: 10.1093/nar/gkac1025
Bronesky, D. et al. A multifaceted small RNA modulates gene expression upon glucose limitation in Staphylococcus aureus. EMBO J. 38, e99363 (2019).
pubmed: 30760492 pmcid: 6418428 doi: 10.15252/embj.201899363
Schoenfelder, S. M. K. et al. The small non-coding RNA RsaE influences extracellular matrix composition in Staphylococcus epidermidis biofilm communities. PLoS Pathog. 15, e1007618 (2019).
pubmed: 30870530 pmcid: 6435200 doi: 10.1371/journal.ppat.1007618
Fan, B., Blom, J., Klenk, H. P. & Borriss, R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis Species Complex. Front. Microbiol. 8, 22 (2017).
pubmed: 28163698 pmcid: 5247444 doi: 10.3389/fmicb.2017.00022
Fan, B. et al. dRNA-Seq reveals genomewide TSSs and noncoding RNAs of plant beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42. PLoS One 10, e0142002 (2015).
pubmed: 26540162 pmcid: 4634765 doi: 10.1371/journal.pone.0142002
Konkol, M. A., Blair, K. M. & Kearns, D. B. Plasmid-encoded comi inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J. Bacteriol. 195, 4085–4093 (2013).
pubmed: 23836866 pmcid: 3754741 doi: 10.1128/JB.00696-13
Joseph, P., Fantino, J. R., Herbaud, M. L. & Denizot, F. Rapid orientated cloning in a shuttle vector allowing modulated gene expression in Bacillus subtilis. FEMS Microbiol. Lett. 205, 91–97 (2001).
pubmed: 11728721 doi: 10.1111/j.1574-6968.2001.tb10930.x
Arnaouteli, S., MacPhee, C. E. & Stanley-Wall, N. R. Just in case it rains: building a hydrophobic biofilm the Bacillus subtilis way. Curr. Opin. Microbiol. 34, 7–12 (2016).
pubmed: 27458867 doi: 10.1016/j.mib.2016.07.012
Pragai, Z. et al. Transcriptional regulation of the phoPR operon in Bacillus subtilis. J. Bacteriol. 186, 1182–1190 (2004).
pubmed: 14762014 pmcid: 344217 doi: 10.1128/JB.186.4.1182-1190.2004
Salzberg, L. I. et al. Genome-wide analysis of phosphorylated PhoP binding to chromosomal DNA reveals several novel features of the PhoPR-mediated phosphate limitation response in Bacillus subtilis. J. Bacteriol. 197, 1492–1506 (2015).
pubmed: 25666134 pmcid: 4372752 doi: 10.1128/JB.02570-14
Busch, A., Richter, A. S. & Backofen, R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24, 2849–2856 (2008).
pubmed: 18940824 pmcid: 2639303 doi: 10.1093/bioinformatics/btn544
Antelmann, H., Scharf, C. & Hecker, M. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J. Bacteriol. 182, 4478–4490 (2000).
pubmed: 10913081 pmcid: 94619 doi: 10.1128/JB.182.16.4478-4490.2000
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids Res. 31, 3406–3415 (2003).
pubmed: 12824337 pmcid: 169194 doi: 10.1093/nar/gkg595
Bucher, T., Oppenheimer-Shaanan, Y., Savidor, A., Bloom-Ackermann, Z. & Kolodkin-Gal, I. Disturbance of the bacterial cell wall specifically interferes with biofilm formation. Environ. Microbiol. Rep. 7, 990–1004 (2015).
pubmed: 26472159 doi: 10.1111/1758-2229.12346
Xu, Z. et al. Bacillus velezensis wall Teichoic acids are required for biofilm formation and root colonization. Appl. Environ. Microbiol. 85, e02116–18 (2019).
Core, L. & Perego, M. TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis. Mol. Microbiol. 49, 1509–1522 (2003).
pubmed: 12950917 doi: 10.1046/j.1365-2958.2003.03659.x
Msadek, T., Kunst, F., Klier, A. & Rapoport, G. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J. Bacteriol. 173, 2366–2377 (1991).
pubmed: 1901055 pmcid: 207789 doi: 10.1128/jb.173.7.2366-2377.1991
Kobayashi, K. Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol. Microbiol. 66, 395–409 (2007).
pubmed: 17850253 doi: 10.1111/j.1365-2958.2007.05923.x
Marlow, V. L. et al. Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm. J. Bacteriol. 196, 16–27 (2014).
pubmed: 24123822 pmcid: 3911142 doi: 10.1128/JB.00930-13
Verhamme, D. T., Murray, E. J. & Stanley-Wall, N. R. DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J. Bacteriol. 191, 100–108 (2009).
pubmed: 18978066 doi: 10.1128/JB.01236-08
Lopez, D., Vlamakis, H., Losick, R. & Kolter, R. Paracrine signaling in a bacterium. Genes Dev. 23, 1631–1638 (2009).
pubmed: 19605685 pmcid: 2714712 doi: 10.1101/gad.1813709
Lopez, D., Fischbach, M. A., Chu, F., Losick, R. & Kolter, R. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc. Natl Acad. Sci. USA 106, 280–285 (2009).
pubmed: 19114652 doi: 10.1073/pnas.0810940106
Allenby, N. E. et al. Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. J. Bacteriol. 187, 8063–8080 (2005).
pubmed: 16291680 pmcid: 1291260 doi: 10.1128/JB.187.23.8063-8080.2005
Schoenborn, A. A. et al. Defining the expression, production, and signaling roles of specialized metabolites during Bacillus subtilis differentiation. J. Bacteriol. 203, e0033721 (2021).
pubmed: 34460312 doi: 10.1128/JB.00337-21
Gallegos-Monterrosa, R., Mhatre, E. & Kovács, Á. T. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium. Microbiology (Reading) 162, 1922–1932 (2016).
pubmed: 27655338 doi: 10.1099/mic.0.000371
Botella, E. et al. Cell envelope gene expression in phosphate-limited Bacillus subtilis cells. Microbiology 157, 2470–2484 (2011).
pubmed: 21636651 doi: 10.1099/mic.0.049205-0
Mann, M., Wright, P. R. & Backofen, R. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res. 45, W435–W439 (2017).
pubmed: 28472523 pmcid: 5570192 doi: 10.1093/nar/gkx279
Rochat, T. et al. Tracking the elusive function of Bacillus subtilis Hfq. PLoS ONE 10, e0124977 (2015).
pubmed: 25915524 pmcid: 4410918 doi: 10.1371/journal.pone.0124977
Sledjeski, D. D., Whitman, C. & Zhang, A. Hfq is necessary for regulation by the untranslated RNA DsrA. J. Bacteriol. 183, 1997–2005 (2001).
pubmed: 11222598 pmcid: 95095 doi: 10.1128/JB.183.6.1997-2005.2001
Irnov, I., Sharma, C. M., Vogel, J. & Winkler, W. C. Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res. 38, 6637–6651 (2010).
pubmed: 20525796 pmcid: 2965217 doi: 10.1093/nar/gkq454
Nicolas, P. et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335, 1103–1106 (2012).
pubmed: 22383849 doi: 10.1126/science.1206848
Mars, R. A. et al. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis. PLoS Genet. 11, e1005046 (2015).
pubmed: 25790031 pmcid: 4366234 doi: 10.1371/journal.pgen.1005046
Fan, B. et al. New SigD-regulated genes identified in the rhizobacterium Bacillus amyloliquefaciens FZB42. Biol. Open 5, 1776–1783 (2016).
pubmed: 27797724 pmcid: 5200910 doi: 10.1242/bio.021501
Chao, Y., Papenfort, K., Reinhardt, R., Sharma, C. M. & Vogel, J. An atlas of Hfq-bound transcripts reveals 3’ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J. 31, 4005–4019 (2012).
pubmed: 22922465 pmcid: 3474919 doi: 10.1038/emboj.2012.229
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621 pmcid: 3218662 doi: 10.1186/gb-2010-11-10-r106
Guttenplan, S. B., Blair, K. M. & Kearns, D. B. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet. 6, e1001243 (2010).
pubmed: 21170308 pmcid: 3000366 doi: 10.1371/journal.pgen.1001243
Markham, N. R. & Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008).
pubmed: 18712296 doi: 10.1007/978-1-60327-429-6_1

Auteurs

Yulong Li (Y)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.
School of Agriculture, Ningxia University, Ningxia, China.

Xianming Cao (X)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.

Yunrong Chai (Y)

Department of Biology, Northeastern University, Boston, USA.

Ruofu Chen (R)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.

Yinjuan Zhao (Y)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.

Rainer Borriss (R)

Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany.

Xiaolei Ding (X)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.

Xiaoqin Wu (X)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.

Jianren Ye (J)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.

Dejun Hao (D)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China. djhao@njfu.edu.cn.

Jian He (J)

College of Life Science, Nanjing Agricultural University, Nanjing, China.

Guibin Wang (G)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.

Mingmin Cao (M)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.

Chunliang Jiang (C)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.

Zhengmin Han (Z)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China.

Ben Fan (B)

Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing, China. fanben2000@gmail.com.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Biofilms Candida albicans Quorum Sensing Candida glabrata Menthol
Female Biofilms Animals Lactobacillus Mice

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents

Classifications MeSH