A phosphate starvation induced small RNA promotes Bacillus biofilm formation.
Journal
NPJ biofilms and microbiomes
ISSN: 2055-5008
Titre abrégé: NPJ Biofilms Microbiomes
Pays: United States
ID NLM: 101666944
Informations de publication
Date de publication:
29 Oct 2024
29 Oct 2024
Historique:
received:
16
11
2023
accepted:
13
10
2024
medline:
30
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
Currently, almost all known regulators involved in bacterial phosphorus metabolism are proteins. In this study, we identified a conserved new small regulatory RNA (sRNA), named PhoS, encoded in the 3' untranslated region (UTR) of the phoPR genes in Bacillus velezensis and B. subtilis. Expression of phoS is strongly induced upon phosphorus scarcity and stimulated by the transcription factor PhoP. Conversely, PhoS positively regulates PhoP translation by binding to the ribosome binding site (RBS) of phoP mRNA. PhoS can promote Bacillus biofilm formation through, at least in part, enhancing the expression of the matrix-related genes, such as the eps genes and the tapA-sipW-tasA operon. The positive regulation of phoP expression by PhoS contributes to the promoting effect of PhoS on biofilm formation. sRNAs regulating biofilm formation have rarely been reported in gram-positive Bacillus species. Here we highlight the significance of sRNAs involved in two important biological processes: phosphate metabolism and biofilm formation.
Identifiants
pubmed: 39472585
doi: 10.1038/s41522-024-00586-6
pii: 10.1038/s41522-024-00586-6
doi:
Substances chimiques
Phosphates
0
Bacterial Proteins
0
RNA, Bacterial
0
PhoP protein, Bacteria
125360-99-8
RNA, Small Untranslated
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
115Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 31970097
Informations de copyright
© 2024. The Author(s).
Références
Hulett, F. M. in Bacillus subtilis and Other Gram-positive Bacteria : Biochemistry, Physiology and Molecular Biology (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 229–235 (American Society for Microbiology, 1993).
Pedreira, T., Elfmann, C. & Stülke, J. The current state of Subti Wiki, the database for the model organism Bacillus subtilis. Nucleic Acids Res. 50, D875–D882 (2022).
pubmed: 34664671
doi: 10.1093/nar/gkab943
Martín, J. F. Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. J. Bacteriol. 186, 5197–5201 (2004).
pubmed: 15292120
pmcid: 490900
doi: 10.1128/JB.186.16.5197-5201.2004
Jia, T. et al. The phosphate-induced small RNA EsrL promotes E. coli virulence, biofilm formation, and intestinal colonization. Sci. Signal. 16, eabm0488 (2023).
pubmed: 36626577
doi: 10.1126/scisignal.abm0488
Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R. & Kovacs, A. T. Bacillus subtilis biofilm formation and social interactions. Nat. Rev. Microbiol. 19, 600–614 (2021).
pubmed: 33824496
doi: 10.1038/s41579-021-00540-9
Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 11, 157–168 (2013).
pubmed: 23353768
pmcid: 3936787
doi: 10.1038/nrmicro2960
Böhning, J. et al. Donor-strand exchange drives assembly of the TasA scaffold in Bacillus subtilis biofilms. Nat. Commun. 13, 7082 (2022).
pubmed: 36400765
pmcid: 9674648
doi: 10.1038/s41467-022-34700-z
Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R. & Kolter, R. Fruiting body formation by Bacillus subtilis. Proc. Natl Acad. Sci. USA 98, 11621–11626 (2001).
pubmed: 11572999
pmcid: 58779
doi: 10.1073/pnas.191384198
Kearns, D. B., Chu, F., Branda, S. S., Kolter, R. & Losick, R. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55, 739–749 (2005).
pubmed: 15661000
doi: 10.1111/j.1365-2958.2004.04440.x
Romero, D., Aguilar, C., Losick, R. & Kolter, R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl Acad. Sci. USA 107, 2230–2234 (2010).
pubmed: 20080671
pmcid: 2836674
doi: 10.1073/pnas.0910560107
Jackson, D. W. et al. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J. Bacteriol. 184, 290–301 (2002).
pubmed: 11741870
pmcid: 134780
doi: 10.1128/JB.184.1.290-301.2002
Lapouge, K., Schubert, M., Allain, F. H. & Haas, D. Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol. Microbiol. 67, 241–253 (2008).
pubmed: 18047567
doi: 10.1111/j.1365-2958.2007.06042.x
Mika, F. et al. Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli. Mol. Microbiol. 84, 51–65 (2012).
pubmed: 22356413
pmcid: 3465796
doi: 10.1111/j.1365-2958.2012.08002.x
Monteiro, C. et al. Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium. RNA Biol. 9, 489–502 (2012).
pubmed: 22336758
doi: 10.4161/rna.19682
Thomason, M. K., Fontaine, F., De Lay, N. & Storz, G. A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol. Microbiol. 84, 17–35 (2012).
pubmed: 22289118
pmcid: 3312966
doi: 10.1111/j.1365-2958.2012.07965.x
Papenfort, K., Förstner, K. U., Cong, J. P., Sharma, C. M. & Bassler, B. L. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc. Natl Acad. Sci. USA 112, E766–E775 (2015).
pubmed: 25646441
pmcid: 4343088
doi: 10.1073/pnas.1500203112
Bak, G. et al. Identification of novel sRNAs involved in biofilm formation, motility, and fimbriae formation in Escherichia coli. Sci. Rep. 5, 15287 (2015).
pubmed: 26469694
pmcid: 4606813
doi: 10.1038/srep15287
Raad, N., Tandon, D., Hapfelmeier, S. & Polacek, N. The stationary phase-specific sRNA FimR2 is a multifunctional regulator of bacterial motility, biofilm formation and virulence. Nucleic Acids Res. 50, 11858–11875 (2022).
pubmed: 36354005
pmcid: 9723502
doi: 10.1093/nar/gkac1025
Bronesky, D. et al. A multifaceted small RNA modulates gene expression upon glucose limitation in Staphylococcus aureus. EMBO J. 38, e99363 (2019).
pubmed: 30760492
pmcid: 6418428
doi: 10.15252/embj.201899363
Schoenfelder, S. M. K. et al. The small non-coding RNA RsaE influences extracellular matrix composition in Staphylococcus epidermidis biofilm communities. PLoS Pathog. 15, e1007618 (2019).
pubmed: 30870530
pmcid: 6435200
doi: 10.1371/journal.ppat.1007618
Fan, B., Blom, J., Klenk, H. P. & Borriss, R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis Species Complex. Front. Microbiol. 8, 22 (2017).
pubmed: 28163698
pmcid: 5247444
doi: 10.3389/fmicb.2017.00022
Fan, B. et al. dRNA-Seq reveals genomewide TSSs and noncoding RNAs of plant beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42. PLoS One 10, e0142002 (2015).
pubmed: 26540162
pmcid: 4634765
doi: 10.1371/journal.pone.0142002
Konkol, M. A., Blair, K. M. & Kearns, D. B. Plasmid-encoded comi inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J. Bacteriol. 195, 4085–4093 (2013).
pubmed: 23836866
pmcid: 3754741
doi: 10.1128/JB.00696-13
Joseph, P., Fantino, J. R., Herbaud, M. L. & Denizot, F. Rapid orientated cloning in a shuttle vector allowing modulated gene expression in Bacillus subtilis. FEMS Microbiol. Lett. 205, 91–97 (2001).
pubmed: 11728721
doi: 10.1111/j.1574-6968.2001.tb10930.x
Arnaouteli, S., MacPhee, C. E. & Stanley-Wall, N. R. Just in case it rains: building a hydrophobic biofilm the Bacillus subtilis way. Curr. Opin. Microbiol. 34, 7–12 (2016).
pubmed: 27458867
doi: 10.1016/j.mib.2016.07.012
Pragai, Z. et al. Transcriptional regulation of the phoPR operon in Bacillus subtilis. J. Bacteriol. 186, 1182–1190 (2004).
pubmed: 14762014
pmcid: 344217
doi: 10.1128/JB.186.4.1182-1190.2004
Salzberg, L. I. et al. Genome-wide analysis of phosphorylated PhoP binding to chromosomal DNA reveals several novel features of the PhoPR-mediated phosphate limitation response in Bacillus subtilis. J. Bacteriol. 197, 1492–1506 (2015).
pubmed: 25666134
pmcid: 4372752
doi: 10.1128/JB.02570-14
Busch, A., Richter, A. S. & Backofen, R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24, 2849–2856 (2008).
pubmed: 18940824
pmcid: 2639303
doi: 10.1093/bioinformatics/btn544
Antelmann, H., Scharf, C. & Hecker, M. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J. Bacteriol. 182, 4478–4490 (2000).
pubmed: 10913081
pmcid: 94619
doi: 10.1128/JB.182.16.4478-4490.2000
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids Res. 31, 3406–3415 (2003).
pubmed: 12824337
pmcid: 169194
doi: 10.1093/nar/gkg595
Bucher, T., Oppenheimer-Shaanan, Y., Savidor, A., Bloom-Ackermann, Z. & Kolodkin-Gal, I. Disturbance of the bacterial cell wall specifically interferes with biofilm formation. Environ. Microbiol. Rep. 7, 990–1004 (2015).
pubmed: 26472159
doi: 10.1111/1758-2229.12346
Xu, Z. et al. Bacillus velezensis wall Teichoic acids are required for biofilm formation and root colonization. Appl. Environ. Microbiol. 85, e02116–18 (2019).
Core, L. & Perego, M. TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis. Mol. Microbiol. 49, 1509–1522 (2003).
pubmed: 12950917
doi: 10.1046/j.1365-2958.2003.03659.x
Msadek, T., Kunst, F., Klier, A. & Rapoport, G. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J. Bacteriol. 173, 2366–2377 (1991).
pubmed: 1901055
pmcid: 207789
doi: 10.1128/jb.173.7.2366-2377.1991
Kobayashi, K. Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol. Microbiol. 66, 395–409 (2007).
pubmed: 17850253
doi: 10.1111/j.1365-2958.2007.05923.x
Marlow, V. L. et al. Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm. J. Bacteriol. 196, 16–27 (2014).
pubmed: 24123822
pmcid: 3911142
doi: 10.1128/JB.00930-13
Verhamme, D. T., Murray, E. J. & Stanley-Wall, N. R. DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J. Bacteriol. 191, 100–108 (2009).
pubmed: 18978066
doi: 10.1128/JB.01236-08
Lopez, D., Vlamakis, H., Losick, R. & Kolter, R. Paracrine signaling in a bacterium. Genes Dev. 23, 1631–1638 (2009).
pubmed: 19605685
pmcid: 2714712
doi: 10.1101/gad.1813709
Lopez, D., Fischbach, M. A., Chu, F., Losick, R. & Kolter, R. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc. Natl Acad. Sci. USA 106, 280–285 (2009).
pubmed: 19114652
doi: 10.1073/pnas.0810940106
Allenby, N. E. et al. Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. J. Bacteriol. 187, 8063–8080 (2005).
pubmed: 16291680
pmcid: 1291260
doi: 10.1128/JB.187.23.8063-8080.2005
Schoenborn, A. A. et al. Defining the expression, production, and signaling roles of specialized metabolites during Bacillus subtilis differentiation. J. Bacteriol. 203, e0033721 (2021).
pubmed: 34460312
doi: 10.1128/JB.00337-21
Gallegos-Monterrosa, R., Mhatre, E. & Kovács, Á. T. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium. Microbiology (Reading) 162, 1922–1932 (2016).
pubmed: 27655338
doi: 10.1099/mic.0.000371
Botella, E. et al. Cell envelope gene expression in phosphate-limited Bacillus subtilis cells. Microbiology 157, 2470–2484 (2011).
pubmed: 21636651
doi: 10.1099/mic.0.049205-0
Mann, M., Wright, P. R. & Backofen, R. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res. 45, W435–W439 (2017).
pubmed: 28472523
pmcid: 5570192
doi: 10.1093/nar/gkx279
Rochat, T. et al. Tracking the elusive function of Bacillus subtilis Hfq. PLoS ONE 10, e0124977 (2015).
pubmed: 25915524
pmcid: 4410918
doi: 10.1371/journal.pone.0124977
Sledjeski, D. D., Whitman, C. & Zhang, A. Hfq is necessary for regulation by the untranslated RNA DsrA. J. Bacteriol. 183, 1997–2005 (2001).
pubmed: 11222598
pmcid: 95095
doi: 10.1128/JB.183.6.1997-2005.2001
Irnov, I., Sharma, C. M., Vogel, J. & Winkler, W. C. Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res. 38, 6637–6651 (2010).
pubmed: 20525796
pmcid: 2965217
doi: 10.1093/nar/gkq454
Nicolas, P. et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335, 1103–1106 (2012).
pubmed: 22383849
doi: 10.1126/science.1206848
Mars, R. A. et al. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis. PLoS Genet. 11, e1005046 (2015).
pubmed: 25790031
pmcid: 4366234
doi: 10.1371/journal.pgen.1005046
Fan, B. et al. New SigD-regulated genes identified in the rhizobacterium Bacillus amyloliquefaciens FZB42. Biol. Open 5, 1776–1783 (2016).
pubmed: 27797724
pmcid: 5200910
doi: 10.1242/bio.021501
Chao, Y., Papenfort, K., Reinhardt, R., Sharma, C. M. & Vogel, J. An atlas of Hfq-bound transcripts reveals 3’ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J. 31, 4005–4019 (2012).
pubmed: 22922465
pmcid: 3474919
doi: 10.1038/emboj.2012.229
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621
pmcid: 3218662
doi: 10.1186/gb-2010-11-10-r106
Guttenplan, S. B., Blair, K. M. & Kearns, D. B. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet. 6, e1001243 (2010).
pubmed: 21170308
pmcid: 3000366
doi: 10.1371/journal.pgen.1001243
Markham, N. R. & Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008).
pubmed: 18712296
doi: 10.1007/978-1-60327-429-6_1