Blocking Na


Journal

BMC cardiovascular disorders
ISSN: 1471-2261
Titre abrégé: BMC Cardiovasc Disord
Pays: England
ID NLM: 100968539

Informations de publication

Date de publication:
29 Oct 2024
Historique:
received: 19 10 2023
accepted: 14 10 2024
medline: 30 10 2024
pubmed: 30 10 2024
entrez: 30 10 2024
Statut: epublish

Résumé

The role of Na Eighteen male beagles were randomly enrolled. Left anterior descending coronary artery was ligated to created myocardial infarction model. Four weeks after surgery, Na Administration of A-803,467 significantly increased sinus rate, shortened PR interval and increased ventricular rate during atrial fibrillation compared to control. A-803,467 also significantly shortened atrial effective refractory period, prolonged atrial fibrillation duration and increased the cumulative window of atrial vulnerability. A-803,467 suppressed the slowing of heart rate response to high-frequency electrical stimulation of the anterior right GP, which was used as the surrogate marker for GP function. Double staining of ChAT and Na Blocking Na

Sections du résumé

BACKGROUND BACKGROUND
The role of Na
METHODS METHODS
Eighteen male beagles were randomly enrolled. Left anterior descending coronary artery was ligated to created myocardial infarction model. Four weeks after surgery, Na
RESULTS RESULTS
Administration of A-803,467 significantly increased sinus rate, shortened PR interval and increased ventricular rate during atrial fibrillation compared to control. A-803,467 also significantly shortened atrial effective refractory period, prolonged atrial fibrillation duration and increased the cumulative window of atrial vulnerability. A-803,467 suppressed the slowing of heart rate response to high-frequency electrical stimulation of the anterior right GP, which was used as the surrogate marker for GP function. Double staining of ChAT and Na
CONCLUSIONS CONCLUSIONS
Blocking Na

Identifiants

pubmed: 39472780
doi: 10.1186/s12872-024-04261-8
pii: 10.1186/s12872-024-04261-8
doi:

Substances chimiques

NAV1.8 Voltage-Gated Sodium Channel 0
Voltage-Gated Sodium Channel Blockers 0
A 803467 0
Aniline Compounds 0
Furans 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

605

Subventions

Organisme : Natural Science Foundation of Shanghai Municipality
ID : 22ZR1411500
Organisme : Natural Science Foundation of Shanghai Municipality
ID : 22ZR1411500
Organisme : Fujian Provincial Natural Science Foundation of China
ID : 2023J011693
Organisme : Shanghai Municipal Key Clinical Specialty
ID : shslczdzk01701

Informations de copyright

© 2024. The Author(s).

Références

Schmitt J, Duray G, Gersh BJ, Hohnloser SH. Atrial fibrillation in acute myocardial infarction: a systematic review of the incidence, clinical features and prognostic implications. Eur Heart J. 2009;30:1038–45.
pubmed: 19109347 doi: 10.1093/eurheartj/ehn579
Obayashi Y, Shiomi H, Morimoto T, et al. Newly diagnosed Atrial Fibrillation in Acute myocardial infarction. J Am Heart Assoc. 2021;10:e021417.
pubmed: 34533047 pmcid: 8649521 doi: 10.1161/JAHA.121.021417
Fauchier L, Bisson A, Bodin A, et al. Outcomes in patients with acute myocardial infarction and new atrial fibrillation: a nationwide analysis. Clin Res Cardiol. 2021;110:1431–8.
pubmed: 33507390 doi: 10.1007/s00392-021-01805-2
Vaseghi M, Salavatian S, Rajendran PS, et al. Parasympathetic dysfunction and antiarrhythmic effect of vagal nerve stimulation following myocardial infarction. JCI Insight. 2017;17:2: e86715.
doi: 10.1172/jci.insight.86715
Hou Y, Scherlag BJ, Lin J, et al. Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. J Am Coll Cardiol. 2007;50:61–8.
pubmed: 17601547 doi: 10.1016/j.jacc.2007.02.066
Katritsis DG, Pokushalov E, Romanov A, et al. Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized clinical trial. J Am Coll Cardiol. 2013;62:2318–25.
pubmed: 23973694 doi: 10.1016/j.jacc.2013.06.053
Abrahamsen B, Zhao J, Asante CO, et al. The cell and molecular basis of mechanical, cold and inflammatory pain. Science. 2008;321:702–5.
pubmed: 18669863 doi: 10.1126/science.1156916
Facer P, Punjabi PP, Abrari A, et al. Localisation of SCN10A gene product na(v)1.8 and novel painrelated ion channels in human heart. Int Heart J. 2011;52:146–52.
pubmed: 21646736 doi: 10.1536/ihj.52.146
Verkerk AO, Remme CA, Schumacher CA, et al. Functional Na
pubmed: 22723301 doi: 10.1161/CIRCRESAHA.112.274035
Chen X, Yu L, Shi S, et al. Neuronal Na
pubmed: 27806967 pmcid: 5210368 doi: 10.1161/JAHA.116.004050
Casini S, Marchal GA, Kawasaki M, et al. Absence of functional Nav1.8 channels in non-diseased atrial and ventricular cardiomyocytes. Cardiovasc Drugs Ther. 2019;33:649–60.
pubmed: 31916131 doi: 10.1007/s10557-019-06925-6
Man JCK, Bosada FM, Scholman KT, et al. Variant intronic enhancer controls SCN10A-short expression and heart conduction. Circulation. 2021;144:229–42.
pubmed: 33910361 doi: 10.1161/CIRCULATIONAHA.121.054083
Chambers JC, Zhao J, Terracciano CM, et al. Genetic variation in SCN10A influences cardiac conduction. Nat Genet. 2010;42:149–52.
pubmed: 20062061 doi: 10.1038/ng.516
Delaney JT, Muhammad R, Shi Y, et al. Common SCN10A variants modulate PR interval and heart rate response during atrial fibrillation. Europace. 2014;16:485–90.
pubmed: 24072447 doi: 10.1093/europace/eut278
Qi B, Dai S, Song Y, et al. Blockade of Na
doi: 10.3389/fcvm.2021.708279
Dybkova N, Ahmad S, Pabel S, et al. Differential regulation of sodium channels as a novel proarrhythmic mechanism in the human failing heart. Cardiovasc Res. 2018;114:1728–37.
pubmed: 29931291 doi: 10.1093/cvr/cvy152
Ahmad S, Tirilomis P, Pabel S, et al. The functional consequences of sodium channel Na
pubmed: 30378291 doi: 10.1002/ehf2.12378
Bengel P, Ahmad S, Tirilomis P, et al. Contribution of the neuronal sodium channel Na
pubmed: 32418916 doi: 10.1016/j.yjmcc.2020.05.002
Bengel P, Dybkova N, Tirilomis P, et al. Detrimental proarrhythmogenic interaction of Ca
doi: 10.1038/s41467-021-26690-1
Hsu J, Hanna P, Van Wagoner DR, et al. Whole genome expression differences in human left and right atria ascertained by RNA sequencing. Circ Cardiovasc Genet. 2012;5:327–35.
pubmed: 22474228 doi: 10.1161/CIRCGENETICS.111.961631
Poulet C, Wettwer E, Grunnet M, et al. Late sodium current in human atrial cardiomyocytes from patients in sinus rhythm and atrial fibrillation. PLoS ONE. 2015;10:e0131432.
pubmed: 26121051 pmcid: 4485891 doi: 10.1371/journal.pone.0131432
Casini S, Marchal GA, Kawasaki M, et al. Differential Sodium current remodelling identifies distinct Cellular Proarrhythmic mechanisms in Paroxysmal vs Persistent Atrial Fibrillation. Can J Cardiol. 2023;39:277–88.
pubmed: 36586483 doi: 10.1016/j.cjca.2022.12.023
Qi B, Wei Y, Chen S, et al. Na
doi: 10.1093/cvr/cvu005
Yu L, Scherlag BJ, Li S, et al. Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility: direct evidence by neural recordings from intrinsic cardiac ganglia. J Cardiovasc Electrophysiol. 2011;22:455–63.
pubmed: 20946225 doi: 10.1111/j.1540-8167.2010.01908.x
Pabel S, Ahmad S, Tirilomis P, et al. Inhibition of Na
pubmed: 32078054 pmcid: 7033079 doi: 10.1007/s00395-020-0780-8
Capilupi MJ, Kerath SM, Becker LB. Vagus nerve stimulation and the Cardiovascular System. Cold Spring Harb Perspect Med. 2020;10:a034173.
pubmed: 31109966 pmcid: 6996447 doi: 10.1101/cshperspect.a034173
Yamaguchi N, Yamakawa K, Rajendran PS, Takamiya T, Vaseghi M. Antiarrhythmic effects of vagal nerve stimulation after cardiac sympathetic denervation in the setting of chronic myocardial infarction. Heart Rhythm. 2018;15:1214–22.
pubmed: 29530832 pmcid: 6245660 doi: 10.1016/j.hrthm.2018.03.012
Miyauchi Y, Zhou S, Okuyama Y, et al. Altered atrial electrical restitution and heterogeneous sympathetic hyperinnervation in hearts with chronic left ventricular myocardial infarction: implications for atrial fibrillation. Circulation. 2003;22:108:360–6.
doi: 10.1161/01.CIR.0000080327.32573.7C
Tomson TT, Arora R. Modulation of cardiac potassium current by neural tone and ischemia. Card Electrophysiol Clin. 2016;8:349–60.
pubmed: 27261826 pmcid: 4915363 doi: 10.1016/j.ccep.2016.01.007
Rajendran PS, Nakamura K, Ajijola OA, et al. Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system. J Physiol. 2016;594:321–41.
pubmed: 26572244 doi: 10.1113/JP271165
Hoover DB, Isaacs ER, Jacques F, Hoard JL, Pagé P, Armour JA. Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neuroscience. 2009;164:1170–9.
pubmed: 19747529 doi: 10.1016/j.neuroscience.2009.09.001
Behr ER, Savio-Galimberti E, Barc J, et al. Role of common and rare variants in SCN10A: results from the Brugada syndrome QRS locus gene discovery collaborative study. Cardiovasc Res. 2015;106:520–9.
pubmed: 25691538 pmcid: 4447806 doi: 10.1093/cvr/cvv042
Fukuyama M, Ohno S, Makiyama T, Horie M. Novel SCN10A variants associated with Brugada syndrome. Europace. 2015;18:905–11.
pubmed: 25842276 doi: 10.1093/europace/euv078
Jarvis MF, Honore P, Shieh CC, et al. A-803467, a potent and selective NaV1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci USA. 2007;104:8520–5.
pubmed: 17483457 pmcid: 1895982 doi: 10.1073/pnas.0611364104
McGaraughty S, Chu KL, Scanio MJ, Kort ME, Faltynek CR, Jarvis MF. A selective NaV1.8 sodium channel blocker, A-803467 [5-(4-chlorophenyl-N-(3,5-dimethoxyphenyl)- furan-2-carboxamide], attenuates spinal neuronal activity in neuropathic rats. J Pharmacol Exp Ther. 2008;324:1204–11.
pubmed: 18089840 doi: 10.1124/jpet.107.134148
Blasiusa AL, Dubinb AE, Petrusc MJ, et al. Hypermorphic mutation of the voltage-gated sodium channel encoding gene Scn10a causes a dramatic stimulus-dependent neurobehavioral phenotype. Proc Natl Acad Sci USA. 2011;108:19413–8.
doi: 10.1073/pnas.1117020108
Liu B, Li N, Zhang J, et al. The role of Voltage-gated Sodium Channel 1.8 in the Effect of Atropine on Heart Rate: evidence from a Retrospective Clinical Study and Mouse Model. Front Pharmacol. 2020;11:1163.
pubmed: 32848771 pmcid: 7412993 doi: 10.3389/fphar.2020.01163
Brack KE, Patel VH, Coote JH, Ng GA. Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart. J Physiol. 2007;583:695–704.
pubmed: 17627986 pmcid: 2277035 doi: 10.1113/jphysiol.2007.138461
Giannopoulos G, Kossyvakis C, Angelidis C, et al. Coincidental ganglionated plexus modification during radiofrequency pulmonary vein isolation and post-ablation arrhythmia recurrence. Europace. 2017;19:1967–72.
pubmed: 29194518
Mikhaylov E, Kanidieva A, Sviridova N, et al. Outcome of anatomic ganglionated plexi ablation to treat paroxysmal atrial fibrillation: a 3-year follow-up study. Europace. 2011;13:362–70.
pubmed: 21088001 doi: 10.1093/europace/euq416
Lo LW, Scherlag BJ, Chang HY, Lin YJ, Chen SA, Po SS. Paradoxical long-term proarrhythmic efects after ablating the head station ganglionated plexi of the vagal innervation to the heart. Heart Rhythm. 2013;10:751–7.
pubmed: 23357542 doi: 10.1016/j.hrthm.2013.01.030
Mao J, Yin X, Zhang Y, et al. Ablation of epicardial ganglionated plexi increases atrial vulnerability to arrhythmias in dogs. Circ Arrhythm Electrophysiol. 2014;7:711–7.
pubmed: 24860179 doi: 10.1161/CIRCEP.113.000799
He B, Lu Z, He W, et al. Efects of ganglionated plexi ablation on ventricular electrophysiological properties in normal hearts and after acute myocardial ischemia. Int J Cardiol. 2013;168:86–93.
pubmed: 23041007 doi: 10.1016/j.ijcard.2012.09.067

Auteurs

Baozhen Qi (B)

Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
Department of Cardiology, Zhongshan Hospital (Xiamen), Fudan University, 668 Jinhu Road, Xiamen, 361015, China.

Zhonglei Xie (Z)

Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.

Dongli Shen (D)

Division of Cardiology, Department of Medicine, the Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.

Yu Song (Y)

Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.

Shaowen Liu (S)

Department of Cardiology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China.

Qibing Wang (Q)

Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China. wang.qibing@zs-hospital.sh.

Jingmin Zhou (J)

Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China. zhou.jingmin@zs-hospital.sh.cn.

Junbo Ge (J)

Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Disease, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH