The efficacy of infrared diode laser in enhancing the regenerative potential of human periodontal ligament stem cells (hPDLSCs).
Humans
Periodontal Ligament
/ cytology
Lasers, Semiconductor
/ therapeutic use
Cell Differentiation
/ radiation effects
Cell Proliferation
/ radiation effects
Stem Cells
/ radiation effects
Osteocalcin
/ metabolism
Regeneration
/ radiation effects
Core Binding Factor Alpha 1 Subunit
/ metabolism
Alkaline Phosphatase
/ metabolism
Osteopontin
/ metabolism
Osteogenesis
/ radiation effects
Octamer Transcription Factor-3
/ metabolism
Flow Cytometry
SOXB1 Transcription Factors
/ metabolism
Cell Survival
/ radiation effects
Cells, Cultured
Nanog Homeobox Protein
/ metabolism
Cell Cycle
/ radiation effects
Coloring Agents
Tetrazolium Salts
Thiazoles
Infra-red diode laser
Osteogenic differentiation
Photobiomodulation
Stemness
hPDLSCs
Journal
BMC oral health
ISSN: 1472-6831
Titre abrégé: BMC Oral Health
Pays: England
ID NLM: 101088684
Informations de publication
Date de publication:
29 Oct 2024
29 Oct 2024
Historique:
received:
03
07
2024
accepted:
09
10
2024
medline:
30
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
The present study aimed to investigate the effects of infrared diode laser irradiation on the proliferation and differentiation capacity of periodontal ligament stem cells (hPDLSCs), which are optimal cell sources for periodontal regeneration. hPDLSCs were isolated and characterized by flow cytometric analysis of mesenchymal stem cell markers, and their trilineage differentiation capacity was tested. hPDLSCs were then cultured and irradiated with infrared diode laser (970 nm) at a power of 200 mW and a fluence of 4 J/cm Infrared diode laser application enhanced the stemness, viability, proliferation, and differentiation of PDLSCs. Stem cell markers (OCT4, SOX2, and NANOG) were significantly upregulated in hPDLSCs exposed to laser irradiation. There was significant overexpression of RUNX2, ALP, OPN, and OCN on day 14 after laser application. These findings provide valuable insights into the specific applications of infrared diode lasers to effectively regenerate periodontal tissues. The results can aid in the development of precise clinical protocols aimed at enhancing osseointegration and promoting tissue regeneration. Ultimately, the combination of infrared diode laser with hPDLSCs is promising for stimulating periodontal regeneration.
Sections du résumé
BACKGROUND
BACKGROUND
The present study aimed to investigate the effects of infrared diode laser irradiation on the proliferation and differentiation capacity of periodontal ligament stem cells (hPDLSCs), which are optimal cell sources for periodontal regeneration.
METHODS
METHODS
hPDLSCs were isolated and characterized by flow cytometric analysis of mesenchymal stem cell markers, and their trilineage differentiation capacity was tested. hPDLSCs were then cultured and irradiated with infrared diode laser (970 nm) at a power of 200 mW and a fluence of 4 J/cm
RESULTS
RESULTS
Infrared diode laser application enhanced the stemness, viability, proliferation, and differentiation of PDLSCs. Stem cell markers (OCT4, SOX2, and NANOG) were significantly upregulated in hPDLSCs exposed to laser irradiation. There was significant overexpression of RUNX2, ALP, OPN, and OCN on day 14 after laser application.
CONCLUSIONS
CONCLUSIONS
These findings provide valuable insights into the specific applications of infrared diode lasers to effectively regenerate periodontal tissues. The results can aid in the development of precise clinical protocols aimed at enhancing osseointegration and promoting tissue regeneration. Ultimately, the combination of infrared diode laser with hPDLSCs is promising for stimulating periodontal regeneration.
Identifiants
pubmed: 39472894
doi: 10.1186/s12903-024-05038-3
pii: 10.1186/s12903-024-05038-3
doi:
Substances chimiques
Osteocalcin
104982-03-8
Core Binding Factor Alpha 1 Subunit
0
Alkaline Phosphatase
EC 3.1.3.1
Osteopontin
106441-73-0
Octamer Transcription Factor-3
0
SOX2 protein, human
0
SOXB1 Transcription Factors
0
RUNX2 protein, human
0
Nanog Homeobox Protein
0
POU5F1 protein, human
0
Coloring Agents
0
thiazolyl blue
EUY85H477I
Tetrazolium Salts
0
Thiazoles
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1310Informations de copyright
© 2024. The Author(s).
Références
Fadl AE, Abdel Fattah RK, Helmi MA, Wassel MA, Badran MO, Elgendi AS. Periodontal diseases and potential risk factors in Egyptian adult population-results from a national cross-sectional study. PLoS ONE. 2021;16:e0258958.
doi: 10.1371/journal.pone.0258958
Amid R, Kadkhodazadeh M, Ahsaie MG, Hakakzadeh A. Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J Lasers Med Sci. 2014;5:163–70.
pubmed: 25653816
pmcid: 4281990
AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci. 2012;27:237–49.
pubmed: 21274733
doi: 10.1007/s10103-011-0885-2
Moura-Netto C, Ferreira LS, Maranduba CM, Mello-Moura ACV, Marques MM. Low-intensity laser phototherapy enhances the proliferation of dental pulp stem cells under nutritional deficiency. Braz Oral Res. 2016;30.
Zaccara IM, Ginani F, Mota-Filho HG, Henriques ÁCG, Barboza CAG. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci. 2015;30:2259–64.
pubmed: 26341379
doi: 10.1007/s10103-015-1803-9
Barboza CAugust, Ginani G, Soares F, Henriques DM. AC ristin. G, Freitas R de A. Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells. Einstein (Sao Paulo). 2014;12:75–81.
Etemadi A, Faghih A, Chiniforush N. Effects of Photobiomodulation Therapy with various laser wavelengths on Proliferation of Human Periodontal ligament mesenchymal stem cells. Photochem Photobiol. 2021;98.
Da Silva Morsoleto MJM, Sella V, Machado P, Do Bomfim F, Fernandes MH, Morgado F, et al. Effect of low power laser in biomodulation of cultured osteoblastic cells of Wistar rats. Acta Cirúrgica Bras. 2019;34:e201900210.
doi: 10.1590/s0102-8650201900210
Shamel M, Raafat S, El Karim I, Saber S. Photobiomodulation and low-intensity pulsed ultrasound synergistically enhance dental mesenchymal stem cells viability, migration and differentiation: an invitro study. Odontology. 2024. https://doi.org/10.1007/s10266-024-00920-6 .
pubmed: 38517569
pmcid: 11415481
doi: 10.1007/s10266-024-00920-6
Feng J, Li X, Zhu S, Xie Y, Du J, Ge H, et al. Photobiomodulation with 808-nm diode laser enhances gingival wound healing by promoting migration of human gingival mesenchymal stem cells via ROS/JNK/NF-κB/MMP-1 pathway. Lasers Med Sci. 2020;35:1831–9.
pubmed: 32451640
doi: 10.1007/s10103-020-03040-z
Ibacache MCT, Arcos P, Sanchez S, Weinstein G. Use of diode lasers in dentistry. Clin Dent Rev. 2020;4:1–7.
doi: 10.1007/s41894-019-0069-1
Rathod A, Jaiswal P, Bajaj P, Kale B, Masurkar D. Implementation of low-level laser therapy in Dentistry: a review. Cureus. 2022;14.
Gholami L, Asefi S, Hooshyarfard A, Sculean A, Romanos GE, Aoki A et al. Photobiomodulation in Periodontology and Implant Dentistry: Part 2. Photobiomodulation, Photomedicine, and Laser Surgery. 2019;37:766–83.
Fahim SZ, Ghali RM, Hashem AA, Farid MM. The efficacy of 2780 nm er,Cr;YSGG and 940 nm Diode Laser in root canal disinfection: a randomized clinical trial. Clin Oral Investig. 2024;28:1–11.
doi: 10.1007/s00784-024-05563-z
Domah F, Shah R, Nurmatov UB, Tagiyeva N. The use of low-level laser therapy to reduce postoperative morbidity after third molar surgery: a systematic review and Meta-analysis. J Oral Maxillofac Surg. 2021;79:e3131–31319.
doi: 10.1016/j.joms.2020.09.018
Malcangi G, Patano A, Trilli I, Piras F, Ciocia AM, Inchingolo AD et al. Therapeutic and adverse effects of lasers in Dentistry: a systematic review. Photonics. 2023;10.
Firoozi P, Amiri MA, Soghli N, Farshidfar N, Hakimiha N, Fekrazad R. The role of Photobiomodulation on Dental-derived stem cells in Regenerative Dentistry: a comprehensive systematic review. Curr Stem Cell Res Therapy. 2024;19:559–86.
doi: 10.2174/1574888X17666220810141411
Ginani F, Soares DM, de Oliveira Rocha HA, de Souza LB, Barboza CAG. Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth. Lasers Med Sci. 2018;33:95–102.
pubmed: 29027031
doi: 10.1007/s10103-017-2355-y
Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts-an in vitro study. Lasers Med Sci. 2012;27:423–30.
pubmed: 21597948
doi: 10.1007/s10103-011-0930-1
Abo El-Dahab MM, Gheith M, Soliman NL, Aly RM. Effect of diode laser potentiality on proliferation of dental pulp stem cells (in vitro study). Bull Natl Res Cent. 2020;44:1–7.
doi: 10.1186/s42269-020-00414-9
Ferreira LS, Diniz IMA, Maranduba CMS, Miyagi SPH, Rodrigues MFSD, Moura-Netto C, et al. Short-term evaluation of photobiomodulation therapy on the proliferation and undifferentiated status of dental pulp stem cells. Lasers Med Sci. 2019;34:659–66.
pubmed: 30250986
doi: 10.1007/s10103-018-2637-z
Si D, Su B, Zhang J, Zhao K, Li JM, Chen DC, et al. Low-level laser therapy with different irradiation methods modulated the response of bone marrow mesenchymal stem cells in vitro. Lasers Med Sci. 2022;37:3509–16.
pubmed: 36066778
doi: 10.1007/s10103-022-03624-x
Hanna S, Aly R, Eldeen GN, Adanero Velasco A, Pérez Alfayate R. Small molecule GSK-3 inhibitors safely promote the proliferation and viability of Human Dental Pulp Stem Cells—In Vitro. Biomedicines. 2023;11.
Abo El-Dahab MM, El Deen GN, Aly RM, Gheith M. Infrared diode laser enhances human periodontal ligament stem cells behaviour on titanium dental implants. Sci Rep. 2024;14.
Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med. 2008;40:726–33.
pubmed: 19065562
doi: 10.1002/lsm.20709
Van Meerloo J, Kaspers GJL, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;237–245:237–45.
doi: 10.1007/978-1-61779-080-5_20
Chamila Prageeth Pandula PK, Samaranayake LP, Jin LJ, Zhang C. Periodontal ligament stem cells: an update and perspectives. J Invest Clin Dent. 2014;5:81–90.
doi: 10.1111/jicd.12089
Nagatomo K, Komaki M, Sekiya I. Et. Stem cell properties of human periodontal ligament cells. J Periodontal Res. 2006;41:303–10.
pubmed: 16827724
doi: 10.1111/j.1600-0765.2006.00870.x
Hynes K, Menicanin D, Gronthos S, Bartold PM. Clinical utility of stem cells for periodontal regeneration. Periodontol 2000. 2012;59:203–27.
pubmed: 22507067
doi: 10.1111/j.1600-0757.2012.00443.x
Alhazmi YA, Aljabri MY, Raafat SN, Gomaa SM, Shamel M. Exploring the effects of low-level laser therapy on the cytocompatibility and Osteo/Odontogenic potential of Gingival-derived mesenchymal stem cells: preliminary Report. Appl Sci. 2023;13:8490.
doi: 10.3390/app13148490
Turrioni AP, Basso FG, Montoro LA, Almeida LFD, de Souza Costa CA, Hebling J. Transdentinal photobiostimulation of stem cells from human exfoliated primary teeth. Int Endod J. 2017;50:549–59.
pubmed: 27238557
doi: 10.1111/iej.12665
Paschalidou M, Athanasiadou E, Arapostathis K, Kotsanos N, Koidis PT, Bakopoulou A, et al. Biological effects of low-level laser irradiation (LLLI) on stem cells from human exfoliated deciduous teeth (SHED). Clin Oral Investig. 2020;24:167–80.
pubmed: 31069538
doi: 10.1007/s00784-019-02874-4
Gholami L, Parsamanesh G, Shahabi S, Jazaeri M, Baghaei K, Fekrazad R. The Effect of Laser Photobiomodulation on Periodontal Ligament Stem cells. Photochem Photobiol. 2021;97:851–9.
pubmed: 33305457
doi: 10.1111/php.13367
Rigi-Ladez MA, Hendi SS, Mirzaei A, Gholami L, Fekrazad R. Near Infrared Laser Photobiomodulation of Periodontal Ligament Stem cells. Chin J Dent Res. 2022;25:57–65.
pubmed: 35293711
Wang L, Liu C, Wu F. Low-level laser irradiation enhances the proliferation and osteogenic differentiation of PDLSCs via BMP signaling. Lasers Med Sci. 2022;37:941–8.
pubmed: 34247314
doi: 10.1007/s10103-021-03338-6
Khaled Hanafy A, Shinaishin SF, Nour Eldeen G, Aly RM. Nano Hydroxyapatite & Mineral Trioxide Aggregate efficiently promote odontogenic differentiation of Dental Pulp Stem cells. Maced J Med Sci. 2018;6:1727.
doi: 10.3889/oamjms.2018.368
dos Santos F, Andrade PZ, Abecasis MM, Gimble JM, Chase LG, Campbell AM, et al. Toward a clinical-Grade expansion of mesenchymal stem cells from human sources: a Microcarrier-Based Culture System under Xeno-Free conditions. Tissue Eng Part C Methods. 2011;17:1201–10.
pubmed: 21895491
pmcid: 3226421
doi: 10.1089/ten.tec.2011.0255
Iwanaka T, Yamaza T, Sonoda S, Yoshimaru K, Matsuura T, Yamaza H, et al. A model study for the manufacture and validation of clinical-grade deciduous dental pulp stem cells for chronic liver fibrosis treatment. Stem Cell Res Ther. 2020;11:1–19.
doi: 10.1186/s13287-020-01630-w
Sayar F, Garebigloo A, Saberi S, Etemadi A. In Vitro Photobiomodulation effects of Blue and Red Diode Lasers on Proliferation and differentiation of Periodontal Ligament Mesenchymal Stem cells. J Lasers Med Sci. 2024;15:e5.
pubmed: 38655041
pmcid: 11033857
doi: 10.34172/jlms.2024.05
Furuya T, Takita M, Tsunoda SI, Kawauchi S, Hirano T, Oga A, et al. Cell array coupled with laser scanning cytometry allows easy analysis of changes in cyclin expression during the cell cycle: an application of cell array system. Methods Cell Sci. 2002;24:41–7.
pubmed: 12815289
doi: 10.1023/A:1024181512088