Effect of the addition of IGF-1 during in vitro culture on the embryonic development speed from different crossbreed bovine embryos.
Animal reproduction
Bovines
Embryo development
IGF-1
In vitro embryo production
Journal
Tropical animal health and production
ISSN: 1573-7438
Titre abrégé: Trop Anim Health Prod
Pays: United States
ID NLM: 1277355
Informations de publication
Date de publication:
30 Oct 2024
30 Oct 2024
Historique:
received:
16
05
2024
accepted:
14
10
2024
medline:
31
10
2024
pubmed:
30
10
2024
entrez:
30
10
2024
Statut:
epublish
Résumé
Supplementation with insulin-like growth factor type 1 (IGF-1) during in vitro culture of bovine embryos has yielded mixed results, likely due to genetic variability among embryos. This work aimed to evaluate the effect of IGF-1 at two concentrations on the development speed embryos from primary F1 crossbreeds used in dual-purpose cattle farming in the Colombian low tropics. Specifically, we investigated the influence of IGF-1 and embryo breed on the blastocyst formation rate. Oocytes were sourced from non-pregnant cows: Bos taurus indicus (20 Brahman and 14 Gyr) and Bos taurus taurus (12 Holstein and 28 Romosinuano). Oocytes were fertilized with semen from specific bulls (Recoil for Holstein, Gabinete for Gyr, and UBER POI 1490 for Brahman). The resulting embryos from each crossbreed group were randomly distributed in three different cultured media with 50 ng/mL IGF-1, 100 ng/mL IGF-1, or no IGF-1 (control) for 7 days. Results showed that 50 ng/mL IGF-1 significantly increased embryo production by day 6 (25.9%±14.56%) compared to control (20.5%±11.84%) and 100 ng/mL IGF-1 (23.0%±9.54%) (p < 0.05). By day 7, both 50 ng/mL (42.6%±26.55%) and 100 ng/mL (49.7%±21.98%) IGF-1 groups exhibited significantly higher production rates compared to the control group (p < 0.001). The embryo breed also influenced development, with Gyr-Holstein (GxH) crossbreeds showing the highest production rates (p < 0.001). In conclusion, IGF-1 supplementation enhances in vitro embryo production, with the effect influenced by both breed and IGF-1 concentration. These findings suggest that breed-specific optimization of IGF-1 conditions is necessary to maximize embryonic development outcomes.
Identifiants
pubmed: 39476264
doi: 10.1007/s11250-024-04204-7
pii: 10.1007/s11250-024-04204-7
doi:
Substances chimiques
Insulin-Like Growth Factor I
67763-96-6
Culture Media
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
368Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Alexandre G, Rodriguez L, Arece J, Delgadillo J, Garcia GW, Habermeier K, Almeida AM, Fanchone A, Gourdine J-L, Archimède H (2021) Agroecological practices to support tropical livestock farming systems: a Caribbean and latin American perspective. Trop Anim Health Prod 53:111. https://doi.org/10.1007/s11250-020-02537-7
doi: 10.1007/s11250-020-02537-7
pubmed: 33432505
Annes K, de Lima CB, Ispada J, dos Santos ÉC, Fontes PK, Nichi M, Nogueira MFG, Sudano MJ, Milazzotto MP (2023) Insulin-like growth factor-1 (IGF-1) selectively modulates the metabolic and lipid profile of bovine embryos according to their kinetics of development. Theriogenology 204:1–7. https://doi.org/10.1016/j.theriogenology.2023.03.020
doi: 10.1016/j.theriogenology.2023.03.020
pubmed: 37030172
Araujo MS, Guastali MD, Paulini F, Silva AN, Tsunemi MH, Fontes PK, Castilho ACS, Landim-Alvarenga FC (2020) Molecular and cellular effects of insulin-like growth factor-1 and LongR3-IGF-1 on in vitro maturation of bovine oocytes: comparative study. Growth Hormon IGF Res 55:101357. https://doi.org/10.1016/j.ghir.2020.101357
doi: 10.1016/j.ghir.2020.101357
Barrera SS, Naranjo-Gomez JS, Rondón-Barragán IS (2023) Thermoprotective molecules: effect of insulin-like growth factor type I (IGF-1) in cattle oocytes exposed to high temperatures. Heliyon 9(3):e14375. https://doi.org/10.1016/j.heliyon.2023.e14375
doi: 10.1016/j.heliyon.2023.e14375
pubmed: 36967889
pmcid: 10036656
Block J, Hansen PJ (2007) Interaction between season and culture with insulin-like growth factor-1 on survival of in vitro produced embryos following transfer to lactating dairy cows. Theriogenology 67(9):1518–1529. https://doi.org/10.1016/j.theriogenology.2007.03.012
doi: 10.1016/j.theriogenology.2007.03.012
pubmed: 17452048
Block J, Wrenzycki C, Niemann H, Herrmann D, Hansen PJ (2008) Effects of insulin-like growth factor-1 on cellular and molecular characteristics of bovine blastocysts produced in vitro. Mol Reprod Develoment 75:895–903. https://doi.org/10.1002/mrd.20826
doi: 10.1002/mrd.20826
Bonilla AQS, Oliveira LJ, Ozawa M, Newsom EM, Lucy MC, Hansen PJ (2011) Developmental changes in thermoprotective actions of insulin-like growth factor-1 on the preimplantation bovine embryo. Mol Cell Endocrinol 332(1–2):170–179. https://doi.org/10.1016/j.mce.2010.10.009
doi: 10.1016/j.mce.2010.10.009
pubmed: 20965229
Borah D, Biswas RK (2019) Effect of additives in medium on in-vitro maturation of goat oocytes. Indian J Anim Res. https://arccjournals.com/journal/indian-journal-of-animal-research/B-3722
Camargo LSA, Viana JHM, Sá WF, Ferreira AM, Ramos AA, Vale Filho VR (2006) Factors influencing in vitro embryo production. Anim Reprod 3(1):19–28
Camargo J, Rodrigues R, Valente RS, Muller DB, Vireque AA, Belaz KRA, Bohrer RC, Basso AC, Eberlin MN, Fontes PK, Nogueira MFG, Sudano MJ (2022) Evaluation of a serum-free culture medium for the enhanced vitrification cryosurvival of bovine in vitro-derived embryos. Livest Sci 260:104922. https://doi.org/10.1016/j.livsci.2022.104922
doi: 10.1016/j.livsci.2022.104922
Carrillo-Gonzalez D, Rodriguez-Osorio N, Long C, Vasquez N, Maldonado-Estrada J (2019) Effect of L-carnitine supplementation during in vitro maturation and in vitro culture on oocyte quality and embryonic development rate of bovines. Asian Pac J Reprod 8(6):289–296. https://doi.org/10.4103/2305-0500.270107
doi: 10.4103/2305-0500.270107
Carrillo-Gonzalez DF, Hernández DYH, Vásquez NAV (2021) Evaluación Del YM976 como alternativo a las hormonas gonadotrópicas en la maduración in vitro de oocitos bovinos y su competencia para El Desarrollo Embrionario. Revista De Investigaciones Veterinarias Del Perú 32(6):e20341. https://doi.org/10.15381/rivep.v32i6.20341
doi: 10.15381/rivep.v32i6.20341
Carrillo-González DF, Maldonado-Estrada JG (2020) L-carnitine supplementation in culture media improves the pregnancy rate of in vitro produced embryos with sexed semen from Bos taurus indicus cows. Trop Anim Health Prod 52:2559–2565. https://doi.org/10.1007/s11250-020-02281-y
doi: 10.1007/s11250-020-02281-y
pubmed: 32440939
Carrillo-González DF, Rodríguez-Osorio N, Long CR, Vásquez-Araque NA, Maldonado-Estrada JG (2020) L-Carnitine supplementation during in vitro maturation and in vitro culture does not affect the survival rates after vitrification and warming but alters Inf-T and ptgs2 gene expression. Int J Mol Sci 21(16):5601. https://doi.org/10.3390/ijms21165601
doi: 10.3390/ijms21165601
pubmed: 32764334
pmcid: 7460650
Carroll JA, Burdick NC, Chase CC, Coleman SW, Spiers DE (2012) Influence of environmental temperature on the physiological, endocrine, and immune responses in livestock exposed to a provocative immune challenge. Domest Anim Endocrinol 43(2):146–153. https://doi.org/10.1016/j.domaniend.2011.12.008
doi: 10.1016/j.domaniend.2011.12.008
pubmed: 22425434
Chase CC Jr, Randel RD, Riley DG, Coleman SW, Phillips WA (2017) Evaluation of tropically adapted straightbred and crossbred beef cattle: cortisol concentration and measures of temperament at weaning and transport. J Anim Sci 95(12):5253–5262. https://doi.org/10.2527/jas2017.1924
doi: 10.2527/jas2017.1924
pubmed: 29293783
pmcid: 6292284
Chen P, Pan Y, Cui Y, Wen Z, Liu P, He H, Li Q, Peng X, Zhao T, Yu S (2017) Insulin-like growth factor I enhances the developmental competence of yak embryos by modulating aquaporin 3. Reprod Domest Anim 52(5):825–835. https://doi.org/10.1111/rda.12985
doi: 10.1111/rda.12985
pubmed: 28512855
Contreras DA, Galina CS, Chenoweth P (2021) Prospects for increasing the utilization of cattle embryo transfer by small-scale milk and meat producers in tropical regions. Reprod Domest Anim 56(12):1479–1485. https://doi.org/10.1111/rda.14015
doi: 10.1111/rda.14015
pubmed: 34494313
Currin L, Baldassarre H, Bordignon V (2021) In vitro production of embryos from prepubertal holstein cattle and mediterranean water buffalo: Problems, progress and potential. Animals, 11(8), 2275. https://doi.org/10.3390/ani11082275
de Lacerda IP, Nunes MA, Souza MM, Fonseca BF, Silva E, Rodrigeus GM, Oliveira J (2020) Cattle breed affects in vitro embryo production in a large-scale commercial program on dairy farms. Livestok Sci 240:104135. https://doi.org/10.1016/j.livsci.2020.104135
doi: 10.1016/j.livsci.2020.104135
de Lima Moschini GA, Gaitkoski D, de Almeida AB, Hidalgo MM, Martins MI, Blaschi W, Barreiros TR (2021) Comparison between in vitro embryo production in Bos indicus and Bos taurus cows. Res Soc Dev 10:e38810716712–e38810716712. https://doi.org/10.33448/rsd-v10i7.16712
doi: 10.33448/rsd-v10i7.16712
Dode MAN, Rodovalho NC, Ueno VG, Fernandes CE (2002) The effect of sperm preparation and co-incubation time on in vitro fertilization of Bos indicus oocytes. Anim Reprod Sci 69(1–2):15–23. https://doi.org/10.1016/s0378-4320(01)00148-8
doi: 10.1016/s0378-4320(01)00148-8
pubmed: 11755713
Edwards JL, Saxton AM, Lawrence JL, Payton RR, Dunlap JR (2005) Exposure to a physiologically relevant elevated temperature hastens in vitro maturation in bovine oocytes. J Dairy Sci 88(12):4326–4333. https://doi.org/10.3168/jds.S0022-0302(05)73119-2
doi: 10.3168/jds.S0022-0302(05)73119-2
pubmed: 16291624
Ferré LB, Kjelland ME, Strøbech LB, Hyttel P, Mermillod P, Ross PJ (2020) Review: recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal 14(5):991–1004. https://doi.org/10.1017/S1751731119002775
doi: 10.1017/S1751731119002775
pubmed: 31760966
Fischer AE, Bernal DP, Gutierrez-Robayo C, Rutledge JJ (2000) Estimates of heterosis for in vitro embryo production using reciprocal crosses in cattle. Theriogenology 54(9):1433–1442. https://doi.org/10.1016/S0093-691X(00)00465-9
doi: 10.1016/S0093-691X(00)00465-9
pubmed: 11191867
Galina CS, Geffroy M (2023) Dual-purpose cattle raised in tropical conditions: what are their shortcomings in sound productive and reproductive function? Animals 13(3):2224. https://doi.org/10.3390/ani13132224
doi: 10.3390/ani13132224
pubmed: 37444022
pmcid: 10339982
Garcia SM, Marinho LSR, Lunardelli PA, Seneda MM, Meirelles FV (2015) Developmental block and programmed cell death in Bos indicus embryos: effects of protein supplementation source and developmental kinetics. PLoS ONE 10(3):e0119463. https://doi.org/10.1371/journal.pone.0119463
doi: 10.1371/journal.pone.0119463
pubmed: 25760989
pmcid: 4356560
Ghanem N, Ha AN, Fakruzzaman M, Bang JI, Lee SC, Kong IK (2014) Differential expression of selected candidate genes in bovine embryos produced in vitro and cultured with chemicals modulating lipid metabolism. Theriogenology 82(2):238–250. https://doi.org/10.1016/j.theriogenology.2014.03.024
doi: 10.1016/j.theriogenology.2014.03.024
pubmed: 24786394
Green C, Day M (2013) Insulin-like growth factor 1 acts as an autocrine factor to improve early embryogenesis in vitro. Internationa J Dev Biololgy 57:837–844. https://doi.org/10.1387/ijdb.130044md
doi: 10.1387/ijdb.130044md
Hansen PJ (2019) Reproductive physiology of the heat-stressed dairy cow: implications for fertility and assisted reproduction. Anim Reprod 16(3):497–507. https://doi.org/10.21451/1984-3143-AR2019-0053
doi: 10.21451/1984-3143-AR2019-0053
pubmed: 32435293
pmcid: 7234026
Hawk HW, Wall RJ (1994) Improved yields of bovine blastocysts from in vitro-produced oocytes. I. Selection of oocytes and zygotes. Theriogenology 41(8):1571–1583. https://doi.org/10.1016/0093-691X(94)90822-Z
doi: 10.1016/0093-691X(94)90822-Z
Hernández-Cerón J, Chase CC, Hansen PJ (2004) Differences in heat tolerance between preimplantation embryos from Brahman, Romosinuano, and Angus breeds. J Dairy Sci 87(1):53–58. https://doi.org/10.3168/jds.S0022-0302(04)73141-0
doi: 10.3168/jds.S0022-0302(04)73141-0
pubmed: 14765810
Huber E, Notaro US, Recce S, Rodríguez FM, Ortega HH, Salvetti NR, Rey F (2020) Fetal programming in dairy cows: Effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions. Anim Reprod Sci 216:106348. https://doi.org/10.1016/j.anireprosci.2020.106348
doi: 10.1016/j.anireprosci.2020.106348
pubmed: 32414470
Jimenez CR, de Azevedo JL, Silveira RG, Penitente-Filho J, Carrascal-Triana EL, Zolini AM, Araujo VR, Torres C, Gonçalves WG (2016) Effects of IGF-1 on in vitro culture of bovine preantral follicles are dose-dependent. Reprod Domest Anim 51(3):435–444. https://doi.org/10.1111/rda.12698
doi: 10.1111/rda.12698
pubmed: 27099180
Johnson J, Scharf B, Weaber R, Eichen P, Spiers D (2012) Patterns of heat response and adaptation on summer pasture: a comparison of heat-sensitive (Angus) and -tolerant (Romosinuano) cattle. J Therm Biol 37(4):344–350. https://doi.org/10.1016/j.jtherbio.2011.10.014
doi: 10.1016/j.jtherbio.2011.10.014
Kaya A, Sairkaya H, Misirliolu M, Gumen A, Parrish J, Memili E (2017) Leptin and IGF-I improve bovine embryo quality in vitro. Anim Reprod 14(4):1151–1160. https://doi.org/10.21451/1984-3143-AR987
doi: 10.21451/1984-3143-AR987
Khan A, Dou J, Wang Y, Jiang X, Khan MZ, Luo H, Usman T, Zhu H (2020) Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells. J Anim Sci Biotechnol 11:25. https://doi.org/10.1186/s40104-019-0408-8
doi: 10.1186/s40104-019-0408-8
pubmed: 32095238
pmcid: 7027041
Leme LO, Carvalho JO, Franco MM, Dode MAN (2020) Effect of sex on cryotolerance of bovine embryos produced in vitro. Theriogenology 141:219–227. https://doi.org/10.1016/j.theriogenology.2019.05.002
doi: 10.1016/j.theriogenology.2019.05.002
pubmed: 31084918
Lindner GM, Wright RW (1983) Bovine embryo morphology and evaluation. Theriogenology 20(4):407–416. https://doi.org/10.1016/0093-691x(83)90201-7
doi: 10.1016/0093-691x(83)90201-7
pubmed: 16725857
Makarevich AV, Markkula M (2002) Apoptosis and cell proliferation potential of bovine embryos stimulated with insulin-like growth factor I during in vitro maturation and culture. Biol Reprod 66(2):386–392. https://doi.org/10.1095/biolreprod66.2.386
doi: 10.1095/biolreprod66.2.386
pubmed: 11804953
Matsui M, Takahashi Y, Hishinuma M, Kanagawa H (1995) Insulin and insulin-like growth factor-I (IGF-I) stimulate the development of bovine embryos in vitro. J Vet Med Sci 57:1109–1111. https://doi.org/10.1292/jvms.57.1109
doi: 10.1292/jvms.57.1109
pubmed: 8720059
Mishra SR (2021) Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: an updated review. Trop Anim Health Prod 53:400. https://doi.org/10.1007/s11250-021-02790-4
doi: 10.1007/s11250-021-02790-4
pubmed: 34255188
Morrell JM (2020) Heat stress and bull fertility. Theriogenology 153:62–67. https://doi.org/10.1016/j.theriogenology.2020.05.014
doi: 10.1016/j.theriogenology.2020.05.014
pubmed: 32442741
Naranjo-Gómez JS, Uribe-García HF, Herrera-Sánchez MP, Lozano-Villegas KJ, Rodríguez-Hernández R, Rondón-Barragán IS (2021) Heat stress on cattle embryo: gene regulation and adaptation. Heliyon 7(3):e06570. https://doi.org/10.1016/j.heliyon.2021.e06570
doi: 10.1016/j.heliyon.2021.e06570
pubmed: 33869831
pmcid: 8035499
Neirijnck Y, Papaioannou MD, Nef S (2019) The Insulin/IGF system in mammalian sexual development and reproduction. Int J Mol Sci 20(18):4440. https://doi.org/10.3390/ijms20184440
doi: 10.3390/ijms20184440
pubmed: 31505893
pmcid: 6770468
Nogueira BGR, de Souza LFA, Puelker RZ, Giometti IC, Firetti SMG, dos Dias TS S.B., Castilho C (2021) Factors affecting the in vitro production of bovine embryos in a commercial program. Res Soc Dev 10(2):e16110212264–e16110212264. https://doi.org/10.33448/rsd-v10i2.12264
doi: 10.33448/rsd-v10i2.12264
Oliveira CS, Varella Serapião R, dos Reis Camargo AJ, de Freitas C, Tamy Iguma L, Carvalho C, de Almeida Camargo B, Oliveira LSZ (2019) Oocyte origin affects the in vitro embryo production and development of Holstein (Bos taurus taurus) - Gyr (Bos taurus indicus) reciprocal cross embryos. Anim Reprod Sci 209:106165. https://doi.org/10.1016/j.anireprosci.2019.106165 . L., & da Silva Verneque
Palma GA, Müller M, Brem G (1997) Effect of insulin-like growth factor I (IGF-I) at high concentrations on blastocyst development of bovine embryos produced in vitro. Reproduction 110(2):347–353. https://doi.org/10.1530/jrf.0.1100347
doi: 10.1530/jrf.0.1100347
Pontes JHF, Silva KCF, Basso AC, Rigo AG, Ferreira CR, Santos GMG, Sanches BV, Porcionato JPF, Vieira PHS, Faifer FS, Sterza FAM, Schenk JL, Seneda MM (2010) Large-scale in vitro embryo production and pregnancy rates from Bos taurus, Bos indicus, and indicus-taurus dairy cows using sexed sperm. Theriogenology 74(8):1349–1355. https://doi.org/10.1016/j.theriogenology.2010.06.004
doi: 10.1016/j.theriogenology.2010.06.004
pubmed: 20708245
Rosales-Martínez F, Becerril-Pérez C, Rosendo-Ponce A, Riaño-Gaya A, Cortez-Romero C, Sánchez J, Romo-García S (2024) In vitro embryos of Romosinuano and Tropical Milking cattle during three seasons in Veracruz. Mexico Preprints. https://doi.org/10.20944/preprints202404.0398.v1
doi: 10.20944/preprints202404.0398.v1
Sakatani M (2017) Effects of heat stress on bovine preimplantation embryos produced in vitro. J Reprod Dev 63(4):347–352. https://doi.org/10.1262/jrd.2017-045
doi: 10.1262/jrd.2017-045
pubmed: 28496018
pmcid: 5593085
Sales JNS, Iguma LT, Batista RITP, Quintão CCR, Gama MaS, Freitas C, Pereira MM, Camargo LSA, Viana JHM, Souza JC, Baruselli PS (2015) Effects of a high-energy diet on oocyte quality and in vitro embryo production in Bos indicus and Bos taurus cows. J Dairy Sci 98(5):3086–3099. https://doi.org/10.3168/jds.2014-8858
doi: 10.3168/jds.2014-8858
pubmed: 25726114
Silva DS, Rodriguez P, Galuppo A, Arruda NS, Rodrigues JL (2013) Selection of bovine oocytes by brilliant cresyl blue staining: effect on meiosis progression, organelle distribution and embryo development. Zygote 21(3):250–255. https://doi.org/10.1017/S0967199411000487
doi: 10.1017/S0967199411000487
pubmed: 21791164
Silva-Santos K, Santos G, Koetz C Júnior, Morotti F, Siloto L, Marcantonio T, Urbano M, Oliveira R, Lima D, Seneda M (2014) Antral follicle populations and embryo production – in vitro and in vivo – of Bos indicus Taurus donors from weaning to yearling ages. Reprod Domest Anim 49(2):228–232. https://doi.org/10.1111/rda.12255
doi: 10.1111/rda.12255
pubmed: 24456094
Stoecklein KS, Ortega MS, Spate LD, Murphy CN, Prather RS (2021) Improved cryopreservation of in vitro produced bovine embryos using FGF2, LIF, and IGF1. PLoS ONE 16(2):e0243727. https://doi.org/10.1371/journal.pone.0243727
doi: 10.1371/journal.pone.0243727
pubmed: 33534866
pmcid: 7857633
Succu S, Sale S, Ghirello G, Ireland JJ, Evans ACO, Atzori AS, Mossa F (2020) Exposure of dairy cows to high environmental temperatures and their lactation status impairs establishment of the ovarian reserve in their offspring. J Dairy Sci 103(12):11957–11969. https://doi.org/10.3168/jds.2020-18678
doi: 10.3168/jds.2020-18678
pubmed: 33041040
Taborda-Charris JC, Rodríguez-Hernández R, Herrera-Sánchez MP, Uribe-García HF, Otero-Arroyo RJ, Naranjo-Gomez JS, Lozano-Villegas KJ, Rondón-Barragán IS (2023) Expression profiling of heat shock protein genes in whole blood of Romosinuano cattle breed. Veterinary World 16(3):601–606. https://doi.org/10.14202/vetworld.2023.601-606
doi: 10.14202/vetworld.2023.601-606
pubmed: 37041848
pmcid: 10082753
The jamovi project (2022) https://www.jamovi.org/
Vejarano A, Hernández A (2021) Grado De desarrollo del folículo preovulatorio y su relación con El tamaño del cuerpo lúteo y la producción de progesterona en las razas romosinuano (RS) y Brahman (Br). Revista De La Facultad De Med Vet y de Zootecnia 68(1):52–65. https://doi.org/10.15446/rfmvz.v68n1.97255
doi: 10.15446/rfmvz.v68n1.97255
Yang S, Yang Y, Hao H, Du W, Pang Y, Zhao S, Zou H, Zhu H, Zhang P, Zhao X (2022) Supplementation of EGF, IGF-1, and connexin 37 in IVM Medium significantly improved the maturation of bovine oocytes and vitrification of their IVF blastocysts. Genes 13(5):805. https://doi.org/10.3390/genes13050805
doi: 10.3390/genes13050805
pubmed: 35627190
pmcid: 9140688
Zhandi M, Towhidi A, Nasr-Esfahani MH, Eftekhari-Yazdi P, Zare-Shahneh A (2009) Unexpected detrimental effect of insulin like growth factor-1 on bovine oocyte developmental competence under heat stress. J Assist Reprod Genet 26:605–611. https://doi.org/10.1007/s10815-009-9364-0
doi: 10.1007/s10815-009-9364-0
pubmed: 19915974
pmcid: 2799561