Molecular mimicry as a mechanism of viral immune evasion and autoimmunity.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 21 03 2024
accepted: 18 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Mimicry of host protein structures, or 'molecular mimicry', is a common mechanism employed by viruses to evade the host's immune system. Short linear amino acid (AA) molecular mimics can elicit cross-reactive antibodies and T cells from the host, but the prevalence of such mimics throughout the human virome has not been fully explored. Here we evaluate 134 human-infecting viruses and find significant usage of linear mimicry across the virome, particularly those in the Herpesviridae and Poxviridae families. Furthermore, host proteins related to cellular replication and inflammation, autosomes, the X chromosome, and thymic cells are enriched as viral mimicry targets. Finally, we find that short linear mimicry from Epstein-Barr virus (EBV) is higher in auto-antibodies found in patients with multiple sclerosis than previously appreciated. Our results thus hint that human-infecting viruses leverage mimicry in the course of their infection, and that such mimicry may contribute to autoimmunity, thereby prompting potential targets for therapies.

Identifiants

pubmed: 39477943
doi: 10.1038/s41467-024-53658-8
pii: 10.1038/s41467-024-53658-8
doi:

Substances chimiques

Autoantibodies 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9403

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA)
ID : K08 T26-1616-11
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
ID : R01AI104870-S1
Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse (NIDA)
ID : 5T32DA018926-18

Informations de copyright

© 2024. The Author(s).

Références

Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J. & Ploegh, H. L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).
pubmed: 10837078 doi: 10.1146/annurev.immunol.18.1.861
Gowthaman, U. & Eswarakumar, V. P. Molecular mimicry. Virulence 4, 433–434 (2013).
pubmed: 23863600 doi: 10.4161/viru.25780
Chen, J. W. et al. Positive and negative selection shape the human naive B cell repertoire. J. Clin. Invest. 132, e150985 (2022).
pubmed: 34813502 pmcid: 8759783 doi: 10.1172/JCI150985
Palmer, E. Negative selection-clearing out the bad apples from the T cell repertoire. Nat. Rev. Immunol. 3, 383–391 (2003).
pubmed: 12766760 doi: 10.1038/nri1085
Cusick, M. F., Libbey, J. E. & Fujinami, R. S. Molecular mimicry as a mechanism of autoimmune disease. Clin. Rev. Allergy Immunol. 42, 102–111 (2012).
pubmed: 22095454 doi: 10.1007/s12016-011-8294-7
Smatti, M. K. et al. Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms. Viruses 11, 762 (2019).
pubmed: 31430946 pmcid: 6723519 doi: 10.3390/v11080762
Zhao, Z.-S., Granucci, F., Yeh, L., Schaffer, P. A. & Cantor, H. Molecular mimicry by herpes simplex virus-type 1: autoimmune disease after viral infection. Science 279, 1344–1347 (1998).
pubmed: 9478893 doi: 10.1126/science.279.5355.1344
Sabbatini, A., Bombardieri, S. & Migliorini, P. Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein-Barr virus-encoded nuclear antigen EBNA I. Eur. J. Immunol. 23, 1146–1152 (1993).
pubmed: 8386666 doi: 10.1002/eji.1830230525
Lasso, G., Honig, B. & Shapira, S. D. A sweep of Earth’s virome reveals host-guided viral protein structural mimicry and points to determinants of human disease. Cell Syst. 12, 82–91.e3 (2021).
pubmed: 33053371 doi: 10.1016/j.cels.2020.09.006
Chang, S. T., Ghosh, D., Kirschner, D. E. & Linderman, J. J. Peptide length-based prediction of peptide–MHC class II binding. Bioinformatics 22, 2761–2767 (2006).
pubmed: 17000752 doi: 10.1093/bioinformatics/btl479
Wieczorek, M. et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front. Immunol. 8, 292 (2017).
pubmed: 28367149 pmcid: 5355494 doi: 10.3389/fimmu.2017.00292
Trolle, T. et al. The length distribution of class I-restricted T cell epitopes is determined by both peptide supply and MHC allele-specific binding preference. J. Immunol. 196, 1480–1487 (2016).
pubmed: 26783342 doi: 10.4049/jimmunol.1501721
Burrows, S. R., Rossjohn, J. & McCluskey, J. Have we cut ourselves too short in mapping CTL epitopes? Trends Immunol. 27, 11–16 (2006).
pubmed: 16297661 doi: 10.1016/j.it.2005.11.001
Buus, S. et al. High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol. Cell Proteom. 11, 1790–1800 (2012).
doi: 10.1074/mcp.M112.020800
Qi, H. et al. Antibody binding epitope mapping (AbMap) of hundred antibodies in a single run. Mol. Cell Proteom. 20, 100059 (2021).
doi: 10.1074/mcp.RA120.002314
Doxey, A. C. & McConkey, B. J. Prediction of molecular mimicry candidates in human pathogenic bacteria. Virulence 4, 453–466 (2013).
pubmed: 23715053 pmcid: 5359739 doi: 10.4161/viru.25180
Lebeau, G. et al. Zika E glycan loop region and Guillain–Barré syndrome-related proteins: a possible molecular mimicry to be taken in account for vaccine development. Vaccines 9, 283 (2021).
pubmed: 33808706 pmcid: 8003386 doi: 10.3390/vaccines9030283
Adiguzel, Y. Molecular mimicry between SARS-CoV-2 and human proteins. Autoimmun. Rev. 20, 102791 (2021).
pubmed: 33610750 pmcid: 7890341 doi: 10.1016/j.autrev.2021.102791
Begum, S. et al. Molecular mimicry analyses unveiled the human herpes simplex and poxvirus epitopes as possible candidates to incite autoimmunity. Pathogens 11, 1362 (2022).
pubmed: 36422613 pmcid: 9696880 doi: 10.3390/pathogens11111362
Hurford, A. & Day, T. Immune evasion and the evolution of molecular mimicry in parasites. Evolution 67, 2889–2904 (2013).
pubmed: 24094341
Kumar, M. et al. ELM—the Eukaryotic Linear Motif Resource—2024 update. Nucleic Acids Res. 52, D442–D455 (2024).
pubmed: 37962385 doi: 10.1093/nar/gkad1058
Slobedman, B., Barry, P. A., Spencer, J. V., Avdic, S. & Abendroth, A. Virus-encoded homologs of cellular interleukin-10 and their control of host immune function. J. Virol. 83, 9618–9629 (2009).
pubmed: 19640997 pmcid: 2747999 doi: 10.1128/JVI.01098-09
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
pubmed: 10592173 pmcid: 102409 doi: 10.1093/nar/28.1.27
Kang, M.-S. & Kieff, E. Epstein–Barr virus latent genes. Exp. Mol. Med. 47, e131 (2015).
pubmed: 25613728 pmcid: 4314583 doi: 10.1038/emm.2014.84
Xing, Y. & Hogquist, K. A. T cell tolerance: central and peripheral. Cold Spring Harb. Perspect. Biol. 4, a006957 (2012).
pubmed: 22661634 pmcid: 3367546 doi: 10.1101/cshperspect.a006957
Gabrielsen, I. S. M. et al. Transcriptomes of antigen presenting cells in human thymus. PLoS ONE 14, e0218858 (2019).
pubmed: 31261375 pmcid: 6602790 doi: 10.1371/journal.pone.0218858
Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022).
pubmed: 35025605 doi: 10.1126/science.abj8222
Zamecnik, C. R. et al. An autoantibody signature predictive for multiple sclerosis. Nat. Med. 1–9 https://doi.org/10.1038/s41591-024-02938-3 (2024).
Hrycek, A., Kuśmierz, D., Mazurek, U. & Wilczok, T. Human cytomegalovirus in patients with systemic lupus erythematosus. Autoimmunity 38, 487–491 (2005).
pubmed: 16373253 doi: 10.1080/08916930500285667
Israeli, E., Agmon-Levin, N., Blank, M., Chapman, J. & Shoenfeld, Y. Guillain-Barré syndrome—a classical autoimmune disease triggered by infection or vaccination. Clin. Rev. Allergy Immunol. 42, 121–130 (2012).
pubmed: 20890797 doi: 10.1007/s12016-010-8213-3
Oikarinen, M. et al. Enterovirus infections are associated with the development of celiac disease in a birth cohort study. Front. Immunol. 11, 604529 (2020).
pubmed: 33603739 doi: 10.3389/fimmu.2020.604529
Yazdanpanah, N. & Rezaei, N. Autoimmune complications of COVID-19. J. Med. Virol. 94, 54–62 (2022).
pubmed: 34427929 doi: 10.1002/jmv.27292
Gómez-Rial, J., Rivero-Calle, I., Salas, A. & Martinón-Torres, F. Rotavirus and autoimmunity. J. Infect. 81, 183–189 (2020).
pubmed: 32360880 doi: 10.1016/j.jinf.2020.04.041
Banko, A., Miljanovic, D. & Cirkovic, A. Systematic review with meta-analysis of active herpesvirus infections in patients with COVID-19: old players on the new field. Int. J. Infect. Dis. 130, 108–125 (2023).
pubmed: 36736577 doi: 10.1016/j.ijid.2023.01.036
Boys, I. N., Johnson, A. G., Quinlan, M. R., Kranzusch, P. J. & Elde, N. C. Structural homology screens reveal host-derived poxvirus protein families impacting inflammasome activity. Cell Rep. 42, 112878 (2023).
pubmed: 37494187 doi: 10.1016/j.celrep.2023.112878
Albarnaz, J. D. et al. Molecular mimicry of NF-κB by vaccinia virus protein enables selective inhibition of antiviral responses. Nat. Microbiol. 7, 154–168 (2022).
pubmed: 34949827 doi: 10.1038/s41564-021-01004-9
Howard, J., Justus, D. E., Totmenin, A. V., Shchelkunov, S. & Kotwal, G. J. Molecular mimicry of the inflammation modulatory proteins (IMPs) of poxviruses: evasion of the inflammatory response to preserve viral habitat. J. Leukoc. Biol. 64, 68–71 (1998).
pubmed: 9665277 doi: 10.1002/jlb.64.1.68
Gubser, C. et al. A new inhibitor of apoptosis from vaccinia virus and eukaryotes. PLoS Pathog. 3, e17 (2007).
pubmed: 17319741 doi: 10.1371/journal.ppat.0030017
Mansur, D. S. et al. Poxvirus targeting of E3 ligase β-TrCP by molecular mimicry: a mechanism to inhibit NF-κB activation and promote immune evasion and virulence. PLoS Pathog. 9, e1003183 (2013).
pubmed: 23468625 doi: 10.1371/journal.ppat.1003183
Baxby, D. Poxviruses. in Medical Microbiology (ed. Baron, S.) (University of Texas Medical Branch at Galveston, 1996).
Efridi, W. & Lappin, S. L. Poxviruses. In StatPearls (StatPearls Publishing, 2024).
Amrani, A. et al. Expansion of the antigenic repertoire of a single T cell receptor upon T cell activation. J. Immunol. 167, 655–666 (2001).
pubmed: 11441068 doi: 10.4049/jimmunol.167.2.655
Zamvil, S. S., Spencer, C. M., Baranzini, S. E. & Cree, B. A. C. The gut microbiome in neuromyelitis optica. Neurotherapeutics 15, 92–101 (2018).
pubmed: 29280091 doi: 10.1007/s13311-017-0594-z
Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).
pubmed: 35073561 pmcid: 9382663 doi: 10.1038/s41586-022-04432-7
Rojas, J. M., Avia, M., Martín, V. & Sevilla, N. IL-10: a multifunctional cytokine in viral infections. J. Immunol. Res. 2017, 6104054 (2017).
pubmed: 28316998 pmcid: 5337865 doi: 10.1155/2017/6104054
Grabski, D. F., Hu, Y., Sharma, M. & Rasmussen, S. K. Close to the bedside: a systematic review of endogenous retrovirus and their impact in oncology. J. Surg. Res. 240, 145–155 (2019).
pubmed: 30933828 pmcid: 9306217 doi: 10.1016/j.jss.2019.02.009
Balada, E., Vilardell-Tarrés, M. & Ordi-Ros, J. Implication of human endogenous retroviruses in the development of autoimmune diseases. Int. Rev. Immunol. 29, 351–370 (2010).
pubmed: 20635879 doi: 10.3109/08830185.2010.485333
Passos, V., Pires, A. R., Foxall, R. B., Nunes-Cabaço, H. & Sousa, A. E. Expression of human endogenous retroviruses in the human thymus along T cell development. Front. Virol. 2, (2022).
Alcazer, V., Bonaventura, P. & Depil, S. Human endogenous retroviruses (HERVs): shaping the innate immune response in cancers. Cancers 12, 610 (2020).
pubmed: 32155827 pmcid: 7139688 doi: 10.3390/cancers12030610
Khalid, F. et al. Neurological adverse effects of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy. World J. Oncol. 14, 109–118 (2023).
pubmed: 37188042 pmcid: 10181423 doi: 10.14740/wjon1575
Marini, A. et al. Neurologic adverse events of immune checkpoint inhibitors: a systematic review. Neurology 96, 754–766 (2021).
pubmed: 33653902 doi: 10.1212/WNL.0000000000011795
Gritsch, D. & Valencia-Sanchez, C. Drug-related immune-mediated myelopathies. Front. Neurol. 13, 1003270 (2022).
pubmed: 36247761 pmcid: 9557103 doi: 10.3389/fneur.2022.1003270
Hottinger, A. F. Neurologic complications of immune checkpoint inhibitors. Curr. Opin. Neurol. 29, 806–812 (2016).
pubmed: 27653290 doi: 10.1097/WCO.0000000000000391
Oliveira, M. C. B., de Brito, M. H. & Simabukuro, M. M. Central nervous system demyelination associated with immune checkpoint inhibitors: review of the literature. Front. Neurol. 11, 538695 (2020).
pubmed: 33362680 pmcid: 7759512 doi: 10.3389/fneur.2020.538695
Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 6, 38 (2020).
pubmed: 32382051 doi: 10.1038/s41572-020-0160-6
Leko, V. et al. Identification of neoantigen-reactive T lymphocytes in the peripheral blood of a patient with glioblastoma. J. Immunother. Cancer 9, e002882 (2021).
pubmed: 34266885 pmcid: 8286793 doi: 10.1136/jitc-2021-002882
Zhou, W., Yu, J., Li, Y. & Wang, K. Neoantigen-specific TCR-T cell-based immunotherapy for acute myeloid leukemia. Exp. Hematol. Oncol. 11, 100 (2022).
pubmed: 36384590 pmcid: 9667632 doi: 10.1186/s40164-022-00353-3
Zhu, Y., Qian, Y., Li, Z., Li, Y. & Li, B. Neoantigen‐reactive T cell: an emerging role in adoptive cellular immunotherapy. MedComm 2, 207–220 (2021). (2020).
pubmed: 34766142 pmcid: 8491202 doi: 10.1002/mco2.41
Grosser, R., Cherkassky, L., Chintala, N. & Adusumilli, P. S. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36, 471–482 (2019).
pubmed: 31715131 pmcid: 7171534 doi: 10.1016/j.ccell.2019.09.006
Yoon, D. H., Osborn, M. J., Tolar, J. & Kim, C. J. Incorporation of immune checkpoint blockade into chimeric antigen receptor T cells (CAR-Ts): combination or built-in CAR-T. Int. J. Mol. Sci. 19, 340 (2018).
pubmed: 29364163 pmcid: 5855562 doi: 10.3390/ijms19020340
Park, J. & Chung, Y.-J. Identification of neoantigens derived from alternative splicing and RNA modification. Genomics Inf. 17, e23 (2019).
doi: 10.5808/GI.2019.17.3.e23
Huang, P., Wen, F., Tuerhong, N., Yang, Y. & Li, Q. Neoantigens in cancer immunotherapy: focusing on alternative splicing. Front. Immunol. 15, 1437774 (2024).
pubmed: 39055714 pmcid: 11269099 doi: 10.3389/fimmu.2024.1437774
Nantes University Hospital. An open single-center, phase I proof of concept trial to assess the safety and feasibility of adoptive cell therapy with autologous EBV-specific cytotoxic T lymphocytes (CTL) in patients with a first clinical episode highly suggestive of multiple sclerosis. https://clinicaltrials.gov/study/NCT02912897 (2023).
Michael, L. Effects of antiviral therapies on Epstein-Barr virus replication. https://clinicaltrials.gov/study/NCT05957913 (2023).
Masson, P. et al. ViralZone: recent updates to the virus knowledge resource. Nucleic Acids Res. 41, D579–D583 (2013).
pubmed: 23193299 doi: 10.1093/nar/gks1220
Schoch, C. L. et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database 2020, baaa062 (2020).
pubmed: 32761142 pmcid: 7408187 doi: 10.1093/database/baaa062
Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
pubmed: 25613900 doi: 10.1126/science.1260419
Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).
doi: 10.1137/141000671
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Maguire, C. et al. Molecular mimicry as a mechanism of viral immune evasion and autoimmunity. Zenodo https://doi.org/10.5281/zenodo.13272863 (2024).
Consortium, UniProt UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).
doi: 10.1093/nar/gkac1052

Auteurs

Cole Maguire (C)

Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.

Chumeng Wang (C)

Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.

Akshara Ramasamy (A)

Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.

Cara Fonken (C)

Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.

Brinkley Morse (B)

Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.

Nathan Lopez (N)

Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.

Dennis Wylie (D)

Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA.

Esther Melamed (E)

Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA. esther.melamed@austin.utexas.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH