Plasma metabolites as mediators in the relationship between inflammation-related proteins and benign prostatic hyperplasia: insights from mendelian randomization.
BPH
Colocalization
Inflammation-related proteins
Mediation analysis
Mendelian randomization
Plasma metabolites
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 10 2024
30 10 2024
Historique:
received:
05
07
2024
accepted:
23
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Benign prostatic hyperplasia (BPH) is a condition commonly observed in aging males. Inflammatory and metabolic factors are pivotal in the development and progression of BPH. The degree to which the effects of 91 inflammation-related proteins on BPH are mediated by 1400 plasma metabolites remains ambiguous. Our research analyzed the impact of these traits utilizing genetic evidence.Two-sample Mendelian randomization (MR) and multivariable MR (MVMR) were utilized in our study to infer the genetic causal effect of inflammation-related proteins on BPH, with metabolites serving as mediators. Increased levels of IL-2 were linked to a heightened incidence of BPH (β = 0.071, OR:1.074, 95% CI [1.002-1.152], p = 0.045), whereas lower concentrations of N6,N6-dimethyllysine were associated with decreased risk (β1=-0.127, p = 0.02; β2=-0.039, p = 0.008). The mediation effect was 0.005 (95% CI [0.0004, 0.012], OR: 1.005, 95% CI [1.000, 1.012]), accounting for 7.04% of the total effect. subsequently, we examined the phenotypic co-localization of the two pairings independently, revealing that the posterior probability of rs145516501 associated with IL-2 and BPH was 80.7%, whereas the posterior likelihood of rs4917820 linked to N6,N6-dimethyllysine levels and BPH was 95.9%. The research indicated that N6,N6-dimethyllysine levels seem to influence the causative relationship between IL-2 and BPH. These results elucidate the complex interplay between inflammation-related proteins and metabolism in the context of BPH, offering novel diagnostic and therapeutic avenues and enhancing our comprehension of the disease's etiology for prospective research.
Identifiants
pubmed: 39478098
doi: 10.1038/s41598-024-77515-2
pii: 10.1038/s41598-024-77515-2
doi:
Substances chimiques
Interleukin-2
0
Lysine
K3Z4F929H6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26152Informations de copyright
© 2024. The Author(s).
Références
Wu, Y. J., Dong., Q., Liu, L. R. & Wei, Q. A meta-analysis of efficacy and safety of the new α1A-adrenoceptor-selective antagonist silodosin for treating lower urinary tract symptoms associated with BPH. Prostate Cancer Prostatic Dis. 16(1), 0. https://doi.org/10.1038/pcan.2012.36 (2012).
doi: 10.1038/pcan.2012.36
Jean-Nicolas, C. et al. Minimally invasive treatments for benign prostatic obstruction: a systematic review and network meta-analysis. Eur. Urol. 83(6), 0. https://doi.org/10.1016/j.eururo.2023.02.028 (2023).
doi: 10.1016/j.eururo.2023.02.028
Dehong, C. et al. Immune cell proinflammatory microenvironment and androgen-related metabolic regulation during benign prostatic hyperplasia in aging. Front. Immunol. 13(0), 0. https://doi.org/10.3389/fimmu.2022.842008 (2022).
doi: 10.3389/fimmu.2022.842008
Weronika, R. et al. Alterations in fecal short chain fatty acids (SCFAs) and branched short-chain fatty acids (BCFAs) in men with benign prostatic hyperplasia (BPH) and metabolic syndrome (MetS). Aging. 13(8), 0. https://doi.org/10.18632/aging.202968 (2021).
doi: 10.18632/aging.202968
Dongxu, L. et al. YAP1 recognizes inflammatory and mechanical cues to exacerbate benign prostatic hyperplasia via promoting cell survival and fibrosis. Adv. Sci.. 11(5), 0. https://doi.org/10.1002/advs.202304274 (2023).
doi: 10.1002/advs.202304274
Villar, A., Silva-Fuentes, F., Anna, M., Zangara, A. Pygeum africanum anti-inflammatory potential of bark extract: an in vitro study of cytokine release by lipopolysaccharide-stimulated human peripheral blood mononuclear cells. Int. J. Mol. Sci. 25(15), undefined. https://doi.org/10.3390/ijms25158298 (2024).
Rui, L. et al. Wenshenqianlie capsule improves benign prostatic hyperplasia via its anti-inflammatory and antioxidant effects. Aging (Albany NY). 16(0), 0. https://doi.org/10.18632/aging.20610 (2024).
doi: 10.18632/aging.20610
Shalender, B., & Thompson, I. M. Prostate risk and monitoring during testosterone replacement therapy. J. Clin. Endocrinol. Metab. 0(0), 0. https://doi.org/10.1210/clinem/dgae334 (2024).
doi: 10.1210/clinem/dgae334
Daniel, P. R. et al. Unveiling disrupted lipid metabolism in benign prostate hyperplasia, prostate cancer, and metastatic patients: insights from a Colombian nested case-control study. Cancers (Basel). 15(22), 0. https://doi.org/10.3390/cancers15225465 (2023).
doi: 10.3390/cancers15225465
Jiaqiang, M. et al. A blueprint for tumor-infiltrating B cells across human cancers. Science. 384(6695), 0. https://doi.org/10.1126/science.adj4857 (2024).
doi: 10.1126/science.adj4857
Yeeun, S. et al. Structural basis of lipid head group entry to the Kennedy pathway by FLVCR1. Nature. 629(8012), 0. https://doi.org/10.1038/s41586-024-07374-4 (2024).
doi: 10.1038/s41586-024-07374-4
Nischal, M. C. et al. Filamin A is a prognostic serum biomarker for differentiating Benign Prostatic Hyperplasia from prostate Cancer in caucasian and African American men. Cancers. 16(4), 0. https://doi.org/10.3390/cancers16040712 (2024).
Yang, Y. et al. Exploring the potential mechanism of Xiaojin Pill therapy for benign prostatic hyperplasia through metabolomics and gut microbiota analysis. Front. Microbiol. 15(undefined), 1431954. https://doi.org/10.3389/fmicb.2024.1431954 (2024).
Wang, S. et al. Combining untargeted and targeted metabolomics to reveal the mechanisms of herb pair Anemarrhena asphodeloides Bunge and Phellodendron chinense C. K. Schneid on benign prostatic hyperplasia. J. Ethnopharmacol. 334(undefined), 118539. https://doi.org/10.1016/j.jep.2024.118539 (2024).
De Nunzio, C., Salonia, A., Gacci, M. & Ficarra, V. Inflammation is a target of medical treatment for lower urinary tract symptoms associated with benign prostatic hyperplasia. World J. Urol. 38(11), 2771–2779. https://doi.org/10.1007/s00345-020-03106-1 (2020).
Liedtke, V., Stöckle, M., Junker, K. & Roggenbuck, D. Benign prostatic hyperplasia - A novel autoimmune disease with a potential therapy consequence? Autoimmun. Rev. 23(3), 103511. https://doi.org/10.1016/j.autrev.2023.103511 (2024).
Nickel, J. C. et al. The relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial. Eur. Urol. 54(6), 1379–1384. https://doi.org/10.1016/j.eururo.2007.11.026 (2008).
doi: 10.1016/j.eururo.2007.11.026
pubmed: 18036719
Chu Yifan, Mengdong, Z., Yun, C., Dawei, X., Lei, W. M. Y. & Wang Siqi., Wang Jianwen The effect of 5-α reductase inhibitor on Th1, Th2, and Th17 cell-related inflammatory response in BPH. World J. Urol. 41(5), 1395–1400. https://doi.org/10.1007/s00345-023-04357-4 (2023).
doi: 10.1007/s00345-023-04357-4
pubmed: 37103567
Huang, T. R., Wang, G. C., Zhang, H. M. & Peng, B. Differential research of inflammatory and related mediators in BPH, histological prostatitis and PCa. Andrologia. https://doi.org/10.1111/and.12974 (2018).
doi: 10.1111/and.12974
pubmed: 30488974
Kramer, G., Mitteregger, D. & Marberger, M. Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur. Urol. 51(5), 1202–1216. https://doi.org/10.1016/j.eururo.2006.12.011 (2007).
Barashi Nimrod, S. et al. Symptomatic benign prostatic hyperplasia with suppressed epigenetic regulator HOXB13 shows a lower incidence of prostate cancer development. Cancers. 16(1), undefined. https://doi.org/10.3390/cancers16010213 (2024).
Pérez-Blas, M. et al. Defective functional response to membrane stimuli in lymphocytes from patients with benign prostatic hyperplasia. Clin. Exp. Immunol. 101(3), 521–526. https://doi.org/10.1111/j.1365-2249 (1995).
Cao, T. et al. Rapamycin and low-dose IL–2 mediate an immunosuppressive microenvironment to inhibit benign prostatic hyperplasia. Int. J. Biol. Sci. 19(11), 3441–3455. https://doi.org/10.7150/ijbs.85089 (2023).
Li, B. et al. Causal association of circulating metabolites with diabetic retinopathy: a bidirectional Mendelian randomization analysis. Front. Endocrinol. 15(undefined), 1359502. https://doi.org/10.3389/fendo.2024.1359502 (2024).
Stankey, C. T. et al. A disease-associated gene desert directs macrophage inflammation through ETS2. Nature. 630(8016), 447–456. https://doi.org/10.1038/s41586-024-07501-1 (2024).
doi: 10.1038/s41586-024-07501-1
pubmed: 38839969
Francisco, J. et al. Systematic assessment of long-read RNA-seq methods for transcript identification and quantification. Nat. Methods. 21(7), 0. https://doi.org/10.1038/s41592-024-02298-3 (2024).
doi: 10.1038/s41592-024-02298-3
Schmauch, E. et al. Integrative multi-omics profiling in human decedents receiving pig heart xenografts. Nat. Med. 30(5), 1448–1460. https://doi.org/10.1038/s41591-024-02972-1 (2024).
Tang, D., Kroemer, G. & Kang, R. Targeting cuproplasia and cuproptosis in cancer. Nat. Rev. Clin. Oncol. 21(5), 370–388. https://doi.org/10.1038/s41571-024-00876-0 (2024).
MoTrPAC Study Group, Lead Analysts & MoTrPAC Study Group. Temporal dynamics of the multi-omic response to endurance exercise training. Nature. 629(8010), 174–183. https://doi.org/10.1038/s41586-023-06877-w (2024).
Li, C. et al. Gut microbiome and metabolome profiling in Framingham heart study reveals cholesterol-metabolizing bacteria. Cell. 187(8), 1834–1852.e19. https://doi.org/10.1016/j.cell.2024.03.014 (2024).
Karjalainen, M. K. et al. Genome-wide characterization of circulating metabolic biomarkers. Nature. 628(8006), 130–138. https://doi.org/10.1038/s41586-024-07148-y (2024).
Sanderson, E., Davey Smith, G., Windmeijer, F. & Bowden, J. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol. 48(3), 713–727. https://doi.org/10.1093/ije/dyy262 (2019).
Jared, G. et al. Bidirectional mendelian randomization and multiphenotype GWAS show causality and shared pathophysiology between depression and type 2 diabetes. Diabetes Care. 46(9), 0. https://doi.org/10.2337/dc22-2373 (2023).
Mitja, I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 613(7944), 0. https://doi.org/10.1038/s41586-022-05473-8 (2023).
doi: 10.1038/s41586-022-05473-8
Jing Hua, Z. et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat. Immunol. 24(9), 0. https://doi.org/10.1038/s41590-023-01588-w (2023).
doi: 10.1038/s41590-023-01588-w
Yiheng, C. et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 55(1), 0. https://doi.org/10.1038/s41588-022-01270-1 (2023).
doi: 10.1038/s41588-022-01270-1
Zhengjie, C., Ying, S., Xintao, D. & Xiaoyun, Z. Genetically predicted N-methylhydroxyproline levels mediate the association between naive CD8 + T cells and allergic rhinitis: a mediation mendelian randomization study. Front. Immunol. 15(0), 0. https://doi.org/10.3389/fimmu.2024.1396246 (2024).
doi: 10.3389/fimmu.2024.1396246
Ni, Y. et al. Body mass index, smoking behavior, and depression mediated the effects of schizophrenia on chronic obstructive pulmonary disease: trans-ethnic Mendelian-randomization analysis. Front Psychiatry 15(undefined), 1405107. https://doi.org/10.3389/fpsyt.2024.1405107 (2024).