Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis.
Animals
Mice
Carcinogenesis
/ genetics
Proto-Oncogene Proteins p21(ras)
/ genetics
Adenomatous Polyposis Coli Protein
/ genetics
Female
Male
Neoplastic Stem Cells
/ pathology
Mutation
Proto-Oncogene Proteins c-myc
/ metabolism
Intestinal Neoplasms
/ genetics
Cell Lineage
Genetic Fitness
Clone Cells
/ metabolism
Signal Transduction
Genes, APC
Humans
Cell Transformation, Neoplastic
/ genetics
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Oct 2024
Oct 2024
Historique:
received:
08
12
2023
accepted:
16
09
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
ppublish
Résumé
Loss-of-function mutations in the tumour suppressor APC are an initial step in intestinal tumorigenesis
Identifiants
pubmed: 39478206
doi: 10.1038/s41586-024-08053-0
pii: 10.1038/s41586-024-08053-0
doi:
Substances chimiques
Proto-Oncogene Proteins p21(ras)
EC 3.6.5.2
Adenomatous Polyposis Coli Protein
0
Proto-Oncogene Proteins c-myc
0
Hras protein, mouse
EC 3.6.5.2
adenomatous polyposis coli protein, mouse
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1196-1203Informations de copyright
© 2024. The Author(s).
Références
Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).
pubmed: 2188735
doi: 10.1016/0092-8674(90)90186-I
Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).
pubmed: 19092804
doi: 10.1038/nature07602
Flanagan, D. J. et al. NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature 594, 430–435 (2021).
pubmed: 34079124
pmcid: 7615049
doi: 10.1038/s41586-021-03525-z
Van Neerven, S. M. et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature 594, 436–441 (2021).
pubmed: 34079128
doi: 10.1038/s41586-021-03558-4
Yum, M. K. et al. Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature 594, 442–447 (2021).
pubmed: 34079126
pmcid: 7614896
doi: 10.1038/s41586-021-03605-0
Thirlwell, C. et al. Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology 138, 1441–1454.e7 (2010).
pubmed: 20102718
doi: 10.1053/j.gastro.2010.01.033
Leystra, A. A. et al. Multi-ancestral origin of intestinal tumors: impact on growth, progression, and drug efficacy. Cancer Rep. 5, e1459 (2022).
doi: 10.1002/cnr2.1459
Snippert, H. J., Schepers, A. G., Van Es, J. H., Simons, B. D. & Clevers, H. Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep. 15, 62–69 (2014).
pubmed: 24355609
doi: 10.1002/embr.201337799
Vermeulen, L. et al. Defining stem cell dynamics in models of intestinal tumor initiation. Science 342, 995–998 (2013).
pubmed: 24264992
doi: 10.1126/science.1243148
Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).
pubmed: 959840
doi: 10.1126/science.959840
Fearon, E. R., Hamilton, S. R. & Vogelstein, B. Clonal analysis of human colorectal tumors. Science 238, 193–197 (1987).
pubmed: 2889267
doi: 10.1126/science.2889267
Yates, L. R. & Campbell, P. J. Evolution of the cancer genome. Nat. Rev. Genet. 13, 795–806 (2012).
pubmed: 23044827
pmcid: 3666082
doi: 10.1038/nrg3317
Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).
pubmed: 32025013
pmcid: 7054212
doi: 10.1038/s41586-019-1907-7
Novelli, M. R. et al. Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science 272, 1187–1190 (1996).
pubmed: 8638166
doi: 10.1126/science.272.5265.1187
Gausachs, M. et al. Mutational heterogeneity in APC and KRAS arises at the crypt level and leads to polyclonality in early colorectal tumorigenesis. Clin. Cancer Res. 23, 5936–5947 (2017).
pubmed: 28645942
pmcid: 5626604
doi: 10.1158/1078-0432.CCR-17-0821
Beutler, E., Collins, Z. & Irwin, L. E. Value of genetic variants of glucose-6-phosphate dehydrogenase in tracing the origin of malignant tumors. New Engl. J. Med. 276, 389–391 (1967).
pubmed: 6017245
doi: 10.1056/NEJM196702162760706
Zahm, C. D. et al. Advanced intestinal cancers often maintain a multi-ancestral architecture. PLoS ONE 11, e150170–16 (2016).
doi: 10.1371/journal.pone.0150170
Thliveris, A. T. et al. Transformation of epithelial cells through recruitment leads to polyclonal intestinal tumors. Proc. Natl Acad. Sci. USA 110, 11523–11528 (2013).
pubmed: 23798428
pmcid: 3710880
doi: 10.1073/pnas.1303064110
Schepers, A. G. et al. Lineage tracing reveals Lgr5
pubmed: 22855427
doi: 10.1126/science.1224676
Merritt, A. J., Gould, K. A. & Dove, W. F. Polyclonal structure of intestinal adenomas in Apc
pubmed: 9391129
pmcid: 28409
doi: 10.1073/pnas.94.25.13927
March, H. N. et al. Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat. Genet. 43, 1202–1209 (2011).
pubmed: 22057237
pmcid: 3233530
doi: 10.1038/ng.990
Thliveris, A. T. et al. Clonal structure of carcinogen-induced intestinal tumors in mice. Cancer Prev. Res. 4, 916–923 (2011).
doi: 10.1158/1940-6207.CAPR-11-0022
Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).
pubmed: 26457759
pmcid: 4636487
doi: 10.1038/nm.3967
Amirkhah, R. et al. MmCMS: mouse models’ consensus molecular subtypes of colorectal cancer. Br. J. Cancer 128, 1333–1343 (2023).
pubmed: 36717674
pmcid: 10050155
doi: 10.1038/s41416-023-02157-6
Pickhardt, P. J., Hain, K. S., Kim, D. H. & Hassan, C. Low rates of cancer or high-grade dysplasia in colorectal polyps collected from computed tomography colonography screening. Clin. Gastroenterol. Hepatol. 8, 610–615 (2010).
pubmed: 20304097
doi: 10.1016/j.cgh.2010.03.007
Pooler, B. D. et al. Growth rates and histopathological outcomes of small (6–9 mm) colorectal polyps based on CT colonography surveillance and endoscopic removal. Gut 72, 2321–2328 (2023).
pubmed: 37507217
doi: 10.1136/gutjnl-2022-326970
Mouillet-Richard, S. et al. Clinical challenges of consensus molecular subtype CMS4 colon cancer in the era of precision medicine. Clin. Cancer Res. 30, 2351–2358 (2024).
pubmed: 38564259
pmcid: 11145159
doi: 10.1158/1078-0432.CCR-23-3964
Vasquez, E. G. et al. Dynamic and adaptive cancer stem cell population admixture in colorectal neoplasia. Cell Stem Cell 29, 1213–1228.e8 (2022).
pubmed: 35931031
doi: 10.1016/j.stem.2022.07.008
Qin, X. et al. An oncogenic phenoscape of colonic stem cell polarization. Cell 186, 5554–5568.e18 (2023).
pubmed: 38065080
doi: 10.1016/j.cell.2023.11.004
de Sousa e Melo, F. & de Sauvage, F. J. Cellular plasticity in intestinal homeostasis and disease. Cell Stem Cell 24, 54–64 (2019).
pubmed: 30595498
doi: 10.1016/j.stem.2018.11.019
van Es, J. H. et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat. Cell Biol. 7, 381–386 (2005).
pubmed: 15778706
doi: 10.1038/ncb1240
Buczacki, S. J. A. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69 (2013).
pubmed: 23446353
doi: 10.1038/nature11965
Andreu, P. et al. Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development 132, 1443–1451 (2005).
pubmed: 15716339
doi: 10.1242/dev.01700
Segditsas, S. & Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25, 7531–7537 (2006).
pubmed: 17143297
doi: 10.1038/sj.onc.1210059
Caldwell, G. M. et al. The Wnt antagonist SFRP1 in colorectal tumorigenesis. Cancer Res. 64, 883–888 (2004).
pubmed: 14871816
doi: 10.1158/0008-5472.CAN-03-1346
Suzuki, H. et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat. Genet. 36, 417–422 (2004).
pubmed: 15034581
doi: 10.1038/ng1330
Zhang, M. et al. The lncRNA NEAT1 activates Wnt/β-catenin signaling and promotes colorectal cancer progression via interacting with DDX5. J. Hematol. Oncol. 11, 113 (2018).
pubmed: 30185232
pmcid: 6125951
doi: 10.1186/s13045-018-0656-7
De Sousa, E. et al. Methylation of cancer-stem-cell-associated wnt target genes predicts poor prognosis in colorectal cancer patients. Cell Stem Cell 9, 476–485 (2011).
doi: 10.1016/j.stem.2011.10.008
Islam, M. et al. Temporal recording of mammalian development and precancer. Nature https://doi.org/10.1038/s41586-024-07954-4 (2024).
Atkin, W. et al. Adenoma surveillance and colorectal cancer incidence: a retrospective, multicentre, cohort study. Lancet Oncol. 18, 823–834 (2017).
pubmed: 28457708
pmcid: 5461371
doi: 10.1016/S1470-2045(17)30187-0
Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).
pubmed: 22258609
pmcid: 3367003
doi: 10.1038/nature10762
Sottoriva, A. et al. A big bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).
pubmed: 25665006
pmcid: 4575589
doi: 10.1038/ng.3214
Cross, W. et al. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2, 1661–1672 (2018).
pubmed: 30177804
pmcid: 6152905
doi: 10.1038/s41559-018-0642-z
Househam, J. et al. Phenotypic plasticity and genetic control in colorectal cancer evolution. Nature 611, 744–753 (2022).
pubmed: 36289336
pmcid: 9684078
doi: 10.1038/s41586-022-05311-x
Roerink, S. F. et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556, 437–462 (2018).
doi: 10.1038/s41586-018-0024-3
Uchi, R. et al. Integrated multiregional analysis proposing a new model of colorectal cancer evolution. PLoS Genet. 12, e1005778 (2016).
pubmed: 26890883
pmcid: 4758664
doi: 10.1371/journal.pgen.1005778
Saito, T. et al. A temporal shift of the evolutionary principle shaping intratumor heterogeneity in colorectal cancer. Nat. Commun. 9, 2884 (2018).
pubmed: 30038269
pmcid: 6056524
doi: 10.1038/s41467-018-05226-0
Caravagna, G. et al. Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat. Methods 15, 707–714 (2018).
pubmed: 30171232
pmcid: 6380470
doi: 10.1038/s41592-018-0108-x
Schwartz, R. & Schäffer, A. A. The evolution of tumour phylogenetics: principles and practice. Nat. Rev. Genet. 18, 213–229 (2017).
pubmed: 28190876
pmcid: 5886015
doi: 10.1038/nrg.2016.170
Banerjee, S. et al. Comparative analysis of clonal evolution among patients with right- and left-sided colon and rectal cancer. iScience 24, 102718 (2021).
pubmed: 34258553
pmcid: 8254024
doi: 10.1016/j.isci.2021.102718
El Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).
pubmed: 15282745
doi: 10.1002/gene.20042
Colnot, S. et al. Colorectal cancers in a new mouse model of familial adenomatous polyposis: Influence of genetic and environmental modifiers. Lab. Invest. 84, 1619–1630 (2004).
pubmed: 15502862
doi: 10.1038/labinvest.3700180
Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).
pubmed: 20887898
doi: 10.1016/j.cell.2010.09.016
Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).
pubmed: 11751630
pmcid: 312845
doi: 10.1101/gad.943001
Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).
pubmed: 11694875
doi: 10.1038/ng747
Susaki, E. A. et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157, 726–739 (2014).
pubmed: 24746791
doi: 10.1016/j.cell.2014.03.042
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 7, 16878 (2017).
pubmed: 29203879
pmcid: 5715110
doi: 10.1038/s41598-017-17204-5
Harrow, J. et al. GENCODE: producing a reference annotation for ENCODE. Genome Biol. 7, S4 (2006).
pmcid: 1810553
doi: 10.1186/gb-2006-7-s1-s4
Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933–D941 (2023).
pubmed: 36318249
doi: 10.1093/nar/gkac958
Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836.e16 (2019).
pubmed: 30982602
pmcid: 6506336
doi: 10.1016/j.cell.2019.03.001
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
doi: 10.1093/bioinformatics/btu170
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
pubmed: 34557778
Liberzon, A. et al. The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 1, 417–425 (2015).
pubmed: 26771021
pmcid: 4707969
doi: 10.1016/j.cels.2015.12.004
Muñoz, J. et al. The Lgr5 intestinal stem cell signature: Robust expression of proposed quiescent ‘+4’ cell markers. EMBO J. 31, 3079–3091 (2012).
pubmed: 22692129
pmcid: 3400017
doi: 10.1038/emboj.2012.166
Merlos-Suárez, A. et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8, 511–524 (2011).
pubmed: 21419747
doi: 10.1016/j.stem.2011.02.020
Tomic, G. et al. Phospho-regulation of ATOH1 is required for plasticity of secretory progenitors and tissue regeneration. Cell Stem Cell 23, 436–443.e7 (2018).
pubmed: 30100168
pmcid: 6138952
doi: 10.1016/j.stem.2018.07.002
Sansom, O. J. et al. Myc deletion rescues Apc deficiency in the small intestine. Nature 446, 676–679 (2007).
pubmed: 17377531
doi: 10.1038/nature05674
Franzén, O., Gan, L. M. & Björkegren, J. L. M. PanglaoDB: A web server for exploration of mouse and human single-cell RNA sequencing data. Database 2019, baz046 (2019).
pubmed: 30951143
pmcid: 6450036
doi: 10.1093/database/baz046
Malla, S. B. et al. Pathway level subtyping identifies a slow-cycling biological phenotype associated with poor clinical outcomes in colorectal cancer. Nat. Genet. 56, 458–472 (2024).
pubmed: 38351382
pmcid: 10937375
doi: 10.1038/s41588-024-01654-5
Skoufou-Papoutsaki, N. et al. Efficient genetic editing of human intestinal organoids using ribonucleoprotein-based CRISPR. Dis. Models Mech. 16, dmm050279 (2023).
doi: 10.1242/dmm.050279
Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563, 646–651 (2018).
pubmed: 30405244
pmcid: 6517069
doi: 10.1038/s41586-018-0686-x
Hanssen, F. et al. Scalable and efficient DNA sequencing analysis on different compute infrastructures aiding variant discovery. NAR Genomcis Bioinformatics 6, lqae031 (2024).
doi: 10.1093/nargab/lqae031
Sauer, C. M. et al. Absolute copy number fitting from shallow whole genome sequencing data. Preprint at bioRxiv https://doi.org/10.1101/2021.07.19.452658 (2021).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
doi: 10.1111/j.2517-6161.1995.tb02031.x
Sadien, I., Winton, D., Lourenco, F., Kemp, R. & Sawle, A. Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis. Figshare https://doi.org/10.6084/m9.figshare.24771732 (2024).