Dynamic interface printing.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Oct 2024
Historique:
received: 06 07 2023
accepted: 19 09 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: ppublish

Résumé

Additive manufacturing is an expanding multidisciplinary field encompassing applications including medical devices

Identifiants

pubmed: 39478212
doi: 10.1038/s41586-024-08077-6
pii: 10.1038/s41586-024-08077-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1096-1102

Informations de copyright

© 2024. The Author(s).

Références

Bao, Y., Paunović, N. & Leroux, J. Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Adv. Funct. Mater. 32, 2109864 (2022).
doi: 10.1002/adfm.202109864
Martinez, D. W., Espino, M. T., Cascolan, H. M., Crisostomo, J. L. & Dizon, J. R. C. A comprehensive review on the application of 3D printing in the aerospace industry. Key Eng. Mater. 913, 27–34 (2022).
doi: 10.4028/p-94a9zb
Lee, K.-S., Kim, R. H., Yang, D.-Y. & Park, S. H. Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog. Polym. Sci. 33, 631–681 (2008).
doi: 10.1016/j.progpolymsci.2008.01.001
Zheng, X. et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum. 83, 125001 (2012).
pubmed: 23278017 doi: 10.1063/1.4769050
Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).
pubmed: 31371612 doi: 10.1126/science.aav9051
Farsari, M. & Chichkov, B. N. Two-photon fabrication. Nat. Photonics 3, 450–452 (2009).
doi: 10.1038/nphoton.2009.131
Raman, R. et al. High-resolution projection microstereolithography for patterning of neovasculature. Adv. Healthc. Mater. 5, 610–619 (2016).
pubmed: 26696464 doi: 10.1002/adhm.201500721
Ge, Q. et al. Projection micro stereolithography based 3D printing and its applications. Int. J. Extreme Manuf. 2, 022004 (2020).
doi: 10.1088/2631-7990/ab8d9a
Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).
pubmed: 30705152 doi: 10.1126/science.aau7114
Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).
pubmed: 33361791 doi: 10.1038/s41586-020-3029-7
Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).
pubmed: 35444324 doi: 10.1038/s41586-022-04485-8
Bernal, P. N. et al. Volumetric bioprinting of complex living‐tissue constructs within seconds. Adv. Mater. 31, 1904209 (2019).
doi: 10.1002/adma.201904209
Toombs, J. T. et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science 376, 308–312 (2022).
pubmed: 35420940 doi: 10.1126/science.abm6459
Loterie, D., Delrot, P. & Moser, C. High-resolution tomographic volumetric additive manufacturing. Nat. Commun. 11, 852 (2020).
pubmed: 32051409 pmcid: 7015946 doi: 10.1038/s41467-020-14630-4
Dinc, N. U. et al. From 3D to 2D and back again. Nanophotonics 12, 777–793 (2023).
doi: 10.1515/nanoph-2022-0512
Gehlen, J., Qiu, W., Schädli, G. N., Müller, R. & Qin, X.-H. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds. Acta Biomater. 156, 49–60 (2023).
pubmed: 35718102 doi: 10.1016/j.actbio.2022.06.020
Rodríguez-Pombo, L. et al. Volumetric 3D printing for rapid production of medicines. Addit. Manuf. 52, 102673 (2022).
Wang, B. et al. Stiffness control in dual color tomographic volumetric 3D printing. Nat. Commun. 13, 367 (2022).
pubmed: 35042893 pmcid: 8766567 doi: 10.1038/s41467-022-28013-4
Orth, A., Sampson, K. L., Ting, K., Boisvert, J. & Paquet, C. Correcting ray distortion in tomographic additive manufacturing. Opt. Express 29, 11037 (2021).
pubmed: 33820224 doi: 10.1364/OE.419795
Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat. Photonics 16, 784–791 (2022).
doi: 10.1038/s41566-022-01081-0
Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).
pubmed: 25780246 doi: 10.1126/science.aaa2397
Lipkowitz, G. et al. Injection continuous liquid interface production of 3D objects. Sci. Adv. 8, eabq3917 (2022).
pubmed: 36170357 pmcid: 9519045 doi: 10.1126/sciadv.abq3917
Lewis, K. & Matsuura, T. Bézier curve method to compute various meniscus shapes. ACS Omega 8, 15371–15383 (2023).
pubmed: 37151521 pmcid: 10157662 doi: 10.1021/acsomega.3c00620
Lewis, K. & Matsuura, T. Calculation of the meniscus shape formed under gravitational force by solving the Young–Laplace differential equation using the Bézier curve method. ACS Omega 7, 36510–36518 (2022).
pubmed: 36278068 pmcid: 9583325 doi: 10.1021/acsomega.2c04359
Nair, K. et al. Characterization of cell viability during bioprinting processes. Biotechnol. J. 4, 1168–1177 (2009).
pubmed: 19507149 doi: 10.1002/biot.200900004
Nguyen, A. K., Goering, P. L., Reipa, V. & Narayan, R. J. Toxicity and photosensitizing assessment of gelatin methacryloyl-based hydrogels photoinitiated with lithium phenyl-2,4,6-trimethylbenzoylphosphinate in human primary renal proximal tubule epithelial cells. Biointerphases 14, 021007 (2019).
pubmed: 31053032 pmcid: 6499620 doi: 10.1116/1.5095886
Kolesnik, K. et al. Periodic Rayleigh streaming vortices and Eckart flow arising from traveling-wave-based diffractive acoustic fields. Phys. Rev. E 104, 045104 (2021).
pubmed: 34781567 doi: 10.1103/PhysRevE.104.045104
Raymond, S. J. et al. A deep learning approach for designed diffraction-based acoustic patterning in microchannels. Sci. Rep. 10, 8745 (2020).
pubmed: 32457358 pmcid: 7251103 doi: 10.1038/s41598-020-65453-8
Zhang, S., Borthwick, A. G. L. & Lin, Z. Pattern evolution and modal decomposition of Faraday waves in a brimful cylinder. J. Fluid Mech. 974, A56 (2023).
doi: 10.1017/jfm.2023.838
Westra, M.-T., Binks, D. J. & van de Water, W. Patterns of Faraday waves. J. Fluid Mech. 496, 1–32 (2003).
doi: 10.1017/S0022112003005895
Liu, Z. et al. Acoustophoretic liquefaction for 3D printing ultrahigh‐viscosity nanoparticle suspensions. Adv. Mater. 34, e2106183 (2022).
pubmed: 34601774 doi: 10.1002/adma.202106183
Huang, Y., Wolfe, C. L. P., Zhang, J. & Zhong, J. Q. Streaming controlled by meniscus shape. J. Fluid Mech. 895, A1 (2020).
Bernal, P. N. et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver‐like metabolic biofactories. Adv. Mater. 34, 2110054 (2022).
doi: 10.1002/adma.202110054
Größbacher, G. et al. Volumetric printing across melt electrowritten scaffolds fabricates multi‐material living constructs with tunable architecture and mechanics. Adv. Mater. 35, 2300756 (2023).
doi: 10.1002/adma.202300756
Schmidleithner, C. & Kalaskar, D. M. in 3D Printing (ed. Cvetković, D.) Ch. 1 (InTech, 2018).
Belay, B. et al. Optical projection tomography as a quantitative tool for analysis of cell morphology and density in 3D hydrogels. Sci. Rep. 11, 6538 (2021).
pubmed: 33753803 pmcid: 7985381 doi: 10.1038/s41598-021-85996-8
Madrid‐Wolff, J., Boniface, A., Loterie, D., Delrot, P. & Moser, C. Controlling light in scattering materials for volumetric additive manufacturing. Adv. Sci. 9, 2105144 (2022).
doi: 10.1002/advs.202105144
Hsiao, K. et al. Single-digit-micrometer-resolution continuous liquid interface production. Sci. Adv. 10.1126/sciadv.abq2846 (2022).
Wright, P. H. & Saylor, J. R. Patterning of particulate films using Faraday waves. Rev. Sci. Instrum. 74, 4063–4070 (2003).
doi: 10.1063/1.1602936
Périnet, N., Gutiérrez, P., Urra, H., Mujica, N. & Gordillo, L. Streaming patterns in Faraday waves. J. Fluid Mech. 819, 285–310 (2017).
Chladni, E. F. F. Entdeckungen Uber Die Theorie Des Klanges (Readex Microprint, 1967).
Chen, P. et al. Microscale assembly directed by liquid‐based template. Adv. Mater. 26, 5936–5941 (2014).
pubmed: 24956442 pmcid: 4159433 doi: 10.1002/adma.201402079
Chen, P., Güven, S., Usta, O. B., Yarmush, M. L. & Demirci, U. Biotunable acoustic node assembly of organoids. Adv. Healthc. Mater. 4, 1937–1943 (2015).
pubmed: 26149464 pmcid: 4731612 doi: 10.1002/adhm.201500279
Hong, S.-H. et al. Surface waves control bacterial attachment and formation of biofilms in thin layers. Sci. Adv. 6, eaaz9386 (2020).
Wang, Y. et al. Acoustic-assisted 3D printing based on acoustofluidic microparticles patterning for conductive polymer composites fabrication. Addit. Manuf. 60, 103247 (2022).
Liu, X. & Wang, X. Polygonal patterns of Faraday water waves analogous to collective excitations in Bose–Einstein condensates. Nat. Phys. 20, 287–293 (2023).
doi: 10.1038/s41567-023-02294-y
Guan, J. H., Magoon, C. W., Durey, M., Camassa, R. & Sáenz, P. J. Traveling Faraday waves. Phys. Rev. Fluids 8, 110501 (2023).
doi: 10.1103/PhysRevFluids.8.110501
Harley, W. S., Kolesnik, K., Xu, M., Heath, D. E. & Collins, D. J. 3D acoustofluidics via sub‐wavelength micro‐resonators. Adv. Funct. Mater. 33, 2211422 (2023).
Vidler, C., Crozier, K. & Collins, D. Ultra-resolution scalable microprinting. Microsyst. Nanoeng. 9, 67 (2023).
pubmed: 37251709 pmcid: 10212948 doi: 10.1038/s41378-023-00537-9
Jing, X., Fu, H., Yu, B., Sun, M. & Wang, L. Two-photon polymerization for 3D biomedical scaffolds: overview and updates. Front. Bioeng. Biotechnol. 10, 994355 (2022).
pubmed: 36072288 pmcid: 9441635 doi: 10.3389/fbioe.2022.994355
Geng, Q., Wang, D., Chen, P. & Chen, S.-C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).
pubmed: 31097713 pmcid: 6522551 doi: 10.1038/s41467-019-10249-2
Di Marzio, N. et al. Sound-based assembly of a microcapillary network in a Saturn-like tumor model for drug testing. Mater. Today Bio 16, 100357 (2022).
pubmed: 35880098 pmcid: 9307464 doi: 10.1016/j.mtbio.2022.100357
Armstrong, J. P. K. et al. Engineering anisotropic muscle tissue using acoustic cell patterning. Adv. Mater. 30, e1802649 (2018).
pubmed: 30277617 doi: 10.1002/adma.201802649
Chen, Y., Schaffer, B., Weislogel, M. & Zimmerli, G. Introducing SE-FIT: surface evolver-fluid interface tool for studying capillary surfaces. In Proc. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 1319 (AIAA, 2011).
Brakke, K. A. The surface evolver. Exp. Math. 1, 141–165 (1992).
doi: 10.1080/10586458.1992.10504253
Zhu, M. et al. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci. Rep. 9, 6863 (2019).
pubmed: 31053756 pmcid: 6499775 doi: 10.1038/s41598-019-42186-x
Ooi, H. W. et al. Thiol–ene alginate hydrogels as versatile bioinks for bioprinting. Biomacromolecules 19, 3390–3400 (2018).
pubmed: 29939754 pmcid: 6588269 doi: 10.1021/acs.biomac.8b00696
Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).
pubmed: 9176952 doi: 10.1163/156856897X00357
Behroodi, E., Latifi, H. & Najafi, F. A compact LED-based projection microstereolithography for producing 3D microstructures. Sci. Rep. 9, 19692 (2019).
pubmed: 31873101 pmcid: 6928235 doi: 10.1038/s41598-019-56044-3
Thielicke, W. & Sonntag, R. Particle image velocimetry for MATLAB: accuracy and enhanced algorithms in PIVlab. J. Open Res. Softw. 10.5334/jors.334 (2021).
Vidler, C. Dataset for: dynamic interface printing. Zenodo https://doi.org/10.5281/zenodo.13340723 (2024).

Auteurs

Callum Vidler (C)

Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia. vidlerc@student.unimelb.edu.au.

Michael Halwes (M)

Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.

Kirill Kolesnik (K)

Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.

Philipp Segeritz (P)

Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
The Florey Institute, Parkville, Victoria, Australia.
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.

Matthew Mail (M)

Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.

Anders J Barlow (AJ)

Materials Characterisation and Fabrication Platform (MCFP), The University of Melbourne, Parkville, Victoria, Australia.

Emmanuelle M Koehl (EM)

Department of Plastic and Reconstructive Surgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia.

Anand Ramakrishnan (A)

Department of Plastic and Reconstructive Surgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia.
Department of Surgery, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia.

Lilith M Caballero Aguilar (LM)

Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.
The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia.

David R Nisbet (DR)

Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.
The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia.
Faculty of Medicine, Dentistry and Health Science, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia.

Daniel J Scott (DJ)

The Florey Institute, Parkville, Victoria, Australia.
Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.

Daniel E Heath (DE)

Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia.

Kenneth B Crozier (KB)

School of Physics, The University of Melbourne, Parkville, Victoria, Australia.
Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia.
Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems, The University of Melbourne, Parkville, Victoria, Australia.

David J Collins (DJ)

Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia. david.collins@unimelb.edu.au.
The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia. david.collins@unimelb.edu.au.

Articles similaires

Humans Meals Time Factors Female Adult

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Organoids Humans Tissue Engineering Coculture Techniques Regenerative Medicine
Humans Male Female Aged Middle Aged

Classifications MeSH