Dynamic interface printing.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Oct 2024
Oct 2024
Historique:
received:
06
07
2023
accepted:
19
09
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
ppublish
Résumé
Additive manufacturing is an expanding multidisciplinary field encompassing applications including medical devices
Identifiants
pubmed: 39478212
doi: 10.1038/s41586-024-08077-6
pii: 10.1038/s41586-024-08077-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1096-1102Informations de copyright
© 2024. The Author(s).
Références
Bao, Y., Paunović, N. & Leroux, J. Challenges and opportunities in 3D printing of biodegradable medical devices by emerging photopolymerization techniques. Adv. Funct. Mater. 32, 2109864 (2022).
doi: 10.1002/adfm.202109864
Martinez, D. W., Espino, M. T., Cascolan, H. M., Crisostomo, J. L. & Dizon, J. R. C. A comprehensive review on the application of 3D printing in the aerospace industry. Key Eng. Mater. 913, 27–34 (2022).
doi: 10.4028/p-94a9zb
Lee, K.-S., Kim, R. H., Yang, D.-Y. & Park, S. H. Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog. Polym. Sci. 33, 631–681 (2008).
doi: 10.1016/j.progpolymsci.2008.01.001
Zheng, X. et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum. 83, 125001 (2012).
pubmed: 23278017
doi: 10.1063/1.4769050
Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).
pubmed: 31371612
doi: 10.1126/science.aav9051
Farsari, M. & Chichkov, B. N. Two-photon fabrication. Nat. Photonics 3, 450–452 (2009).
doi: 10.1038/nphoton.2009.131
Raman, R. et al. High-resolution projection microstereolithography for patterning of neovasculature. Adv. Healthc. Mater. 5, 610–619 (2016).
pubmed: 26696464
doi: 10.1002/adhm.201500721
Ge, Q. et al. Projection micro stereolithography based 3D printing and its applications. Int. J. Extreme Manuf. 2, 022004 (2020).
doi: 10.1088/2631-7990/ab8d9a
Kelly, B. E. et al. Volumetric additive manufacturing via tomographic reconstruction. Science 363, 1075–1079 (2019).
pubmed: 30705152
doi: 10.1126/science.aau7114
Regehly, M. et al. Xolography for linear volumetric 3D printing. Nature 588, 620–624 (2020).
pubmed: 33361791
doi: 10.1038/s41586-020-3029-7
Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).
pubmed: 35444324
doi: 10.1038/s41586-022-04485-8
Bernal, P. N. et al. Volumetric bioprinting of complex living‐tissue constructs within seconds. Adv. Mater. 31, 1904209 (2019).
doi: 10.1002/adma.201904209
Toombs, J. T. et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science 376, 308–312 (2022).
pubmed: 35420940
doi: 10.1126/science.abm6459
Loterie, D., Delrot, P. & Moser, C. High-resolution tomographic volumetric additive manufacturing. Nat. Commun. 11, 852 (2020).
pubmed: 32051409
pmcid: 7015946
doi: 10.1038/s41467-020-14630-4
Dinc, N. U. et al. From 3D to 2D and back again. Nanophotonics 12, 777–793 (2023).
doi: 10.1515/nanoph-2022-0512
Gehlen, J., Qiu, W., Schädli, G. N., Müller, R. & Qin, X.-H. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds. Acta Biomater. 156, 49–60 (2023).
pubmed: 35718102
doi: 10.1016/j.actbio.2022.06.020
Rodríguez-Pombo, L. et al. Volumetric 3D printing for rapid production of medicines. Addit. Manuf. 52, 102673 (2022).
Wang, B. et al. Stiffness control in dual color tomographic volumetric 3D printing. Nat. Commun. 13, 367 (2022).
pubmed: 35042893
pmcid: 8766567
doi: 10.1038/s41467-022-28013-4
Orth, A., Sampson, K. L., Ting, K., Boisvert, J. & Paquet, C. Correcting ray distortion in tomographic additive manufacturing. Opt. Express 29, 11037 (2021).
pubmed: 33820224
doi: 10.1364/OE.419795
Hahn, V. et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat. Photonics 16, 784–791 (2022).
doi: 10.1038/s41566-022-01081-0
Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).
pubmed: 25780246
doi: 10.1126/science.aaa2397
Lipkowitz, G. et al. Injection continuous liquid interface production of 3D objects. Sci. Adv. 8, eabq3917 (2022).
pubmed: 36170357
pmcid: 9519045
doi: 10.1126/sciadv.abq3917
Lewis, K. & Matsuura, T. Bézier curve method to compute various meniscus shapes. ACS Omega 8, 15371–15383 (2023).
pubmed: 37151521
pmcid: 10157662
doi: 10.1021/acsomega.3c00620
Lewis, K. & Matsuura, T. Calculation of the meniscus shape formed under gravitational force by solving the Young–Laplace differential equation using the Bézier curve method. ACS Omega 7, 36510–36518 (2022).
pubmed: 36278068
pmcid: 9583325
doi: 10.1021/acsomega.2c04359
Nair, K. et al. Characterization of cell viability during bioprinting processes. Biotechnol. J. 4, 1168–1177 (2009).
pubmed: 19507149
doi: 10.1002/biot.200900004
Nguyen, A. K., Goering, P. L., Reipa, V. & Narayan, R. J. Toxicity and photosensitizing assessment of gelatin methacryloyl-based hydrogels photoinitiated with lithium phenyl-2,4,6-trimethylbenzoylphosphinate in human primary renal proximal tubule epithelial cells. Biointerphases 14, 021007 (2019).
pubmed: 31053032
pmcid: 6499620
doi: 10.1116/1.5095886
Kolesnik, K. et al. Periodic Rayleigh streaming vortices and Eckart flow arising from traveling-wave-based diffractive acoustic fields. Phys. Rev. E 104, 045104 (2021).
pubmed: 34781567
doi: 10.1103/PhysRevE.104.045104
Raymond, S. J. et al. A deep learning approach for designed diffraction-based acoustic patterning in microchannels. Sci. Rep. 10, 8745 (2020).
pubmed: 32457358
pmcid: 7251103
doi: 10.1038/s41598-020-65453-8
Zhang, S., Borthwick, A. G. L. & Lin, Z. Pattern evolution and modal decomposition of Faraday waves in a brimful cylinder. J. Fluid Mech. 974, A56 (2023).
doi: 10.1017/jfm.2023.838
Westra, M.-T., Binks, D. J. & van de Water, W. Patterns of Faraday waves. J. Fluid Mech. 496, 1–32 (2003).
doi: 10.1017/S0022112003005895
Liu, Z. et al. Acoustophoretic liquefaction for 3D printing ultrahigh‐viscosity nanoparticle suspensions. Adv. Mater. 34, e2106183 (2022).
pubmed: 34601774
doi: 10.1002/adma.202106183
Huang, Y., Wolfe, C. L. P., Zhang, J. & Zhong, J. Q. Streaming controlled by meniscus shape. J. Fluid Mech. 895, A1 (2020).
Bernal, P. N. et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver‐like metabolic biofactories. Adv. Mater. 34, 2110054 (2022).
doi: 10.1002/adma.202110054
Größbacher, G. et al. Volumetric printing across melt electrowritten scaffolds fabricates multi‐material living constructs with tunable architecture and mechanics. Adv. Mater. 35, 2300756 (2023).
doi: 10.1002/adma.202300756
Schmidleithner, C. & Kalaskar, D. M. in 3D Printing (ed. Cvetković, D.) Ch. 1 (InTech, 2018).
Belay, B. et al. Optical projection tomography as a quantitative tool for analysis of cell morphology and density in 3D hydrogels. Sci. Rep. 11, 6538 (2021).
pubmed: 33753803
pmcid: 7985381
doi: 10.1038/s41598-021-85996-8
Madrid‐Wolff, J., Boniface, A., Loterie, D., Delrot, P. & Moser, C. Controlling light in scattering materials for volumetric additive manufacturing. Adv. Sci. 9, 2105144 (2022).
doi: 10.1002/advs.202105144
Hsiao, K. et al. Single-digit-micrometer-resolution continuous liquid interface production. Sci. Adv. 10.1126/sciadv.abq2846 (2022).
Wright, P. H. & Saylor, J. R. Patterning of particulate films using Faraday waves. Rev. Sci. Instrum. 74, 4063–4070 (2003).
doi: 10.1063/1.1602936
Périnet, N., Gutiérrez, P., Urra, H., Mujica, N. & Gordillo, L. Streaming patterns in Faraday waves. J. Fluid Mech. 819, 285–310 (2017).
Chladni, E. F. F. Entdeckungen Uber Die Theorie Des Klanges (Readex Microprint, 1967).
Chen, P. et al. Microscale assembly directed by liquid‐based template. Adv. Mater. 26, 5936–5941 (2014).
pubmed: 24956442
pmcid: 4159433
doi: 10.1002/adma.201402079
Chen, P., Güven, S., Usta, O. B., Yarmush, M. L. & Demirci, U. Biotunable acoustic node assembly of organoids. Adv. Healthc. Mater. 4, 1937–1943 (2015).
pubmed: 26149464
pmcid: 4731612
doi: 10.1002/adhm.201500279
Hong, S.-H. et al. Surface waves control bacterial attachment and formation of biofilms in thin layers. Sci. Adv. 6, eaaz9386 (2020).
Wang, Y. et al. Acoustic-assisted 3D printing based on acoustofluidic microparticles patterning for conductive polymer composites fabrication. Addit. Manuf. 60, 103247 (2022).
Liu, X. & Wang, X. Polygonal patterns of Faraday water waves analogous to collective excitations in Bose–Einstein condensates. Nat. Phys. 20, 287–293 (2023).
doi: 10.1038/s41567-023-02294-y
Guan, J. H., Magoon, C. W., Durey, M., Camassa, R. & Sáenz, P. J. Traveling Faraday waves. Phys. Rev. Fluids 8, 110501 (2023).
doi: 10.1103/PhysRevFluids.8.110501
Harley, W. S., Kolesnik, K., Xu, M., Heath, D. E. & Collins, D. J. 3D acoustofluidics via sub‐wavelength micro‐resonators. Adv. Funct. Mater. 33, 2211422 (2023).
Vidler, C., Crozier, K. & Collins, D. Ultra-resolution scalable microprinting. Microsyst. Nanoeng. 9, 67 (2023).
pubmed: 37251709
pmcid: 10212948
doi: 10.1038/s41378-023-00537-9
Jing, X., Fu, H., Yu, B., Sun, M. & Wang, L. Two-photon polymerization for 3D biomedical scaffolds: overview and updates. Front. Bioeng. Biotechnol. 10, 994355 (2022).
pubmed: 36072288
pmcid: 9441635
doi: 10.3389/fbioe.2022.994355
Geng, Q., Wang, D., Chen, P. & Chen, S.-C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 10, 2179 (2019).
pubmed: 31097713
pmcid: 6522551
doi: 10.1038/s41467-019-10249-2
Di Marzio, N. et al. Sound-based assembly of a microcapillary network in a Saturn-like tumor model for drug testing. Mater. Today Bio 16, 100357 (2022).
pubmed: 35880098
pmcid: 9307464
doi: 10.1016/j.mtbio.2022.100357
Armstrong, J. P. K. et al. Engineering anisotropic muscle tissue using acoustic cell patterning. Adv. Mater. 30, e1802649 (2018).
pubmed: 30277617
doi: 10.1002/adma.201802649
Chen, Y., Schaffer, B., Weislogel, M. & Zimmerli, G. Introducing SE-FIT: surface evolver-fluid interface tool for studying capillary surfaces. In Proc. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 1319 (AIAA, 2011).
Brakke, K. A. The surface evolver. Exp. Math. 1, 141–165 (1992).
doi: 10.1080/10586458.1992.10504253
Zhu, M. et al. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci. Rep. 9, 6863 (2019).
pubmed: 31053756
pmcid: 6499775
doi: 10.1038/s41598-019-42186-x
Ooi, H. W. et al. Thiol–ene alginate hydrogels as versatile bioinks for bioprinting. Biomacromolecules 19, 3390–3400 (2018).
pubmed: 29939754
pmcid: 6588269
doi: 10.1021/acs.biomac.8b00696
Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).
pubmed: 9176952
doi: 10.1163/156856897X00357
Behroodi, E., Latifi, H. & Najafi, F. A compact LED-based projection microstereolithography for producing 3D microstructures. Sci. Rep. 9, 19692 (2019).
pubmed: 31873101
pmcid: 6928235
doi: 10.1038/s41598-019-56044-3
Thielicke, W. & Sonntag, R. Particle image velocimetry for MATLAB: accuracy and enhanced algorithms in PIVlab. J. Open Res. Softw. 10.5334/jors.334 (2021).
Vidler, C. Dataset for: dynamic interface printing. Zenodo https://doi.org/10.5281/zenodo.13340723 (2024).