Fine mapping of a major QTL, qECQ8, for rice taste quality.
Candidate gene
ECQ
Linkage map
Quantitative trait loci
Rice quality
Transcriptomics
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
19
06
2024
accepted:
23
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Rice ECQ (eating and cooking quality) is an important determinant of rice consumption and market expansion. Therefore, improvement of ECQ is one of the primary goals in rice breeding. However, ECQ-related quantitative trait loci (QTL) have not yet been fully revealed. The present study aimed to identify a major effect QTL for rice taste, an important component of ECQ via genotyping-by-sequencing, to reveal the associated molecular mechanisms, and to predict key candidate genes. A population of F Our findings provide important genetic resources for targeted improvement of rice taste quality and may facilitate the genetic breeding of rice ECQ.
Sections du résumé
BACKGROUND
BACKGROUND
Rice ECQ (eating and cooking quality) is an important determinant of rice consumption and market expansion. Therefore, improvement of ECQ is one of the primary goals in rice breeding. However, ECQ-related quantitative trait loci (QTL) have not yet been fully revealed. The present study aimed to identify a major effect QTL for rice taste, an important component of ECQ via genotyping-by-sequencing, to reveal the associated molecular mechanisms, and to predict key candidate genes.
RESULTS
RESULTS
A population of F
CONCLUSION
CONCLUSIONS
Our findings provide important genetic resources for targeted improvement of rice taste quality and may facilitate the genetic breeding of rice ECQ.
Identifiants
pubmed: 39478453
doi: 10.1186/s12870-024-05744-8
pii: 10.1186/s12870-024-05744-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1034Subventions
Organisme : Key R&D Program of Jiangxi Province, China
ID : 20223BBH80003
Organisme : Collaborative Innovation Program for Modern Agricultural Research of Jiangxi Province, China
ID : JXXTCXBSJJ202118
Organisme : Area Funds of National Natural Science Foundation of China
ID : 32360449
Organisme : Natural Science Foundation of Jiangxi Province, China
ID : 20242BAB25370
Informations de copyright
© 2024. The Author(s).
Références
Butardo VM, Sreenivasulu N, Juliano BO. Improving rice grain quality: state-of-the-art and future prospects. Methods Mol Biol. 2019;1892:19–55.
pubmed: 30397798
doi: 10.1007/978-1-4939-8914-0_2
Sreenivasulu N, Zhang C, Tiozon RN, Liu Q. Post-genomics revolution in the design of premium quality rice in a high-yielding background to meet consumer demands in the 21st century. Plant Commun. 2022;3:100271.
pubmed: 35576153
doi: 10.1016/j.xplc.2021.100271
Cruz M, Arbelaez JD, Loaiza K, Cuasquer J, Rosas J, Graterol E. Genetic and phenotypic characterization of rice grain quality traits to define research strategies for improving rice milling, appearance, and cooking qualities in Latin America and the Caribbean. Plant Genome. 2021;14:e20134.
pubmed: 34510797
doi: 10.1002/tpg2.20134
Ishfaq J, Soomar AM, Khalid F, Abbasi Y. Assessing rice (Oryza sativa L.) quality: a comprehensive review of current techniques and future directions. J Agric Food Res. 2023;14:100843.
Bao J, Deng B, Zhang L. Molecular and genetic bases of rice cooking and eating quality: an updated review. Cereal Chem. 2023;100:1220–33.
doi: 10.1002/cche.10715
Jiang J, Song S, Hu C, Jing C, Xu Q, Li X, et al. QTL detection and candidate gene identification for eating and cooking Quality traits in Rice (Oryza sativa L.) via a genome-wide Association study. Int J Mol Sci. 2024;25:630.
pubmed: 38203801
pmcid: 10779416
doi: 10.3390/ijms25010630
Xiong Q, Sun C, Shi H, Cai S, Xie H, Liu F, et al. Analysis of related metabolites affecting taste values in Rice under different Nitrogen Fertilizer amounts and planting densities. Foods. 2022;11:1508.
pubmed: 35627078
pmcid: 9141971
doi: 10.3390/foods11101508
Gong D, Zhang X, He F, Chen Y, Li R, Yao J, et al. Genetic improvements in Rice Grain Quality: a review of Elite genes and their applications in molecular breeding. Agronomy. 2023;13:1375.
doi: 10.3390/agronomy13051375
Huang L, Gu Z, Chen Z, Yu J, Chu R, Tan H, et al. Improving rice eating and cooking quality by coordinated expression of the major starch synthesis-related genes, SSII and wx, in endosperm. Plant Mol Biol. 2021;106:419–32.
pubmed: 34129189
doi: 10.1007/s11103-021-01162-8
Zhao C, Zhao L, Zhao Q, Chen T, Yao S, Zhu Z, et al. Genetic dissection of eating and cooking qualities in different subpopulations of cultivated rice (Oryza sativa L.) through association mapping. BMC Genet. 2020;21:119.
pubmed: 33054745
pmcid: 7556922
doi: 10.1186/s12863-020-00922-7
Cao L, Ding G, Lei L, Zhou J, Bai L, Luo Y, et al. QTL analysis related to rice appearance quality and rice food quality trait using high-density SNP genetic map. Plant Growth Regul. 2024;102:461–70.
doi: 10.1007/s10725-023-01074-1
Wang ZY, Wu ZL, Xing YY, Zheng FG, Guo XL, Zhang WG, et al. Nucleotide sequence of rice waxy gene. Nucleic Acids Res. 1990;18:5898.
pubmed: 2216792
pmcid: 332347
doi: 10.1093/nar/18.19.5898
Wang ZY, Zheng FQ, Shen GZ, Gao JP, Snustad DP, Li MG, et al. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J. 1995;7:613–22.
pubmed: 7742858
doi: 10.1046/j.1365-313X.1995.7040613.x
Zhang C, Yang Y, Chen S, Liu X, Zhu J, Zhou L, et al. A rare waxy allele coordinately improves rice eating and cooking quality and grain transparency. J Integr Plant Biol. 2021;63:889–901.
pubmed: 32886440
doi: 10.1111/jipb.13010
Yang Y, Shen Z, Li Y, Xu C, Xia H, Zhuang H, et al. Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target. J Integr Plant Biol. 2022;64:1860–5.
pubmed: 35906898
doi: 10.1111/jipb.13334
Rana N, Kumawat S, Kumar V, Bansal R, Mandlik R, Dhiman P, et al. Deciphering Haplotypic Variation and Gene Expression Dynamics Associated with Nutritional and Cooking Quality in Rice. Cells. 2022;11:1144.
pubmed: 35406707
doi: 10.3390/cells11071144
Zhao G, Xie S, Zong S, Wang T, Mao C, Shi J, et al. Mutation of TL1, encoding a novel C2H2 zinc finger protein, improves grains eating and cooking quality in rice. Theor Appl Genet. 2022;135:3531–43.
pubmed: 35994056
doi: 10.1007/s00122-022-04198-6
Peng B, Kong H, Li Y, Wang L, Zhong M, Sun L, et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun. 2014;5:5847.
doi: 10.1038/ncomms5847
Peng B, Sun X, Tian X, Kong D, He L, Peng J, et al. OsNAC74 affects grain protein content and various biological traits by regulating OsAAP6 expression in rice. Mol Breed. 2023;43:87.
pubmed: 38037655
doi: 10.1007/s11032-023-01433-w
Yang Y, Zhang Y, Sun Z, Shen Z, Li Y, Guo Y, et al. Knocking out OsAAP11 to Improve Rice Grain Quality using CRISPR/Cas9 system. Int J Mol Sci. 2023;24:14360.
pubmed: 37762662
pmcid: 10532004
doi: 10.3390/ijms241814360
Guo J, Zhou X, Chen D, Chen K, Ye C, Liu J, et al. Effect of Fat Content on Rice Taste Quality through Transcriptome Analysis. Genes (Basel). 2024;15:81.
pubmed: 38254970
doi: 10.3390/genes15010081
Zhang Y, Zhang S, Zhang J, Wei W, Zhu T, Qu H, et al. Improving rice eating and cooking quality by enhancing endogenous expression of a nitrogen-dependent floral regulator. Plant Biotechnol J. 2023;21:2654–70.
pubmed: 37623700
pmcid: 10651157
doi: 10.1111/pbi.14160
Shi S, Zhang W, Ma Y, Cao C, Zhang G, Jiang Y. Near-infrared spectroscopy combined with effective variable selection algorithm for rapid detection of rice taste quality. Biosyst Eng. 2024;237:214–9.
doi: 10.1016/j.biosystemseng.2023.12.004
Wang N, Yuan Y, Wang H, Yu D, Liu Y, Zhang A, et al. Applications of genotyping-by-sequencing (GBS) in maize genetics and breeding. Sci Rep. 2020;10:16308.
pubmed: 33004874
pmcid: 7530987
doi: 10.1038/s41598-020-73321-8
Wallace JG, Mitchell SE. Genotyping-by-sequencing. Curr Protoc Plant Biol. 2017;2:64–77.
pubmed: 31725977
doi: 10.1002/cppb.20042
Jin SK, Xu LN, Yang QQ, Zhang MQ, Wang SL, Wang RA, et al. High-resolution quantitative trait locus mapping for rice grain quality traits using genotyping by sequencing. Front Plant Sci. 2023;13:1050882.
pubmed: 36714703
pmcid: 9878556
doi: 10.3389/fpls.2022.1050882
Song J, Xu D, Dong Y, Li F, Bian Y, Li L, et al. Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL. Theor Appl Genet. 2022;135:3237–46.
pubmed: 35904627
doi: 10.1007/s00122-022-04182-0
Yang Y, Su Q, Li Y, Cheng Z, Song Y, Jin X, et al. Fine mapping of a major QTL qHYF_B06 for peanut yield. Crop J. 2023;11:1533–40.
doi: 10.1016/j.cj.2023.04.004
Xiong D. Perspectives of improving rice photosynthesis for higher grain yield. Crop Environ. 2024;3:123–1337.
doi: 10.1016/j.crope.2024.04.001
Singh M, Kaur K, Sharma A, Kaur R, Joshi D, Chatterjee M, et al. Genome-wide characterization of peptidyl-prolyl cis–trans isomerases in Penicillium and their regulation by salt stress in a halotolerant P. Oxalicum. Sci Rep. 2021;11:12292.
pubmed: 34112860
pmcid: 8192932
doi: 10.1038/s41598-021-91602-8
Jing H, Yang X, Zhang J, Liu X, Zheng H, Dong G, et al. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat Commun. 2015;6:7395.
pubmed: 26096057
doi: 10.1038/ncomms8395
Wang Y, Yu Y, Pang Y, Yu H, Zhang W, Zhao X, et al. The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biol. 2021;18:2107–26.
pubmed: 33787465
pmcid: 8632086
doi: 10.1080/15476286.2021.1909320
Sun A, Li Y, He Y, Zou X, Chen F, Ji RZ, et al. Comprehensive genome-wide identification, characterization, and expression analysis of CCHC-Type zinc Finger Gene Family in Wheat (Triticum aestivum L). Front Plant Sci. 2022;13:892105.
pubmed: 35574096
pmcid: 9100697
doi: 10.3389/fpls.2022.892105
Fields S, Ternyak K, Gao H, Ostraat R, Akerlund J, Hagman J. The zinc knuckle motif of early B cell factor is required for transcriptional activation of B cell-specific genes. Mol Immunol. 2008;45:3786–96.
pubmed: 18606452
pmcid: 2593158
doi: 10.1016/j.molimm.2008.05.018
Chu D, Wei L. Context-dependent and -independent selection on synonymous mutations revealed by 1,135 genomes of Arabidopsis thaliana. BMC Ecol Evol. 2021;21:68.
pubmed: 33910528
doi: 10.1186/s12862-021-01792-y
Murray MG, Thompson WF. Rapid isolation of high molecular weight plant ONA. Nucleic Acids Res. 1980;8:2589–98.
doi: 10.1093/nar/8.19.4321
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
pubmed: 19451168
doi: 10.1093/bioinformatics/btp324
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
pubmed: 19505943
doi: 10.1093/bioinformatics/btp352
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
pubmed: 20644199
doi: 10.1101/gr.107524.110
Fan W, Lu J, Pan C, Tan M, Lin Q, Liu W, et al. Sequencing of Chinese castor lines reveals genetic signatures of selection and yield-associated loci. Nat Commun. 2019;10:3418.
pubmed: 31366935
pmcid: 6668449
doi: 10.1038/s41467-019-11228-3
Qi P, Eudy D, Schnable JC, Schmutz J, Raymer PL, Devos KM. High density genetic maps of Seashore paspalum using Genotyping-By-Sequencing and their relationship to the Sorghum Bicolor Genome. Sci Rep. 2019;9:12183.
pubmed: 31434917
pmcid: 6704178
doi: 10.1038/s41598-019-48257-3
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–890.
pubmed: 30423086
doi: 10.1093/bioinformatics/bty560
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
pubmed: 25751142
doi: 10.1038/nmeth.3317
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.
pubmed: 25690850
pmcid: 4643835
doi: 10.1038/nbt.3122
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
pubmed: 21816040
pmcid: 3163565
doi: 10.1186/1471-2105-12-323
Love MI, Huber W, Anders S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Sun X, Wu K, Cook D, PKgraph. An R package for graphically diagnosing population pharmacokinetic models. Comput Methods Programs Biomed. 2011;104:461–71.
pubmed: 21555161
doi: 10.1016/j.cmpb.2011.03.016
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods. 2001;25:402–8.
pubmed: 11846609
doi: 10.1006/meth.2001.1262