Fine mapping of a major QTL, qECQ8, for rice taste quality.


Journal

BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 19 06 2024
accepted: 23 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Rice ECQ (eating and cooking quality) is an important determinant of rice consumption and market expansion. Therefore, improvement of ECQ is one of the primary goals in rice breeding. However, ECQ-related quantitative trait loci (QTL) have not yet been fully revealed. The present study aimed to identify a major effect QTL for rice taste, an important component of ECQ via genotyping-by-sequencing, to reveal the associated molecular mechanisms, and to predict key candidate genes. A population of F Our findings provide important genetic resources for targeted improvement of rice taste quality and may facilitate the genetic breeding of rice ECQ.

Sections du résumé

BACKGROUND BACKGROUND
Rice ECQ (eating and cooking quality) is an important determinant of rice consumption and market expansion. Therefore, improvement of ECQ is one of the primary goals in rice breeding. However, ECQ-related quantitative trait loci (QTL) have not yet been fully revealed. The present study aimed to identify a major effect QTL for rice taste, an important component of ECQ via genotyping-by-sequencing, to reveal the associated molecular mechanisms, and to predict key candidate genes.
RESULTS RESULTS
A population of F
CONCLUSION CONCLUSIONS
Our findings provide important genetic resources for targeted improvement of rice taste quality and may facilitate the genetic breeding of rice ECQ.

Identifiants

pubmed: 39478453
doi: 10.1186/s12870-024-05744-8
pii: 10.1186/s12870-024-05744-8
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1034

Subventions

Organisme : Key R&D Program of Jiangxi Province, China
ID : 20223BBH80003
Organisme : Collaborative Innovation Program for Modern Agricultural Research of Jiangxi Province, China
ID : JXXTCXBSJJ202118
Organisme : Area Funds of National Natural Science Foundation of China
ID : 32360449
Organisme : Natural Science Foundation of Jiangxi Province, China
ID : 20242BAB25370

Informations de copyright

© 2024. The Author(s).

Références

Butardo VM, Sreenivasulu N, Juliano BO. Improving rice grain quality: state-of-the-art and future prospects. Methods Mol Biol. 2019;1892:19–55.
pubmed: 30397798 doi: 10.1007/978-1-4939-8914-0_2
Sreenivasulu N, Zhang C, Tiozon RN, Liu Q. Post-genomics revolution in the design of premium quality rice in a high-yielding background to meet consumer demands in the 21st century. Plant Commun. 2022;3:100271.
pubmed: 35576153 doi: 10.1016/j.xplc.2021.100271
Cruz M, Arbelaez JD, Loaiza K, Cuasquer J, Rosas J, Graterol E. Genetic and phenotypic characterization of rice grain quality traits to define research strategies for improving rice milling, appearance, and cooking qualities in Latin America and the Caribbean. Plant Genome. 2021;14:e20134.
pubmed: 34510797 doi: 10.1002/tpg2.20134
Ishfaq J, Soomar AM, Khalid F, Abbasi Y. Assessing rice (Oryza sativa L.) quality: a comprehensive review of current techniques and future directions. J Agric Food Res. 2023;14:100843.
Bao J, Deng B, Zhang L. Molecular and genetic bases of rice cooking and eating quality: an updated review. Cereal Chem. 2023;100:1220–33.
doi: 10.1002/cche.10715
Jiang J, Song S, Hu C, Jing C, Xu Q, Li X, et al. QTL detection and candidate gene identification for eating and cooking Quality traits in Rice (Oryza sativa L.) via a genome-wide Association study. Int J Mol Sci. 2024;25:630.
pubmed: 38203801 pmcid: 10779416 doi: 10.3390/ijms25010630
Xiong Q, Sun C, Shi H, Cai S, Xie H, Liu F, et al. Analysis of related metabolites affecting taste values in Rice under different Nitrogen Fertilizer amounts and planting densities. Foods. 2022;11:1508.
pubmed: 35627078 pmcid: 9141971 doi: 10.3390/foods11101508
Gong D, Zhang X, He F, Chen Y, Li R, Yao J, et al. Genetic improvements in Rice Grain Quality: a review of Elite genes and their applications in molecular breeding. Agronomy. 2023;13:1375.
doi: 10.3390/agronomy13051375
Huang L, Gu Z, Chen Z, Yu J, Chu R, Tan H, et al. Improving rice eating and cooking quality by coordinated expression of the major starch synthesis-related genes, SSII and wx, in endosperm. Plant Mol Biol. 2021;106:419–32.
pubmed: 34129189 doi: 10.1007/s11103-021-01162-8
Zhao C, Zhao L, Zhao Q, Chen T, Yao S, Zhu Z, et al. Genetic dissection of eating and cooking qualities in different subpopulations of cultivated rice (Oryza sativa L.) through association mapping. BMC Genet. 2020;21:119.
pubmed: 33054745 pmcid: 7556922 doi: 10.1186/s12863-020-00922-7
Cao L, Ding G, Lei L, Zhou J, Bai L, Luo Y, et al. QTL analysis related to rice appearance quality and rice food quality trait using high-density SNP genetic map. Plant Growth Regul. 2024;102:461–70.
doi: 10.1007/s10725-023-01074-1
Wang ZY, Wu ZL, Xing YY, Zheng FG, Guo XL, Zhang WG, et al. Nucleotide sequence of rice waxy gene. Nucleic Acids Res. 1990;18:5898.
pubmed: 2216792 pmcid: 332347 doi: 10.1093/nar/18.19.5898
Wang ZY, Zheng FQ, Shen GZ, Gao JP, Snustad DP, Li MG, et al. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J. 1995;7:613–22.
pubmed: 7742858 doi: 10.1046/j.1365-313X.1995.7040613.x
Zhang C, Yang Y, Chen S, Liu X, Zhu J, Zhou L, et al. A rare waxy allele coordinately improves rice eating and cooking quality and grain transparency. J Integr Plant Biol. 2021;63:889–901.
pubmed: 32886440 doi: 10.1111/jipb.13010
Yang Y, Shen Z, Li Y, Xu C, Xia H, Zhuang H, et al. Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target. J Integr Plant Biol. 2022;64:1860–5.
pubmed: 35906898 doi: 10.1111/jipb.13334
Rana N, Kumawat S, Kumar V, Bansal R, Mandlik R, Dhiman P, et al. Deciphering Haplotypic Variation and Gene Expression Dynamics Associated with Nutritional and Cooking Quality in Rice. Cells. 2022;11:1144.
pubmed: 35406707 doi: 10.3390/cells11071144
Zhao G, Xie S, Zong S, Wang T, Mao C, Shi J, et al. Mutation of TL1, encoding a novel C2H2 zinc finger protein, improves grains eating and cooking quality in rice. Theor Appl Genet. 2022;135:3531–43.
pubmed: 35994056 doi: 10.1007/s00122-022-04198-6
Peng B, Kong H, Li Y, Wang L, Zhong M, Sun L, et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun. 2014;5:5847.
doi: 10.1038/ncomms5847
Peng B, Sun X, Tian X, Kong D, He L, Peng J, et al. OsNAC74 affects grain protein content and various biological traits by regulating OsAAP6 expression in rice. Mol Breed. 2023;43:87.
pubmed: 38037655 doi: 10.1007/s11032-023-01433-w
Yang Y, Zhang Y, Sun Z, Shen Z, Li Y, Guo Y, et al. Knocking out OsAAP11 to Improve Rice Grain Quality using CRISPR/Cas9 system. Int J Mol Sci. 2023;24:14360.
pubmed: 37762662 pmcid: 10532004 doi: 10.3390/ijms241814360
Guo J, Zhou X, Chen D, Chen K, Ye C, Liu J, et al. Effect of Fat Content on Rice Taste Quality through Transcriptome Analysis. Genes (Basel). 2024;15:81.
pubmed: 38254970 doi: 10.3390/genes15010081
Zhang Y, Zhang S, Zhang J, Wei W, Zhu T, Qu H, et al. Improving rice eating and cooking quality by enhancing endogenous expression of a nitrogen-dependent floral regulator. Plant Biotechnol J. 2023;21:2654–70.
pubmed: 37623700 pmcid: 10651157 doi: 10.1111/pbi.14160
Shi S, Zhang W, Ma Y, Cao C, Zhang G, Jiang Y. Near-infrared spectroscopy combined with effective variable selection algorithm for rapid detection of rice taste quality. Biosyst Eng. 2024;237:214–9.
doi: 10.1016/j.biosystemseng.2023.12.004
Wang N, Yuan Y, Wang H, Yu D, Liu Y, Zhang A, et al. Applications of genotyping-by-sequencing (GBS) in maize genetics and breeding. Sci Rep. 2020;10:16308.
pubmed: 33004874 pmcid: 7530987 doi: 10.1038/s41598-020-73321-8
Wallace JG, Mitchell SE. Genotyping-by-sequencing. Curr Protoc Plant Biol. 2017;2:64–77.
pubmed: 31725977 doi: 10.1002/cppb.20042
Jin SK, Xu LN, Yang QQ, Zhang MQ, Wang SL, Wang RA, et al. High-resolution quantitative trait locus mapping for rice grain quality traits using genotyping by sequencing. Front Plant Sci. 2023;13:1050882.
pubmed: 36714703 pmcid: 9878556 doi: 10.3389/fpls.2022.1050882
Song J, Xu D, Dong Y, Li F, Bian Y, Li L, et al. Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL. Theor Appl Genet. 2022;135:3237–46.
pubmed: 35904627 doi: 10.1007/s00122-022-04182-0
Yang Y, Su Q, Li Y, Cheng Z, Song Y, Jin X, et al. Fine mapping of a major QTL qHYF_B06 for peanut yield. Crop J. 2023;11:1533–40.
doi: 10.1016/j.cj.2023.04.004
Xiong D. Perspectives of improving rice photosynthesis for higher grain yield. Crop Environ. 2024;3:123–1337.
doi: 10.1016/j.crope.2024.04.001
Singh M, Kaur K, Sharma A, Kaur R, Joshi D, Chatterjee M, et al. Genome-wide characterization of peptidyl-prolyl cis–trans isomerases in Penicillium and their regulation by salt stress in a halotolerant P. Oxalicum. Sci Rep. 2021;11:12292.
pubmed: 34112860 pmcid: 8192932 doi: 10.1038/s41598-021-91602-8
Jing H, Yang X, Zhang J, Liu X, Zheng H, Dong G, et al. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat Commun. 2015;6:7395.
pubmed: 26096057 doi: 10.1038/ncomms8395
Wang Y, Yu Y, Pang Y, Yu H, Zhang W, Zhao X, et al. The distinct roles of zinc finger CCHC-type (ZCCHC) superfamily proteins in the regulation of RNA metabolism. RNA Biol. 2021;18:2107–26.
pubmed: 33787465 pmcid: 8632086 doi: 10.1080/15476286.2021.1909320
Sun A, Li Y, He Y, Zou X, Chen F, Ji RZ, et al. Comprehensive genome-wide identification, characterization, and expression analysis of CCHC-Type zinc Finger Gene Family in Wheat (Triticum aestivum L). Front Plant Sci. 2022;13:892105.
pubmed: 35574096 pmcid: 9100697 doi: 10.3389/fpls.2022.892105
Fields S, Ternyak K, Gao H, Ostraat R, Akerlund J, Hagman J. The zinc knuckle motif of early B cell factor is required for transcriptional activation of B cell-specific genes. Mol Immunol. 2008;45:3786–96.
pubmed: 18606452 pmcid: 2593158 doi: 10.1016/j.molimm.2008.05.018
Chu D, Wei L. Context-dependent and -independent selection on synonymous mutations revealed by 1,135 genomes of Arabidopsis thaliana. BMC Ecol Evol. 2021;21:68.
pubmed: 33910528 doi: 10.1186/s12862-021-01792-y
Murray MG, Thompson WF. Rapid isolation of high molecular weight plant ONA. Nucleic Acids Res. 1980;8:2589–98.
doi: 10.1093/nar/8.19.4321
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
pubmed: 19451168 doi: 10.1093/bioinformatics/btp324
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
pubmed: 19505943 doi: 10.1093/bioinformatics/btp352
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
pubmed: 20644199 doi: 10.1101/gr.107524.110
Fan W, Lu J, Pan C, Tan M, Lin Q, Liu W, et al. Sequencing of Chinese castor lines reveals genetic signatures of selection and yield-associated loci. Nat Commun. 2019;10:3418.
pubmed: 31366935 pmcid: 6668449 doi: 10.1038/s41467-019-11228-3
Qi P, Eudy D, Schnable JC, Schmutz J, Raymer PL, Devos KM. High density genetic maps of Seashore paspalum using Genotyping-By-Sequencing and their relationship to the Sorghum Bicolor Genome. Sci Rep. 2019;9:12183.
pubmed: 31434917 pmcid: 6704178 doi: 10.1038/s41598-019-48257-3
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–890.
pubmed: 30423086 doi: 10.1093/bioinformatics/bty560
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
pubmed: 25751142 doi: 10.1038/nmeth.3317
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.
pubmed: 25690850 pmcid: 4643835 doi: 10.1038/nbt.3122
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
pubmed: 21816040 pmcid: 3163565 doi: 10.1186/1471-2105-12-323
Love MI, Huber W, Anders S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Sun X, Wu K, Cook D, PKgraph. An R package for graphically diagnosing population pharmacokinetic models. Comput Methods Programs Biomed. 2011;104:461–71.
pubmed: 21555161 doi: 10.1016/j.cmpb.2011.03.016
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods. 2001;25:402–8.
pubmed: 11846609 doi: 10.1006/meth.2001.1262

Auteurs

Shan Zhu (S)

National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.

Guoping Tang (G)

National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.

Zhou Yang (Z)

National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.

Ruicai Han (R)

National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.

Wei Deng (W)

National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.

Xianhua Shen (X)

National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.

Renliang Huang (R)

National Engineering Research Center of Rice (Nanchang); Key Laboratory of Germplasm innovation and Breeding of Double-cropping Rice (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Bio-breeding Innovation Center of Jiangxi province (JXBIC); Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China. huangrl@jxaas.cn.

Articles similaires

Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism
Humans Female Longitudinal Studies Child Male
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Classifications MeSH