Characterization of 3D printed composite for final dental restorations.


Journal

Clinical oral investigations
ISSN: 1436-3771
Titre abrégé: Clin Oral Investig
Pays: Germany
ID NLM: 9707115

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 02 08 2024
accepted: 13 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 31 10 2024
Statut: epublish

Résumé

This study evaluated the mechanical, optical, microstructural, surface, and adhesive behavior of a 3D printing resin comparing it with a machinable resin composite. Specimens of different sizes and shapes were either printed (Vitality, Smart Dent) or machinable (Grandio Blocs, Voco GmbH) resin composites with similar composition were prepared. Surface and mechanical characterization were performed with Knoop hardness, flexural strength (three-point-bending), and elastic modulus tests. The wear of the tested materials was evaluated against steatite antagonists. The optical properties stability (color change, ΔE Hardness values (132.76 (16.32) KH- Machinable and 35.87 (2.78) KH - Printed), flexural strength (172.17 (26.99) MPa - Machinable and 88.69 (8.39) MPa - Printed), color and translucency change (1.86 (0.31)/0.06 - Machinable and 3.73 (0.36)/9,16- Printed), and wear depth (24.97 mm (3.60)- Machinable and 7.16 mm (2.84) - Printed) were statistically different. Average Regarding bond strength, mean values (MPa) for non-aged and aged groups were respectively 21.76 (6.64) / 31.9 (12.66) for Bifix cement (Voco GmbH, Cuxhaven, Germany) and 26.75 (5.14) / 24.36 (6.85) for Variolink cement (Ivoclar Vivadent, Schaan, Liechtenstein) in Printed and 17.79 (3.89) / 9.01 (3.36) ) for Bifix cement and 22.09 (6.55) / 11.01 (3.77) for Variolink cement in Machinable materials. The material and aging factors did affect bond strength but the cement factor did not (p = 0.202). No statistical differences were observed for mean roughness (Ra) between materials. The better dispersion and larger size of the inorganic particles in the Machinable resin were contrasted with the clustered smaller particles of printed resin, under SEM. The mechanical properties and color stability of the machinable resin were superior to those of the printed resin, probably due to the greater amount and dispersion of inorganic particles in the Mach resin, but bond strength after aging was stronger and more stable in the printed resin. 3D-printed resin composites with similar compositions to machinable resin composites do not necessarily exhibit the same properties, which can impact clinical performance. Understanding these differences can assist manufacturers in improving their materials and help clinicians distinguish between materials appropriate for provisional and final restorations.

Identifiants

pubmed: 39480538
doi: 10.1007/s00784-024-06003-8
pii: 10.1007/s00784-024-06003-8
doi:

Substances chimiques

Composite Resins 0
Resin Cements 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

617

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Arnetzl G, Arnetzl GV (2015) Hybrid materials offer new perspectives. Int J Comput Dent 18(2):177–186 PMID: 26110929
pubmed: 26110929
Borba M, Della Bona A, Cecchetti D Flexural strength and hardness of direct and indirect composites. Braz Oral Res. 2009 Jan-Mar;23(1):5–10. https://doi.org/10.1590/s1806-83242009000100002 . PMID: 19488465
Alves PB, Brandt WC, Neves AC, Cunha LG, Silva-Concilio LR (2013) Mechanical properties of direct and indirect composites after storage for 24 hours and 10 months. Eur J Dent 7(1):117–122 PMID: 23407869; PMCID: PMC3571519
pubmed: 23407869 pmcid: 3571519
Souza EMD, Silva e Souza Júnior MH, Lopes FAM, Osternack FHR (2002) Facetas estéticas indiretas em porcelana. Jornal Brasileiro De Dentística E Estética, Curitiba, v. 1, n. 3, p. 256–262, jul./set
Kakinuma H, Izumita K, Yoda N, Egusa H, Sasaki K. (2022) Comparison of the accuracy of resin-composite crowns fabricated by three-dimensional printing and millling methods. Dent Mater Journal 41(6):808–815. https://doi.org/10.4012/dmj.2022-074 . Epub2022 Jul 6. PMID: 35793943
Fraga S, Valandro LF, Bottino MA, May LG (2015) Hard machining, glaze firing and hydrofluoric acid etching: do these procedures affect the flexural strength of a leucite glass-ceramic? Dent Mater 31(7):e131–e140. https://doi.org/10.1016/j.dental.2015.04.005 . Epub 2015 May 2. PMID: 25940916
doi: 10.1016/j.dental.2015.04.005 pubmed: 25940916
Fraga S, Amaral M, Bottino MA, Valandro LF, Kleverlaan CJ, May LG (2017) Impact of machining on the flexural fatigue strength of glass and polycrystalline CAD/CAM ceramics. Dent Mater 33(11):1286–1297. https://doi.org/10.1016/j.dental.2017.07.019 . Epub 2017 Aug 14. PMID: 28818339
doi: 10.1016/j.dental.2017.07.019 pubmed: 28818339
May MM, Fraga S, May LG (2021) Effect of milling, fitting adjustments, and hydrofluoric acid etching on the strength and roughness of CAD-CAM glass- ceramics: A systematic review and meta-analysis, The Journal of Prosthetic Dentistry, Apr 14:S0022-3913(21)00134-7. https://doi.org/10.1016/j.prosdent.2021.02.031 . Epub ahead of print. PMID: 33865557
Bora PV, Sayed Ahmed A, Alford A et al (2024) Characterization of materials used for 3D printing dental crowns and hybrid prostheses. Journal of Esthetic and Restorative Dentistry: Official Publication of the American Academy of Esthetic Dentistry. 36(1):220–230. https://doi.org/10.1111/jerd.13174 . PMID: 38008797
Darbandi KR, Amin BK (2024) Innovation and evaluations of 3D Printing resins modified with Zirconia nanoparticles and Silver nanoparticle-immobilized Halloysite nanotubes for Dental Restoration. Coatings 14:310. https://doi.org/10.3390/coatings14030310
doi: 10.3390/coatings14030310
Espinar C, Pérez MM, Pulgar R, Leon-Cecilla A, López-López MT, Della Bona A (2024) Influence of printing orientation on mechanical properties of aged 3D-printed restorative resins. Dent Mater 40(4):756–763. https://doi.org/10.1016/j.dental.2024.02.023 . Epub 2024 Mar 1. PMID: 38429216
doi: 10.1016/j.dental.2024.02.023 pubmed: 38429216
Mudhaffer S, Althagafi R, Haider J, Satterthwaite J, Silikas N (2024) Effects of printing orientation and artificial ageing on martens hardness and indentation modulus of 3D printed restorative resin materials. Dent Mater. May 11:S0109-5641(24)00104-0. https://doi.org/10.1016/j.dental.2024.05.005 . Epub ahead of print. PMID: 38735775
Jain S, Sayed ME, Shetty M, Alqahtani SM, Al Wadei MHD, Gupta SG, Othman AAA, Alshehri AH, Alqarni H, Mobarki AH, Motlaq K, Bakmani HF, Zain AA, Hakami AJ, Sheayria MF (2022) Physical and Mechanical properties of 3D-Printed Provisional crowns and fixed Dental Prosthesis resins compared to CAD/CAM milled and Conventional Provisional resins: a systematic review and Meta-analysis. Polym (Basel) 14(13):2691. https://doi.org/10.3390/polym14132691 . PMID: 35808735; PMCID: PMC9269394
doi: 10.3390/polym14132691
Finck NS, Fraga MAA, Correr AB, Dalmaschio CJ, Rodrigues CS, Moraes RR (2024) Effects of solvent type and UV post-cure time on 3D-printed restorative polymers. Dent Mater 40(3):451–457. https://doi.org/10.1016/j.dental.2023.12.005 . Epub 2023 Dec 21. PMID: 38129193
doi: 10.1016/j.dental.2023.12.005 pubmed: 38129193
Delgado AHS, Young AM (2021) Methacrylate peak determination and selection recommendations using ATR-FTIR to investigate polymerisation of dental methacrylate mixtures. PLoS ONE 16(6):e0252999. https://doi.org/10.1371/journal.pone.0252999
doi: 10.1371/journal.pone.0252999 pubmed: 34106972 pmcid: 8189511
Costa AK, da Silva LH, Saavedra GS, Paes TJ Jr, Borges AL (2012) Flexural strength of four adhesive fixed dental prostheses of composite resin reinforced with glass fiber. J Adhes Dent. 14(1):47–50. https://doi.org/10.3290/j.jad.a21847 . PMID: 21734978
Sasany R, Yilmaz B (2022) Effect of stain brand and shade on color stability of stains applied on a CAD-CAM feldspathic ceramic. Odontology 110(3):452–459. https://doi.org/10.1007/s10266-021-00676-3 . Epub 2022 Jan 18. PMID: 35039937
doi: 10.1007/s10266-021-00676-3 pubmed: 35039937
Mozzaquatro LR, Rodrigues CS, Kaizer MR, Lago M, Mallmann A, Jacques LB (2017) The Effect of Brushing and Aging on the staining and smoothness of Resin composites. J Esthet Restor Dent 29(2):E44–E55. https://doi.org/10.1111/jerd.12293 . Epub 2017 Feb 13. PMID: 28194869
doi: 10.1111/jerd.12293 pubmed: 28194869
Nagai T, Alfaraj A, Chu TG, Yang CC, Lin WS (2024 May) Color stability of CAD-CAM hybrid ceramic materials following immersion in artificial saliva and wine. J Prosthodont 14. https://doi.org/10.1111/jopr.13868 . Epub ahead of print. PMID: 38742795
Paravina RD, Pérez MM, Ghinea R (2019) Acceptability and perceptibility thresholds in dentistry: a comprehensive review of clinical and research applications. J Esthet Restor Dent 31:103–112
doi: 10.1111/jerd.12465 pubmed: 30891913
Salas M, Lucena C, Herrera LJ, Yebra A, Della Bona A, Pérez MM (2018) Translucency thresholds for dental materials, Dental Materials, Volume 34, Issue 8, Pages 1168–1174, ISSN 0109–5641, https://doi.org/10.1016/j.dental.2018.05.001
Bollen CM, Lambrechts P, Quirynen M (1997) Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. ;13(4):258 – 69. https://doi.org/10.1016/s0109-5641(97)80038-3 . PMID: 11696906
Park M-E, Shin S-Y (2018) Three-dimensional comparative study on the Accuracy and Reproducibility of Dental casts fabricated by 3D printers. J Prosthet Dent 119:861e1–861e7
doi: 10.1016/j.prosdent.2017.08.020
Grzebieluch W, Kowalewski P, Grygier D, Rutkowska-Gorczyca M, Kozakiewicz M, Jurczyszyn K (2021) Printable and Mach Dental Restorative Composites for CAD/CAM Application-Comparison of Mechanical Properties, Fractographic, texture and Fractal Dimension Analysis. Mater (Basel) 14(17):4919. https://doi.org/10.3390/ma14174919 . PMID: 34501009; PMCID: PMC8434230
doi: 10.3390/ma14174919
Siqueira JRCdS, Rodriguez RMM, Campos TMB, Ramos NdC, Bottino MA, Tribst JPM (2024) Characterization of microstructure, Optical Properties, and mechanical behavior of a Temporary 3D Printing Resin: impact of Post-curing Time. Materials 17:1496. https://doi.org/10.3390/ma17071496
doi: 10.3390/ma17071496 pubmed: 38612010 pmcid: 11012777
Sasany R, Jamjoon FZ, Kendirci MY, Yilmaz B (2024) Effect of Printing Layer Thickness on Optical Properties and Surface Roughness of 3D-Printed Resins: An In Vitro Study. Int J Prosthodont. ;37(7):165–173. https://doi.org/10.11607/ijp.8965 . PMID: 38787581
Ucuncu MK, Celiksoz O, Sen E, Yucel YY, Dinc B (2024) Investigation of the degree of Monomer Conversion in Dental composites through various methods: an in Vitro Study. Appl Sci 14:4406. https://doi.org/10.3390/app14114406
doi: 10.3390/app14114406
Revilla-León M, Morillo JA, Att W, Özcan M, Chemical Composition K, Hardness (2021) Surface roughness, and Adhesion aspects of Additively Manufactured Dental Interim materials. J Prosthodont 30(8):698–705. https://doi.org/10.1111/jopr.13302 . Epub 2020 Dec 24. PMID: 33290604
doi: 10.1111/jopr.13302 pubmed: 33290604
Alshamrani AA, Raju R, Ellakwa A (2022) Effect of Printing Layer Thickness and Postprinting conditions on the Flexural Strength and hardness of a 3D-Printed Resin. Biomed Res Int 2022:8353137. https://doi.org/10.1155/2022/8353137 . PMID: 35237691; PMCID: PMC8885203
doi: 10.1155/2022/8353137 pubmed: 35237691 pmcid: 8885203
Soto-Montero J, de Castro EF, Romano BC, Nima G, Shimokawa CAK, Giannini M (2022) Color alterations, flexural strength, and microhardness of 3D printed resins for fixed provisional restoration using different post-curing times. Dent Mater : off Publ Acad Dent Mater 38(8):1271–1282. https://doi.org/10.1016/j.dental.2022.06.023
doi: 10.1016/j.dental.2022.06.023
de Mendonça BC, Soto-Montero JR, de Castro EF, Pecorari VGA, Rueggeberg FA, Giannini M (2021) Flexural strength and microhardness of bulk-fill restorative materials. J Esthet Restor Dent. ;33(4):628–635. https://doi.org/10.1111/jerd.12727 . Epub 2021 Mar 5. PMID: 33675162
Tamura Y, Kakuta K, Ogura H (2013) Wear and mechanical properties of composite resins consisting of different filler particles. Odontology. ;101(2):156 – 69. https://doi.org/10.1007/s10266-012-0074-1 . Epub 2012 Jul 4. PMID: 22760595
Yin R, Jang YS, Lee MH, Bae TS (2019) Comparative Evaluation of Mechanical Properties and wear ability of five CAD/CAM Dental blocks. Mater (Basel) 12(14):2252. https://doi.org/10.3390/ma12142252 . PMID: 31336968; PMCID: PMC6678169
doi: 10.3390/ma12142252
Maier E, Grottschreiber C, Knepper I, Opdam N, Petschelt A, Loomans B, Lohbauer U (2022) Evaluation of wear behavior of dental restorative materials against zirconia in vitro. Dent Mater. ;38(5):778–788. https://doi.org/10.1016/j.dental.2022.04.016 . Epub 2022 Apr 19. PMID: 35459553. Stawarczyk 2012
Stawarczyk B, Sener B, Trottmann A, Roos M, Ozcan M, Hammerle CHF (2012) Discoloration of manually fabricated resins and industrially fabricated CAD/CAM blocks versus glassceramic: Effect of storage media, duration, and subsequent polishing. Dent Mater J 31:377–383
doi: 10.4012/dmj.2011-238 pubmed: 22673470
Bayraktar ET, Türkmen C, Atali PY, Tarçin B, Korkut B, Yaşa B (2024) In-vitro evaluation of wear characteristics, microhardness and color stability of dental restorative CAD/CAM materials. Dent Mater J 43(1):74–83. https://doi.org/10.4012/dmj.2023-071 . Epub 2023 Dec 8. PMID: 38072413
doi: 10.4012/dmj.2023-071 pubmed: 38072413
Gusmão GM, De Queiroz TV, Pompeu GF, Menezes Filho PF, da Silva CH (2013) Jan-Feb;24(1):60 – 5 The influence of storage time and pH variation on water sorption by different composite resins. Indian J Dent Res. https://doi.org/10.4103/0970-9290.114954 . PMID: 23852234
Schneider LF, Pfeifer CS, Consani S, Prahl SA, Ferracane JL (2008) Influence of photoinitiator type on the rate of polymerization, degree of conversion, hardness and yellowing of dental resin composites. Dent Mater 24(9):1169–1177. https://doi.org/10.1016/j.dental.2008.01.007
doi: 10.1016/j.dental.2008.01.007 pubmed: 18325583
Nascimento VA, Bento VAA, Cruz KH, Silva LS, Pesqueira AA, Pellizzer EP (2023) Color stability and surface roughness of resin-ceramics with different surface treatments: A systematic review and meta-analysis of in vitro studies. J Prosthet Dent. Oct 5:S0022-3913(23)00567-X. 10.1016/j.prosdent.2023.08.023. Epub ahead of print. PMID: 37805289
El-Rashidy AA, Shaalan O, Abdelraouf RM, Habib NA (2023) Effect of immersion and thermocycling in different beverages on the surface roughness of single- and multi-shade resin composites. BMC Oral Health 23(1):367. https://doi.org/10.1186/s12903-023-03069-w . PMID: 37287027; PMCID: PMC10249292
doi: 10.1186/s12903-023-03069-w pubmed: 37287027 pmcid: 10249292
Topçu S, Tekçe N, Kopuz D, Özçelik EY, Kolaylı F, Tuncer S, Demirci M (2024) Effect of surface roughness and biofilm formation on the color properties of resin-infiltrated ceramic and lithium disilicate glass-ceramic CAD-CAM materials. J Prosthet Dent. https://doi.org/10.1016/j.prosdent.2024.02.005
doi: 10.1016/j.prosdent.2024.02.005 pubmed: 38431509

Auteurs

Lucas Eigi Borges Tanaka (LEB)

Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12220-000, Brazil.

Camila da Silva Rodrigues (C)

Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12220-000, Brazil.

Manassés Tércio Vieira Grangeiro (MTV)

Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, 12220-000, Brazil.

Tiago Moreira Bastos Campos (TMB)

Aeronautics Technological Institute (ITA), 50 Praça Marechal Eduardo Gomes, São José dos Campos, 12228-900, São Paulo State, Brazil.

Renata Marques de Melo (RM)

, São José dos Campos, Brazil. renata.marinho@fosjc.unesp.br.

Articles similaires

Hemiarthroplasty in young patients.

Hazimah Mahmud, Dong Wang, Andra Topan-Rat et al.
1.00
Humans Male Hemiarthroplasty Middle Aged Aged
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
Biomass Lignin Wood Populus Microscopy, Electron, Scanning
Nitriles Tensile Strength Materials Testing Gloves, Protective Product Packaging

Classifications MeSH