The Deficiency of the ASD-Related Gene CHD8 Disrupts Behavioral Patterns and Inhibits Hippocampal Neurogenesis in Mice.


Journal

Journal of molecular neuroscience : MN
ISSN: 1559-1166
Titre abrégé: J Mol Neurosci
Pays: United States
ID NLM: 9002991

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 23 07 2024
accepted: 20 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Chromodomain helicase DNA-binding 8 (CHD8) is a gene that poses a high risk for autism spectrum disorder (ASD) and neurological development delay. Nevertheless, the impact of CHD8 haploinsufficiency on both hippocampus neurogenesis and behavior remains uncertain. Here, we performed behavioral assessments on male and female CHD8 heterozygous mice. The study discovered that both male and female CHD8 heterozygous mice displayed an impairment in preference for social novelty. Concurrently, CHD8 heterozygous mice exhibited anxiety-like behavior. However, its cognitive capacity for learning and memory is within the expected range. Furthermore, we discovered a reduction in the number of both immature and mature new neurons in mice with CHD8 heterozygous, resulting in an impeded neurogenesis process in the hippocampus. Taken together, our findings indicate that CHD8 plays a crucial role in the regulation of hippocampal neurogenesis, and further suggest that ASD-like behaviors observed in CHD8 heterozygous mice may be associated with disruptions in hippocampal neurogenesis.

Identifiants

pubmed: 39480606
doi: 10.1007/s12031-024-02283-7
pii: 10.1007/s12031-024-02283-7
doi:

Substances chimiques

duplin protein, mouse 0
DNA-Binding Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

103

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

An Y, Zhang L, Liu W, Jiang Y, Chen X, Lan X, Li G, Hang Q, Wang J, Gusella JF, Du Y, Shen Y (2020) De novo variants in the Helicase-C domain of CHD8 are associated with severe phenotypes including autism, language disability and overgrowth. Hum Genet 139(4):499–512. https://doi.org/10.1007/s00439-020-02115-9
doi: 10.1007/s00439-020-02115-9 pubmed: 31980904
Bakker J, Leinders-Zufall T, Chamero P (2020) The sense of smell: role of the olfactory system in social behavior. In: Neuroscience in the 21st Century: from basic to clinical 1–29. https://doi.org/10.1007/978-1-4614-6434-1_29-4
Barnard RA, Pomaville MB, O’Roak BJ (2015) Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology. Front Neurosci 9:477. https://doi.org/10.3389/fnins.2015.00477
doi: 10.3389/fnins.2015.00477 pubmed: 26733790 pmcid: 4681771
Bednarczyk MR, Aumont A, Decary S, Bergeron R, Fernandes KJ (2009) Prolonged voluntary wheel-running stimulates neural precursors in the hippocampus and forebrain of adult CD1 mice. Hippocampus 19(10):913–927. https://doi.org/10.1002/hipo.20621
doi: 10.1002/hipo.20621 pubmed: 19405143
Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, Witherspoon K, Gerdts J, Baker C, Vulto-van Silfhout AT, Schuurs-Hoeijmakers JH, Fichera M, Bosco P, Buono S, Alberti A, Failla P, Peeters H, Steyaert J, Vissers L, Francescatto L, Mefford HC, Rosenfeld JA, Bakken T, O’Roak BJ, Pawlus M, Moon R, Shendure J, Amaral DG, Lein E, Rankin J, Romano C, de Vries BBA, Katsanis N, Eichler EE (2014) Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158(2):263–276. https://doi.org/10.1016/j.cell.2014.06.017
doi: 10.1016/j.cell.2014.06.017 pubmed: 24998929 pmcid: 4136921
Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16(9):551–563. https://doi.org/10.1038/nrn3992
doi: 10.1038/nrn3992 pubmed: 26289574
Chan MMY, Han YMY (2020) Differential mirror neuron system (MNS) activation during action observation with and without social-emotional components in autism: a meta-analysis of neuroimaging studies. Mol Autism 11(1):72. https://doi.org/10.1186/s13229-020-00374-x
doi: 10.1186/s13229-020-00374-x pubmed: 32993782 pmcid: 7523366
Cotney J, Muhle RA, Sanders SJ, Liu L, Willsey AJ, Niu W, Liu W, Klei L, Lei J, Yin J, Reilly SK, Tebbenkamp AT, Bichsel C, Pletikos M, Sestan N, Roeder K, State MW, Devlin B, Noonan JP (2015) The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat Commun 6:6404. https://doi.org/10.1038/ncomms7404
doi: 10.1038/ncomms7404 pubmed: 25752243
Cox KH, Rissman EF (2011) Sex differences in juvenile mouse social behavior are influenced by sex chromosomes and social context. Genes Brain Behav 10(4):465–472. https://doi.org/10.1111/j.1601-183X.2011.00688.x
doi: 10.1111/j.1601-183X.2011.00688.x pubmed: 21414140
Dickter CL, Burk JA, Fleckenstein K, Kozikowski CT (2018) Autistic traits and social anxiety predict differential performance on social cognitive tasks in typically developing young adults. PLoS ONE 13(3):e0195239. https://doi.org/10.1371/journal.pone.0195239
doi: 10.1371/journal.pone.0195239 pubmed: 29596523 pmcid: 5875886
Dong C, Zhao C, Chen X, Berry K, Wang J, Zhang F, Liao Y, Han R, Ogurek S, Xu L, Zhang L, Lin Y, Zhou W, Xin M, Lim DA, Campbell K, Nakafuku M, Waclaw RR, Lu QR (2022) Conserved and distinct functions of the autism-related chromatin remodeler CHD8 in embryonic and adult forebrain neurogenesis. J Neurosci 42(44):8373–8392. https://doi.org/10.1523/JNEUROSCI.2400-21.2022
doi: 10.1523/JNEUROSCI.2400-21.2022 pubmed: 36127134 pmcid: 9653284
Gage FH (2019) Adult neurogenesis in mammals. Science 364(6443):827–828. https://doi.org/10.1126/science.aav6885
doi: 10.1126/science.aav6885 pubmed: 31147506
Gage FH (2021) Adult neurogenesis in neurological diseases. Science 374(6571):1049–1050. https://doi.org/10.1126/science.abm7468
doi: 10.1126/science.abm7468 pubmed: 34822282
Gompers AL, Su-Feher L, Ellegood J, Copping NA, Riyadh MA, Stradleigh TW, Pride MC, Schaffler MD, Wade AA, Catta-Preta R, Zdilar I, Louis S, Kaushik G, Mannion BJ, Plajzer-Frick I, Afzal V, Visel A, Pennacchio LA, Dickel DE, Lerch JP, Crawley JN, Zarbalis KS, Silverman JL, Nord AS (2017) Germline Chd8 haploinsufficiency alters brain development in mouse. Nat Neurosci 20(8):1062–1073. https://doi.org/10.1038/nn.4592
doi: 10.1038/nn.4592 pubmed: 28671691 pmcid: 6008102
Hurley S, Mohan C, Suetterlin P, Ellingford R, Riegman KLH, Ellegood J, Caruso A, Michetti C, Brock O, Evans R, Rudari F, Delogu A, Scattoni ML, Lerch JP, Fernandes C, Basson MA (2021) Distinct, dosage-sensitive requirements for the autism-associated factor CHD8 during cortical development. Mol Autism 12(1):16. https://doi.org/10.1186/s13229-020-00409-3
doi: 10.1186/s13229-020-00409-3 pubmed: 33627187 pmcid: 7905672
Jimenez JA, Ptacek TS, Tuttle AH, Schmid RS, Moy SS, Simon JM, Zylka MJ (2020) Chd8 haploinsufficiency impairs early brain development and protein homeostasis later in life. Mol Autism 11(1):74. https://doi.org/10.1186/s13229-020-00369-8
doi: 10.1186/s13229-020-00369-8 pubmed: 33023670 pmcid: 7537101
Jung H, Park H, Choi Y, Kang H, Lee E, Kweon H, Roh JD, Ellegood J, Choi W, Kang J, Rhim I, Choi SY, Bae M, Kim SG, Lee J, Chung C, Yoo T, Park H, Kim Y, Ha S, Um SM, Mo S, Kwon Y, Mah W, Bae YC, Kim H, Lerch JP, Paik SB, Kim E (2018) Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice. Nat Neurosci 21(9):1218–1228. https://doi.org/10.1038/s41593-018-0208-z
doi: 10.1038/s41593-018-0208-z pubmed: 30104731
Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T, Suyama M, Takumi T, Miyakawa T, Nakayama KI (2016) CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature 537(7622):675–679. https://doi.org/10.1038/nature19357
doi: 10.1038/nature19357 pubmed: 27602517
Kawamura A, Nishiyama M (2023) Deletion of the autism-related gene Chd8 alters activity-dependent transcriptional responses in mouse postmitotic neurons. Commun Biol 6(1):593. https://doi.org/10.1038/s42003-023-04968-y
doi: 10.1038/s42003-023-04968-y pubmed: 37268684 pmcid: 10238509
Kawamura A, Katayama Y, Kakegawa W, Ino D, Nishiyama M, Yuzaki M, Nakayama KI (2021) The autism-associated protein CHD8 is required for cerebellar development and motor function. Cell Rep 35(1):108932. https://doi.org/10.1016/j.celrep.2021.108932
doi: 10.1016/j.celrep.2021.108932 pubmed: 33826902
Lee SY, Kweon H, Kang H, Kim E (2022) Age-differential sexual dimorphism in CHD8-S62X-mutant mouse behaviors. Front Mol Neurosci 15:1022306. https://doi.org/10.3389/fnmol.2022.1022306
doi: 10.3389/fnmol.2022.1022306 pubmed: 36385756 pmcid: 9641250
Lee SY, Kweon H, Kang H, Kim E (2023) Age-differential sexual dimorphisms in CHD8-S62X-mutant mouse synapses and transcriptomes. Front Mol Neurosci 16:1111388. https://doi.org/10.3389/fnmol.2023.1111388
doi: 10.3389/fnmol.2023.1111388 pubmed: 36873104 pmcid: 9978779
Lord C, Risi S, DiLavore PS, Shulman C, Thurm A, Pickles A (2006) Autism from 2 to 9 years of age. Arch Gen Psychiatry 63(6):694–701. https://doi.org/10.1001/archpsyc.63.6.694
doi: 10.1001/archpsyc.63.6.694 pubmed: 16754843
Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder. Lancet 392(10146):508–520. https://doi.org/10.1016/S0140-6736(18)31129-2
doi: 10.1016/S0140-6736(18)31129-2 pubmed: 30078460 pmcid: 7398158
Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2(11):780–790. https://doi.org/10.1038/35097509
doi: 10.1038/35097509 pubmed: 11715055
Nishiyama M, Oshikawa K, Tsukada Y, Nakagawa T, Iemura S, Natsume T, Fan Y, Kikuchi A, Skoultchi AI, Nakayama KI (2009) CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis. Nat Cell Biol 11(2):172–182. https://doi.org/10.1038/ncb1831
doi: 10.1038/ncb1831 pubmed: 19151705 pmcid: 3132516
Niu X, Zhao Y, Yang N, Zhao X, Zhang W, Bai X, Li A, Yang W, Lu L (2020) Proteasome activation by insulin-like growth factor-1/nuclear factor erythroid 2-related factor 2 signaling promotes exercise-induced neurogenesis. Stem Cells 38(2):246–260. https://doi.org/10.1002/stem.3102
doi: 10.1002/stem.3102 pubmed: 31648402
O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, Levy R, Ko A, Lee C, Smith JD, Turner EH, Stanaway IB, Vernot B, Malig M, Baker C, Reilly B, Akey JM, Borenstein E, Rieder MJ, Nickerson DA, Bernier R, Shendure J, Eichler EE (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485(7397):246–250. https://doi.org/10.1038/nature10989
doi: 10.1038/nature10989 pubmed: 22495309 pmcid: 3350576
Ostrowski PJ, Zachariou A, Loveday C, Beleza-Meireles A, Bertoli M, Dean J, Douglas A GL, Ellis I, Foster A, Graham JM, Hague J, Hilhorst-Hofstee Y, Hoffer M, Johnson D, Josifova D, Kant SG, Kini U, Lachlan K, Lam W, Lees M, Lynch S, Maitz S, McKee S, Metcalfe K, Nathanson K,Ockeloen CW, Parker MJ, Pierson TM, Rahikkala E, Sanchez-Lara PA, Spano A, Van Maldergem L, Cole T, Douzgou S, Tatton-Brown K (2019) The CHD8 overgrowth syndrome: a detailed evaluation of an emerging overgrowth phenotype in 27 patients. Am J Med Genet C Semin Med Genet 181(4): 557–564. https://doi.org/10.1002/ajmg.c.31749
Paik KE, Mooneyham GC (2024) Concurrent developmental regression and neurocognitive decline in a child with de novo CHD8 gene mutation. Pediatr Neurol 154:1–3. https://doi.org/10.1016/j.pediatrneurol.2024.01.002
doi: 10.1016/j.pediatrneurol.2024.01.002 pubmed: 38428335
Pitcher D, Japee S, Rauth L, Ungerleider LG (2017) The superior temporal sulcus is causally connected to the amygdala: a combined TBS-fMRI study. J Neurosci 37(5):1156–1161. https://doi.org/10.1523/JNEUROSCI.0114-16.2016
doi: 10.1523/JNEUROSCI.0114-16.2016 pubmed: 28011742 pmcid: 5296794
Platt RJ, Zhou Y, Slaymaker IM, Shetty AS, Weisbach NR, Kim JA, Sharma J, Desai M, Sood S, Kempton HR, Crabtree GR, Feng G, Zhang F (2017) Chd8 mutation leads to autistic-like behaviors and impaired striatal circuits. Cell Rep 19(2):335–350. https://doi.org/10.1016/j.celrep.2017.03.052
doi: 10.1016/j.celrep.2017.03.052 pubmed: 28402856 pmcid: 5455342
Ronan JL, Wu W, Crabtree GR (2013) From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet 14(5):347–359. https://doi.org/10.1038/nrg3413
doi: 10.1038/nrg3413 pubmed: 23568486 pmcid: 4010428
Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, Peng M, Collins R, Grove J, Klei L, Stevens C, Reichert J, Mulhern MS, Artomov M, Gerges S, Sheppard B, Xu X, Bhaduri A, Norman U, Brand H, Schwartz G, Nguyen R, Guerrero EE, Dias C, Autism Sequencing C, i P-B C, Betancur C, Cook EH, Gallagher L, Gill M, Sutcliffe JS, Thurm A, Zwick ME, Borglum AD, State MW, Cicek A E, Talkowski ME, Cutler DJ, Devlin B, Sanders SJ, Roeder K, Daly MJ, Buxbaum JD (2020) Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180(3): 568–584 e23. https://doi.org/10.1016/j.cell.2019.12.036
Shaw KA, Bilder DA, McArthur D, Williams AR, Amoakohene E, Bakian AV, Durkin MS, Fitzgerald RT, Furnier SM, Hughes MM, Pas ET, Salinas A, Warren Z, Williams S, Esler A, Grzybowski A, Ladd-Acosta C M, Patrick M, Zahorodny W, Green KK, Hall-Lande J, Lopez M, Mancilla KC, Nguyen RHN, Pierce K, Schwenk YD, Shenouda J, Sidwell K, Vehorn A, DiRienzo M, Gutierrez J, Hallas L, Hudson A, Spivey M H, Pettygrove S, Washington A & Maenner M J (2023) Early identification of autism spectrum disorder among children aged 4 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill Summ 72(1): 1–15. https://doi.org/10.15585/mmwr.ss7201a1
Shic F, Bradshaw J, Klin A, Scassellati B, Chawarska K (2011) Limited activity monitoring in toddlers with autism spectrum disorder. Brain Res 1380:246–254. https://doi.org/10.1016/j.brainres.2010.11.074
doi: 10.1016/j.brainres.2010.11.074 pubmed: 21129365
Shiraishi T, Katayama Y, Nishiyama M, Shoji H, Miyakawa T, Mizoo T, Matsumoto A, Hijikata A, Shirai T, Mayanagi K, Nakayama KI (2024) The complex etiology of autism spectrum disorder due to missense mutations of CHD8. Mol Psychiatry. https://doi.org/10.1038/s41380-024-02491-y
doi: 10.1038/s41380-024-02491-y pubmed: 38438524
Silver WG, Rapin I (2012) Neurobiological basis of autism. Pediatr Clin North Am 59(1):45–61. https://doi.org/10.1016/j.pcl.2011.10.010
Silverman JL, Yang M, Lord C, Crawley JN (2010) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11(7):490–502. https://doi.org/10.1038/nrn2851
doi: 10.1038/nrn2851 pubmed: 20559336 pmcid: 3087436
Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, Manavalan P, Ragavendran A, Brand H, Lucente D, Miles J, Sheridan SD, Stortchevoi A, Kellis M, Haggarty SJ, Katsanis N, Gusella JF, Talkowski ME (2014) CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci U S A 111(42):E4468–E4477. https://doi.org/10.1073/pnas.1405266111
doi: 10.1073/pnas.1405266111 pubmed: 25294932 pmcid: 4210312
Sun X, Allison C, Wei L, Matthews FE, Auyeung B, Wu YY, Griffiths S, Zhang J, Baron-Cohen S, Brayne C (2019) Autism prevalence in China is comparable to Western prevalence. Mol Autism 10:7. https://doi.org/10.1186/s13229-018-0246-0
doi: 10.1186/s13229-018-0246-0 pubmed: 30858963 pmcid: 6394100
Thapar A, Cooper M, Rutter M (2017) Neurodevelopmental disorders. Lancet. Psychiatry 4(4):339–346. https://doi.org/10.1016/S2215-0366(16)30376-5
doi: 10.1016/S2215-0366(16)30376-5 pubmed: 27979720
Valiente M, Marin O (2010) Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol 20(1):68–78. https://doi.org/10.1016/j.conb.2009.12.003
doi: 10.1016/j.conb.2009.12.003 pubmed: 20053546
Vargas-Cuentas NI, Roman-Gonzalez A, Gilman RH, Barrientos F, Ting J, Hidalgo D, Jensen K, Zimic M (2017) Developing an eye-tracking algorithm as a potential tool for early diagnosis of autism spectrum disorder in children. PLoS ONE 12(11):e0188826. https://doi.org/10.1371/journal.pone.0188826
doi: 10.1371/journal.pone.0188826 pubmed: 29190703 pmcid: 5708820
Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. https://doi.org/10.1038/nprot.2006.116
doi: 10.1038/nprot.2006.116 pubmed: 17406317 pmcid: 2895266
Wade AA, Lim K, Catta-Preta R, Nord AS (2018) Common CHD8 Genomic Targets Contrast With Model-Specific Transcriptional Impacts of CHD8 Haploinsufficiency. Front Mol Neurosci 11:481. https://doi.org/10.3389/fnmol.2018.00481
doi: 10.3389/fnmol.2018.00481 pubmed: 30692911
Xu P, Xu H, Tang X, Xu L, Wang Y, Guo L, Yang Z, Xing Y, Wu Y, Warner M, Gustafsson JA, Fan X (2014) Liver X receptor beta is essential for the differentiation of radial glial cells to oligodendrocytes in the dorsal cortex. Mol Psychiatry 19(8):947–957. https://doi.org/10.1038/mp.2014.60
doi: 10.1038/mp.2014.60 pubmed: 24934178
Zhu YH, Zhang CW, Lu L, Demidov ON, Sun L, Yang L, Bulavin DV, Xiao ZC (2009) Wip1 regulates the generation of new neural cells in the adult olfactory bulb through p53-dependent cell cycle control. Stem Cells 27(6):1433–1442. https://doi.org/10.1002/stem.65
doi: 10.1002/stem.65 pubmed: 19489034

Auteurs

Xiaojie Niu (X)

Medical College, Shanxi Datong University, Datong, 037009, China. nxj_smile@163.com.
Institute of Respiratory Disease and Occupational Disease, Medical College, Shanxi Datong University, Datong, 037009, China. nxj_smile@163.com.

Feifei Huang (F)

Shanxi Health Vocational College, Taiyuan, 030000, China.

Haizhen Lyu (H)

Medical College, Shanxi Datong University, Datong, 037009, China.

Jiao Liu (J)

Medical College, Shanxi Datong University, Datong, 037009, China.

Xinwei Zhang (X)

Medical College, Shanxi Datong University, Datong, 037009, China.

Jiang Bian (J)

Medical College, Shanxi Datong University, Datong, 037009, China.
Institute of Brain Science, Medical College, Shanxi Datong University, Datong, 037009, China.

Zhijie Gao (Z)

Medical College, Shanxi Datong University, Datong, 037009, China.

Binyu Liu (B)

Medical College, Shanxi Datong University, Datong, 037009, China. 13613401999@139.com.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH