Targeting the hypothalamus for modeling age-related DNA methylation and developing OXT-GnRH combinational therapy against Alzheimer's disease-like pathologies in male mouse model.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 28 07 2023
accepted: 09 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

The hypothalamus plays an important role in aging, but it remains unclear regarding the underlying epigenetics and whether this hypothalamic basis can help address aging-related diseases. Here, by comparing mouse hypothalamus with two other limbic system components, we show that the hypothalamus is characterized by distinctively high-level DNA methylation during young age and by the distinct dynamics of DNA methylation and demethylation when approaching middle age. On the other hand, age-related DNA methylation in these limbic system components commonly and sensitively applies to genes in hypothalamic regulatory pathways, notably oxytocin (OXT) and gonadotropin-releasing hormone (GnRH) pathways. Middle age is associated with transcriptional declines of genes which encode OXT, GnRH and signaling components, which similarly occur in an Alzheimer's disease (AD)-like model. Therapeutically, OXT-GnRH combination is substantially more effective than individual peptides in treating AD-like disorders in male 5×FAD model. In conclusion, the hypothalamus is important for modeling age-related DNA methylation and developing hypothalamic strategies to combat AD.

Identifiants

pubmed: 39482312
doi: 10.1038/s41467-024-53507-8
pii: 10.1038/s41467-024-53507-8
doi:

Substances chimiques

Gonadotropin-Releasing Hormone 33515-09-2
Oxytocin 50-56-6

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9419

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
ID : AG031774

Informations de copyright

© 2024. The Author(s).

Références

Shohayeb, B., Diab, M., Ahmed, M. & Ng, D. C. H. Factors that influence adult neurogenesis as potential therapy. Transl. Neurodegener. 7, 4 (2018).
pubmed: 29484176 pmcid: 5822640 doi: 10.1186/s40035-018-0109-9
Culig, L., Chu, X. & Bohr, V. A. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res. Rev. 78, 101636 (2022).
pubmed: 35490966 pmcid: 9168971 doi: 10.1016/j.arr.2022.101636
Dean, D. C. et al. Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. Jama Neurol. 71, 11–22 (2014).
pubmed: 24276092 pmcid: 4056558 doi: 10.1001/jamaneurol.2013.4544
Fu, H., Hardy, J. & Duff, K. E. Selective vulnerability in neurodegenerative diseases. Nat. Neurosci. 21, 1350–1358 (2018).
pubmed: 30250262 pmcid: 6360529 doi: 10.1038/s41593-018-0221-2
van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).
pubmed: 11875571 pmcid: 9284568 doi: 10.1038/4151030a
Kuhn, H. G., Dickinson-Anson, H. & Gage, F. H. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033 (1996).
pubmed: 8604047 pmcid: 6578509 doi: 10.1523/JNEUROSCI.16-06-02027.1996
Lois, C. & Alvarez-Buylla, A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA 90, 2074–2077 (1993).
pubmed: 8446631 pmcid: 46023 doi: 10.1073/pnas.90.5.2074
Alvarez-Buylla, A. & Lois, C. Neuronal stem cells in the brain of adult vertebrates. Stem Cells (Dayt. Ohio) 13, 263–272 (1995).
doi: 10.1002/stem.5530130307
Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).
pubmed: 10380923 doi: 10.1016/S0092-8674(00)80783-7
Alvarez-Buylla, A. & Garcia-Verdugo, J. M. Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634 (2002).
pubmed: 11826091 doi: 10.1523/JNEUROSCI.22-03-00629.2002
Xiao, Y. Z. et al. Reducing hypothalamic stem cell senescence protects against aging-associated physiological decline. Cell Metab. 31, 534–548.e535 (2020).
pubmed: 32004475 doi: 10.1016/j.cmet.2020.01.002
Zhang, Y. L. et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548, 52–57 (2017).
pubmed: 28746310 doi: 10.1038/nature23282
Li, J. X., Tang, Y. Z. & Cai, D. S. IKK beta/NF-kappa B disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat. Cell Biol. 14, 999–1012 (2012).
pubmed: 22940906 doi: 10.1038/ncb2562
Wang, Z., Wu, W., Kim, M. S. & Cai, D. GnRH pulse frequency and irregularity play a role in male aging. Nat. Aging 1, 904–918 (2021).
pubmed: 37118330 doi: 10.1038/s43587-021-00116-5
Zhang, G. et al. Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature 497, 211–216 (2013).
pubmed: 23636330 doi: 10.1038/nature12143
Tang, Y. & Cai, D. Hypothalamic inflammation and GnRH in aging development. Cell Cycle 12, 2711–2712 (2013).
pubmed: 23966154 doi: 10.4161/cc.26054
Zhang, G. & Cai, D. Circadian intervention of obesity development via resting-stage feeding manipulation or oxytocin treatment. Am. J. Physiol. Endocrinol. Metab. 301, E1004–E1012 (2011).
pubmed: 21828335 doi: 10.1152/ajpendo.00196.2011
Zhang, G. et al. Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron 69, 523–535 (2011).
pubmed: 21315262 pmcid: 4353647 doi: 10.1016/j.neuron.2010.12.036
Horvath, S. Erratum to: DNA methylation age of human tissues and cell types. Genome Biol. 16, 96 (2015).
pubmed: 25968125 pmcid: 4427927 doi: 10.1186/s13059-015-0649-6
Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).
pubmed: 23177740 doi: 10.1016/j.molcel.2012.10.016
Jones, M. J., Goodman, S. J. & Kobor, M. S. DNA methylation and healthy human aging. Aging Cell 14, 924–932 (2015).
pubmed: 25913071 doi: 10.1111/acel.12349
Pal, S. & Tyler, J. K. Epigenetics and aging. Sci. Adv. 2, e1600584 (2016).
pubmed: 27482540 doi: 10.1126/sciadv.1600584
Dor, Y. & Cedar, H. Principles of DNA methylation and their implications for biology and medicine. Lancet (Lond., Engl.) 392, 777–786 (2018).
doi: 10.1016/S0140-6736(18)31268-6
Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019).
pubmed: 31501588 doi: 10.1038/s41582-019-0244-7
Unnikrishnan, A. et al. The role of DNA methylation in epigenetics of aging. Pharmacol. Therapeutics 195, 172–185 (2019).
doi: 10.1016/j.pharmthera.2018.11.001
Zhang, W., Qu, J., Liu, G. H. & Belmonte, J. C. I. The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol. 21, 137–150 (2020).
pubmed: 32020082 doi: 10.1038/s41580-019-0204-5
Sikora, E. et al. Cellular senescence in brain aging. Front Aging Neurosci. 13, 646924 (2021).
pubmed: 33732142 doi: 10.3389/fnagi.2021.646924
Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. Nat. Rev. Genet 23, 715–727 (2022).
pubmed: 35715611 doi: 10.1038/s41576-022-00511-7
Seale, K., Horvath, S., Teschendorff, A., Eynon, N. & Voisin, S. Making sense of the ageing methylome. Nat. Rev. Genet 23, 585–605 (2022).
pubmed: 35501397 doi: 10.1038/s41576-022-00477-6
Wang, K. et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct. Target Ther. 7, 374 (2022).
pubmed: 36336680 pmcid: 9637765 doi: 10.1038/s41392-022-01211-8
He, X., Memczak, S., Qu, J., Belmonte, J. C. I. & Liu, G. H. Single-cell omics in ageing: a young and growing field. Nat. Metab. 2, 293–302 (2020).
pubmed: 32694606 doi: 10.1038/s42255-020-0196-7
Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).
pubmed: 29643443 doi: 10.1038/s41576-018-0004-3
Yang, J. H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell https://doi.org/10.1016/j.cell.2022.12.027 (2023).
doi: 10.1016/j.cell.2022.12.027 pubmed: 38134932 pmcid: 10841658
Masser, D. R. et al. Sexually divergent DNA methylation patterns with hippocampal aging. Aging Cell 16, 1342–1352 (2017).
pubmed: 28948711 pmcid: 5676057 doi: 10.1111/acel.12681
Masser, D. R. et al. Bisulfite oligonucleotide-capture sequencing for targeted base- and strand-specific absolute 5-methylcytosine quantitation. Age (Dordr.) 38, 49 (2016).
pubmed: 27091453 doi: 10.1007/s11357-016-9914-1
Song, J. & Kuan, P. F. A systematic assessment of cell type deconvolution algorithms for DNA methylation data. Brief Bioinform. 23, https://doi.org/10.1093/bib/bbac449 (2022).
Rahmani, E. et al. Correcting for cell-type heterogeneity in DNA methylation: a comprehensive evaluation. Nat. Methods 14, 218–219 (2017).
pubmed: 28245214 doi: 10.1038/nmeth.4190
Rahmani, E. et al. Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology. Nat. Commun. 10, 3417 (2019).
pubmed: 31366909 pmcid: 6668473 doi: 10.1038/s41467-019-11052-9
Fong, J. et al. Determining subpopulation methylation profiles from bisulfite sequencing data of heterogeneous samples using DXM. Nucleic Acids Res. 49, e93 (2021).
pubmed: 34157105 pmcid: 8450090 doi: 10.1093/nar/gkab516
Jeong, Y. et al. Systematic evaluation of cell-type deconvolution pipelines for sequencing-based bulk DNA methylomes. Brief Bioinform. 23, https://doi.org/10.1093/bib/bbac248 (2022).
Hajdarovic, K. H. et al. Single-cell analysis of the aging female mouse hypothalamus. Nat. Aging 2, 662–678 (2022).
pubmed: 36285248 pmcid: 9592060 doi: 10.1038/s43587-022-00246-4
Yang, Y. T. et al. STAB2: an updated spatio-temporal cell atlas of the human and mouse brain. Nucleic Acids Res. 52, D1033–D1041 (2024).
pubmed: 37904591 doi: 10.1093/nar/gkad955
Tepe, B. et al. Single-cell RNA-Seq of mouse olfactory bulb reveals cellular heterogeneity and activity-dependent molecular census of adult-born neurons. Cell Rep. 25, 2689–2703.e2683 (2018).
pubmed: 30517858 pmcid: 6342206 doi: 10.1016/j.celrep.2018.11.034
Devasani, K. & Yao, Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers CNS 19, 23 (2022).
pubmed: 35307032 pmcid: 8935726 doi: 10.1186/s12987-022-00322-2
Mons, N., Segu, L., Nogues, X. & Buhot, M. C. Effects of age and spatial learning on adenylyl cyclase mRNA expression in the mouse hippocampus. Neurobiol. Aging 25, 1095–1106 (2004).
pubmed: 15212834 doi: 10.1016/j.neurobiolaging.2003.10.014
Iwamoto, T. et al. Motor dysfunction in type 5 adenylyl cyclase-null mice. J. Biol. Chem. 278, 16936–16940 (2003).
pubmed: 12665504 doi: 10.1074/jbc.C300075200
Joeyen-Waldorf, J. et al. Adenylate cyclase 7 is implicated in the biology of depression and modulation of affective neural circuitry. Biol. Psychiatry 71, 627–632 (2012).
pubmed: 22264442 pmcid: 3307939 doi: 10.1016/j.biopsych.2011.11.029
Hines, L. M. et al. A sex-specific role of type VII adenylyl cyclase in depression. J. Neurosci. 26, 12609–12619 (2006).
pubmed: 17135423 pmcid: 6674903 doi: 10.1523/JNEUROSCI.1040-06.2006
Takahashi, J. et al. Oxytocin reverses Aβ-induced impairment of hippocampal synaptic plasticity in mice. Biochem Biophys. Res Commun. 528, 174–178 (2020).
pubmed: 32482389 doi: 10.1016/j.bbrc.2020.04.046
Takahashi, J. et al. Intracerebroventricular administration of oxytocin and intranasal administration of the oxytocin derivative improve β-amyloid peptide (25-35)-induced memory impairment in mice. Neuropsychopharmacol. Rep. 42, 492–501 (2022).
pubmed: 36117475 doi: 10.1002/npr2.12292
El-Ganainy, S. O. et al. Intranasal oxytocin attenuates cognitive impairment, β-amyloid burden and tau deposition in female rats with Alzheimer’s disease: interplay of ERK1/2/GSK3β/caspase-3. Neurochem. Res. 47, 2345–2356 (2022).
pubmed: 35596040 doi: 10.1007/s11064-022-03624-x
Selles, M. C. et al. Oxytocin attenuates microglial activation and restores social and non-social memory in APP/PS1 Alzheimer model mice. iScience 26, 106545 (2023).
pubmed: 37128547 doi: 10.1016/j.isci.2023.106545
Koulousakis, P. et al. Exogenous oxytocin administration restores memory in female APP/PS1 Mice. J. Alzheimers Dis. 96, 1207–1219 (2023).
pubmed: 37927260 doi: 10.3233/JAD-230657
Ye, C. et al. Oxytocin nanogels inhibit innate inflammatory response for early intervention in Alzheimer’s disease. ACS Appl Mater. Interfaces 14, 21822–21835 (2022).
pubmed: 35510352 doi: 10.1021/acsami.2c00007
Garrido, M. P., Hernandez, A., Vega, M., Araya, E. & Romero, C. Conventional and new proposals of GnRH therapy for ovarian, breast, and prostatic cancers. Front Endocrinol. (Lausanne) 14, 1143261 (2023).
pubmed: 37056674 doi: 10.3389/fendo.2023.1143261
Sterling, K., Cao, R. & Song, W. Gonadotropin releasing hormone (GnRH): a hormone therapy boosts cognition in Down syndrome and dementia. Signal Transduct. Target Ther. 8, 49 (2023).
pubmed: 36725840 doi: 10.1038/s41392-023-01321-x
Manfredi-Lozano, M. et al. GnRH replacement rescues cognition in Down syndrome. Science 377, eabq4515 (2022).
pubmed: 36048943 doi: 10.1126/science.abq4515
Patel, D., Patel, B. & Wairkar, S. Intranasal delivery of biotechnology-based therapeutics. Drug Discov. Today 27, 103371 (2022).
pubmed: 36174965 doi: 10.1016/j.drudis.2022.103371
Akita, T. et al. Involvement of trigeminal axons in nose-to-brain delivery of glucagon-like peptide-2 derivative. J. Control Release 351, 573–580 (2022).
pubmed: 36179766 doi: 10.1016/j.jconrel.2022.09.047
Finger, E. et al. Adaptive crossover designs for assessment of symptomatic treatments targeting behaviour in neurodegenerative disease: a phase 2 clinical trial of intranasal oxytocin for frontotemporal dementia (FOXY). Alzheimers Res Ther. 10, 102 (2018).
pubmed: 30261917 doi: 10.1186/s13195-018-0427-2
Lindenmaier, Z. et al. Examining the effect of chronic intranasal oxytocin administration on the neuroanatomy and behavior of three autism-related mouse models. Neuroimage 257, 119243 (2022).
pubmed: 35508216 doi: 10.1016/j.neuroimage.2022.119243
Wang, Y. et al. Repeated oxytocin prevents central sensitization by regulating synaptic plasticity via oxytocin receptor in a chronic migraine mouse model. J. Headache Pain. 22, 84 (2021).
pubmed: 34315403 doi: 10.1186/s10194-021-01299-3
Bales, K. L. et al. Long-term exposure to intranasal oxytocin in a mouse autism model. Transl. Psychiatry 4, e480 (2014).
pubmed: 25386957 doi: 10.1038/tp.2014.117
Huang, H. et al. Chronic and acute intranasal oxytocin produce divergent social effects in mice. Neuropsychopharmacology 39, 1102–1114 (2014).
pubmed: 24190025 doi: 10.1038/npp.2013.310
Zocher, S., Overall, R. W., Lesche, M., Dahl, A. & Kempermann, G. Environmental enrichment preserves a young DNA methylation landscape in the aged mouse hippocampus. Nat. Commun. 12, 3892 (2021).
pubmed: 34162876 doi: 10.1038/s41467-021-23993-1
Alberca, C. D., Papale, L. A., Madrid, A. & Alisch, R. S. Hippocampal and peripheral blood DNA methylation signatures correlate at the gene and pathway level in a mouse model of autism. Hum. Mol. Genet. 32, 3312–3322 (2023).
pubmed: 37658766 doi: 10.1093/hmg/ddad137
Hadad, N. et al. Absence of genomic hypomethylation or regulation of cytosine-modifying enzymes with aging in male and female mice. Epigenetics Chromatin 9, 30 (2016).
pubmed: 27413395 doi: 10.1186/s13072-016-0080-6
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 doi: 10.1038/nmeth.1923
Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).
pubmed: 21493656 doi: 10.1093/bioinformatics/btr167
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, https://doi.org/10.1093/gigascience/giab008 (2021).
Akalin, A. et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13, R87 (2012).
pubmed: 23034086 pmcid: 3491415 doi: 10.1186/gb-2012-13-10-r87
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 doi: 10.1093/bioinformatics/btq033
Titus, A. J., Gallimore, R. M., Salas, L. A. & Christensen, B. C. Cell-type deconvolution from DNA methylation: a review of recent applications. Hum. Mol. Genet. 26, R216–R224 (2017).
pubmed: 28977446 pmcid: 5886462 doi: 10.1093/hmg/ddx275
Lee, D., Lee, S. & Kim, S. PRISM: methylation pattern-based, reference-free inference of subclonal makeup. Bioinformatics 35, i520–i529 (2019).
pubmed: 31510697 pmcid: 6612819 doi: 10.1093/bioinformatics/btz327
Barrett, J. E. et al. Quantification of tumour evolution and heterogeneity via Bayesian epiallele detection. BMC Bioinf. 18, 354 (2017).
doi: 10.1186/s12859-017-1753-2
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–97, (2016).
pubmed: 27141961 pmcid: 4987924 doi: 10.1093/nar/gkw377
Szklarczyk, D. et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49, D605–D612 (2021).
pubmed: 33237311 doi: 10.1093/nar/gkaa1074
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Tang, Y., Zuniga-Hertz, J. P., Han, C., Yu, B. & Cai, D. Multifaceted secretion of htNSC-derived hypothalamic islets induces survival and antidiabetic effect via peripheral implantation in mice. Elife 9, https://doi.org/10.7554/eLife.52580 (2020).
Zhang, Y., Reichel, J. M., Han, C., Zuniga-Hertz, J. P. & Cai, D. Astrocytic process plasticity and IKKbeta/NF-kappaB in central control of blood glucose, blood pressure, and body weight. Cell Metab. 25, 1091–1102.e1094 (2017).
pubmed: 28467927 pmcid: 5576872 doi: 10.1016/j.cmet.2017.04.002
Ren, J. et al. Intrauterine hyperglycemia exposure results in intergenerational inheritance via DNA methylation reprogramming on F1 PGCs. Epigenetics Chromatin 11, 20 (2018).
pubmed: 29801514 pmcid: 5968593 doi: 10.1186/s13072-018-0192-2

Auteurs

Salman Sadullah Usmani (SS)

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.

Hyun-Gug Jung (HG)

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.

Qichao Zhang (Q)

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.

Min Woo Kim (MW)

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.

Yuna Choi (Y)

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.

Ahmet Burak Caglayan (AB)

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.

Dongsheng Cai (D)

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA. dongsheng.cai@einsteinmed.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH