Titre : Méthode en double aveugle

Méthode en double aveugle : Questions médicales fréquentes

Termes MeSH sélectionnés :

Natural Language Processing
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Méthode en double aveugle : Questions médicales les plus fréquentes", "headline": "Méthode en double aveugle : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Méthode en double aveugle : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-04-13", "dateModified": "2025-04-08", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Méthode en double aveugle" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Méthodologie en recherche épidémiologique", "url": "https://questionsmedicales.fr/mesh/D015340", "about": { "@type": "MedicalCondition", "name": "Méthodologie en recherche épidémiologique", "code": { "@type": "MedicalCode", "code": "D015340", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "N06.850.520.445" } } }, "about": { "@type": "MedicalCondition", "name": "Méthode en double aveugle", "alternateName": "Double-Blind Method", "code": { "@type": "MedicalCode", "code": "D004311", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Hiroyoshi Yajima", "url": "https://questionsmedicales.fr/author/Hiroyoshi%20Yajima", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Miho Takayama", "url": "https://questionsmedicales.fr/author/Miho%20Takayama", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Judith M Schlaeger", "url": "https://questionsmedicales.fr/author/Judith%20M%20Schlaeger", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Nobuari Takakura", "url": "https://questionsmedicales.fr/author/Nobuari%20Takakura", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Ted J Kaptchuk", "url": "https://questionsmedicales.fr/author/Ted%20J%20Kaptchuk", "affiliation": { "@type": "Organization", "name": "Program in Placebo Studies, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Enhancing Pressure Injury Surveillance Using Natural Language Processing.", "datePublished": "2023-12-26", "url": "https://questionsmedicales.fr/article/38147064", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1097/PTS.0000000000001193" } }, { "@type": "ScholarlyArticle", "name": "Identification of Preanesthetic History Elements by a Natural Language Processing Engine.", "datePublished": "2022-07-15", "url": "https://questionsmedicales.fr/article/35841317", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1213/ANE.0000000000006152" } }, { "@type": "ScholarlyArticle", "name": "MedLexSp - a medical lexicon for Spanish medical natural language processing.", "datePublished": "2023-02-02", "url": "https://questionsmedicales.fr/article/36732862", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1186/s13326-022-00281-5" } }, { "@type": "ScholarlyArticle", "name": "Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network.", "datePublished": "2023-02-03", "url": "https://questionsmedicales.fr/article/36737471", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1038/s41598-023-27481-y" } }, { "@type": "ScholarlyArticle", "name": "The use of natural language processing in palliative care research: A scoping review.", "datePublished": "2022-12-10", "url": "https://questionsmedicales.fr/article/36495082", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1177/02692163221141969" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Environnement et santé publique", "item": "https://questionsmedicales.fr/mesh/D004778" }, { "@type": "ListItem", "position": 3, "name": "Santé publique", "item": "https://questionsmedicales.fr/mesh/D011634" }, { "@type": "ListItem", "position": 4, "name": "Méthodes épidémiologiques", "item": "https://questionsmedicales.fr/mesh/D004812" }, { "@type": "ListItem", "position": 5, "name": "Méthodologie en recherche épidémiologique", "item": "https://questionsmedicales.fr/mesh/D015340" }, { "@type": "ListItem", "position": 6, "name": "Méthode en double aveugle", "item": "https://questionsmedicales.fr/mesh/D004311" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Méthode en double aveugle - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Méthode en double aveugle", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-09", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Diagnostic", "headline": "Diagnostic sur Méthode en double aveugle", "description": "Comment la méthode en double aveugle aide-t-elle au diagnostic ?\nQuels tests utilisent la méthode en double aveugle ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Natural+Language+Processing&page=3#section-diagnostic" }, { "@type": "MedicalWebPage", "name": "Symptômes", "headline": "Symptômes sur Méthode en double aveugle", "description": "Les symptômes sont-ils évalués en double aveugle ?\nComment les symptômes sont-ils mesurés en double aveugle ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Natural+Language+Processing&page=3#section-symptômes" }, { "@type": "MedicalWebPage", "name": "Prévention", "headline": "Prévention sur Méthode en double aveugle", "description": "La méthode en double aveugle est-elle utilisée en prévention ?\nComment la prévention est-elle testée en double aveugle ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Natural+Language+Processing&page=3#section-prévention" }, { "@type": "MedicalWebPage", "name": "Traitements", "headline": "Traitements sur Méthode en double aveugle", "description": "Quels traitements utilisent souvent la méthode en double aveugle ?\nPourquoi utiliser la méthode en double aveugle pour les traitements ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Natural+Language+Processing&page=3#section-traitements" }, { "@type": "MedicalWebPage", "name": "Complications", "headline": "Complications sur Méthode en double aveugle", "description": "Les complications sont-elles prises en compte en double aveugle ?\nComment les complications sont-elles rapportées ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Natural+Language+Processing&page=3#section-complications" }, { "@type": "MedicalWebPage", "name": "Facteurs de risque", "headline": "Facteurs de risque sur Méthode en double aveugle", "description": "La méthode en double aveugle évalue-t-elle les facteurs de risque ?\nComment les facteurs de risque sont-ils pris en compte ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Natural+Language+Processing&page=3#section-facteurs de risque" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Comment la méthode en double aveugle aide-t-elle au diagnostic ?", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Elle permet d'évaluer l'efficacité d'un traitement sans biais d'observation." } }, { "@type": "Question", "name": "Quels tests utilisent la méthode en double aveugle ?", "position": 2, "acceptedAnswer": { "@type": "Answer", "text": "Des essais cliniques pour tester des médicaments ou des interventions." } }, { "@type": "Question", "name": "Les symptômes sont-ils évalués en double aveugle ?", "position": 3, "acceptedAnswer": { "@type": "Answer", "text": "Oui, cela permet d'éviter que les attentes influencent les rapports de symptômes." } }, { "@type": "Question", "name": "Comment les symptômes sont-ils mesurés en double aveugle ?", "position": 4, "acceptedAnswer": { "@type": "Answer", "text": "Par des échelles standardisées, sans que les évaluateurs sachent le traitement reçu." } }, { "@type": "Question", "name": "La méthode en double aveugle est-elle utilisée en prévention ?", "position": 5, "acceptedAnswer": { "@type": "Answer", "text": "Oui, pour évaluer l'efficacité des vaccins ou des interventions préventives." } }, { "@type": "Question", "name": "Comment la prévention est-elle testée en double aveugle ?", "position": 6, "acceptedAnswer": { "@type": "Answer", "text": "En comparant un groupe recevant le traitement préventif à un groupe placebo." } }, { "@type": "Question", "name": "Quels traitements utilisent souvent la méthode en double aveugle ?", "position": 7, "acceptedAnswer": { "@type": "Answer", "text": "Les essais de nouveaux médicaments, thérapies ou interventions chirurgicales." } }, { "@type": "Question", "name": "Pourquoi utiliser la méthode en double aveugle pour les traitements ?", "position": 8, "acceptedAnswer": { "@type": "Answer", "text": "Pour garantir que les résultats ne soient pas influencés par des attentes ou des biais." } }, { "@type": "Question", "name": "Les complications sont-elles prises en compte en double aveugle ?", "position": 9, "acceptedAnswer": { "@type": "Answer", "text": "Oui, pour évaluer les effets indésirables des traitements sans biais." } }, { "@type": "Question", "name": "Comment les complications sont-elles rapportées ?", "position": 10, "acceptedAnswer": { "@type": "Answer", "text": "Par des rapports standardisés, sans que les évaluateurs sachent le traitement reçu." } }, { "@type": "Question", "name": "La méthode en double aveugle évalue-t-elle les facteurs de risque ?", "position": 11, "acceptedAnswer": { "@type": "Answer", "text": "Indirectement, en contrôlant les variables pour isoler l'effet du traitement." } }, { "@type": "Question", "name": "Comment les facteurs de risque sont-ils pris en compte ?", "position": 12, "acceptedAnswer": { "@type": "Answer", "text": "En randomisant les participants pour équilibrer les caractéristiques entre groupes." } } ] } ] }

Sources (10000 au total)

Enhancing Pressure Injury Surveillance Using Natural Language Processing.

This study assessed the feasibility of nursing handoff notes to identify underreported hospital-acquired pressure injury (HAPI) events.... We have established a natural language processing-assisted manual review process and workflow for data extraction from a corpus of nursing notes across all medical inpatient and intensive care units i... Our initial corpus involved 70,981 notes during a 1-year period from 5484 unique admissions for 4220 patients. Our interrater human reviewer agreement on identifying HAPI was high ( κ = 0.67; 95% conf... Natural language processing-based surveillance is proven to be feasible and high yield using nursing handoff notes....

Identification of Preanesthetic History Elements by a Natural Language Processing Engine.

Methods that can automate, support, and streamline the preanesthesia evaluation process may improve resource utilization and efficiency. Natural language processing (NLP) involves the extraction of re... For each patient, we collected all pertinent notes from the institution's electronic medical record that were available no later than 1 day before their preoperative anesthesia clinic appointment. Per... A total of 93 patients were included in the NLP pipeline input. Free-text notes were extracted from the electronic medical record of these patients for a total of 9765 notes. The NLP pipeline and anes... In this proof-of-concept study, we demonstrated that utilization of NLP produced an output that identified medical conditions relevant to preanesthetic evaluation from unstructured free-text input. Au...

MedLexSp - a medical lexicon for Spanish medical natural language processing.

Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, le... This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language... The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record ...

The use of natural language processing in palliative care research: A scoping review.

Natural language processing has been increasingly used in palliative care research over the last 5 years for its versatility and accuracy.... To evaluate and characterize natural language processing use in palliative care research, including the most commonly used natural language processing software and computational methods, data sources,... A scoping review using the framework by Arksey and O'Malley and the updated recommendations proposed by Levac et al. was conducted.... PubMed, Web of Science, Embase, Scopus, and IEEE Xplore databases were searched for palliative care studies that utilized natural language processing tools. Data on study characteristics and natural l... 197 relevant references were identified. Of these, 82 were included after full-text review. Studies were published in 48 different journals from 2007 to 2022. The average sample size was 21,541 (media... We found 82 papers on palliative care using natural language processing methods for a wide-range of topics and sources of data that could expand the use of this methodology. We encourage researchers t...

A Narrative Literature Review of Natural Language Processing Applied to the Occupational Exposome.

The evolution of the Exposome concept revolutionised the research in exposure assessment and epidemiology by introducing the need for a more holistic approach on the exploration of the relationship be... We conduct a literature search on PubMed, Scopus and Web of Science for scientific articles published between 2011 and 2021. We use both quantitative and qualitative methods to screen papers and provi... Overall, 6420 articles were screened for the suitability of this review, where we review 37 articles in depth. Finally, we discuss future avenues of research and outline challenges in existing work.... Our results show that (i) there has been an increase in articles published that focus on applying NLP to exposure and epidemiology research, (ii) most work uses existing NLP tools and (iii) traditiona...

Natural language processing augments comorbidity documentation in neurosurgical inpatient admissions.

To establish whether or not a natural language processing technique could identify two common inpatient neurosurgical comorbidities using only text reports of inpatient head imaging.... A training and testing dataset of reports of 979 CT or MRI scans of the brain for patients admitted to the neurosurgery service of a single hospital in June 2021 or to the Emergency Department between... For "brain compression", a random forest classifier outperformed other candidate algorithms with an accuracy of 0.81 and area under the curve of 0.90 in the testing dataset. For "brain edema", a rando... A natural language processing-based machine learning algorithm can reliably and reproducibly identify selected common neurosurgical comorbidities from radiology reports.... This result may justify the use of machine learning-based decision support to augment provider documentation....