Titre : Voyage

Voyage : Questions médicales fréquentes

Termes MeSH sélectionnés :

Natural Language Processing
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Voyage : Questions médicales les plus fréquentes", "headline": "Voyage : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Voyage : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-02-02", "dateModified": "2025-04-27", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Voyage" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Activités humaines", "url": "https://questionsmedicales.fr/mesh/D006802", "about": { "@type": "MedicalCondition", "name": "Activités humaines", "code": { "@type": "MedicalCode", "code": "D006802", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "I03" } } }, "hasPart": [ { "@type": "MedicalWebPage", "name": "Voyage aérien", "alternateName": "Air Travel", "url": "https://questionsmedicales.fr/mesh/D064870", "about": { "@type": "MedicalCondition", "name": "Voyage aérien", "code": { "@type": "MedicalCode", "code": "D064870", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "I03.883.209" } } }, { "@type": "MedicalWebPage", "name": "Expéditions", "alternateName": "Expeditions", "url": "https://questionsmedicales.fr/mesh/D005101", "about": { "@type": "MedicalCondition", "name": "Expéditions", "code": { "@type": "MedicalCode", "code": "D005101", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "I03.883.532" } } }, { "@type": "MedicalWebPage", "name": "Tourisme", "alternateName": "Tourism", "url": "https://questionsmedicales.fr/mesh/D000085926", "about": { "@type": "MedicalCondition", "name": "Tourisme", "code": { "@type": "MedicalCode", "code": "D000085926", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "I03.883.694" } } }, { "@type": "MedicalWebPage", "name": "Maladie liée aux voyages", "alternateName": "Travel-Related Illness", "url": "https://questionsmedicales.fr/mesh/D000076082", "about": { "@type": "MedicalCondition", "name": "Maladie liée aux voyages", "code": { "@type": "MedicalCode", "code": "D000076082", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "I03.883.855" } }, "hasPart": [ { "@type": "MedicalWebPage", "name": "Syndrome du décalage horaire", "alternateName": "Jet Lag Syndrome", "url": "https://questionsmedicales.fr/mesh/D020179", "about": { "@type": "MedicalCondition", "name": "Syndrome du décalage horaire", "code": { "@type": "MedicalCode", "code": "D020179", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "I03.883.855.500" } } } ] } ], "about": { "@type": "MedicalCondition", "name": "Voyage", "alternateName": "Travel", "code": { "@type": "MedicalCode", "code": "D014195", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Krzysztof Korzeniewski", "url": "https://questionsmedicales.fr/author/Krzysztof%20Korzeniewski", "affiliation": { "@type": "Organization", "name": "Department of Epidemiology and Tropical Medicine; Military Institute of Medicine, Warsaw, Poland. kkorzeniewski@wim.mil.pl." } }, { "@type": "Person", "name": "Lin H Chen", "url": "https://questionsmedicales.fr/author/Lin%20H%20Chen", "affiliation": { "@type": "Organization", "name": "Division of Infectious Diseases and Travel Medicine, Mount Auburn Hospital, Cambridge, MA USA." } }, { "@type": "Person", "name": "Gerard T Flaherty", "url": "https://questionsmedicales.fr/author/Gerard%20T%20Flaherty", "affiliation": { "@type": "Organization", "name": "School of Medicine, National University of Ireland, Galway, Ireland." } }, { "@type": "Person", "name": "Christoph Lübbert", "url": "https://questionsmedicales.fr/author/Christoph%20L%C3%BCbbert", "affiliation": { "@type": "Organization", "name": "Medizinische Klinik II (Bereich Infektiologie und Tropenmedizin) des Universitätsklinikums Leipzig." } }, { "@type": "Person", "name": "Watcharapong Piyaphanee", "url": "https://questionsmedicales.fr/author/Watcharapong%20Piyaphanee", "affiliation": { "@type": "Organization", "name": "Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Natural Language Processing for Automated Classification of Qualitative Data From Interviews of Patients With Cancer.", "datePublished": "2022-07-12", "url": "https://questionsmedicales.fr/article/35840523", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.jval.2022.06.004" } }, { "@type": "ScholarlyArticle", "name": "The Use of Natural Language Processing Methods in Reddit to Investigate Opioid Use: Scoping Review.", "datePublished": "2024-09-13", "url": "https://questionsmedicales.fr/article/39269743", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.2196/51156" } }, { "@type": "ScholarlyArticle", "name": "Generalizability and portability of natural language processing system to extract individual social risk factors.", "datePublished": "2023-06-05", "url": "https://questionsmedicales.fr/article/37302362", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.ijmedinf.2023.105115" } }, { "@type": "ScholarlyArticle", "name": "Long-term epilepsy outcome dynamics revealed by natural language processing of clinic notes.", "datePublished": "2023-05-10", "url": "https://questionsmedicales.fr/article/37114472", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1111/epi.17633" } }, { "@type": "ScholarlyArticle", "name": "Classifying Firearm Injury Intent in Electronic Hospital Records Using Natural Language Processing.", "datePublished": "2023-04-03", "url": "https://questionsmedicales.fr/article/37022685", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1001/jamanetworkopen.2023.5870" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Activités humaines", "item": "https://questionsmedicales.fr/mesh/D006802" }, { "@type": "ListItem", "position": 3, "name": "Voyage", "item": "https://questionsmedicales.fr/mesh/D014195" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Voyage - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Voyage", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-17", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Diagnostic", "headline": "Diagnostic sur Voyage", "description": "Comment diagnostiquer le paludisme chez un voyageur ?\nQuels tests pour la dengue après un voyage ?\nComment identifier une infection à Zika ?\nQuels signes indiquent une infection alimentaire ?\nComment diagnostiquer le choléra ?", "url": "https://questionsmedicales.fr/mesh/D014195?mesh_terms=Natural+Language+Processing&page=8#section-diagnostic" }, { "@type": "MedicalWebPage", "name": "Symptômes", "headline": "Symptômes sur Voyage", "description": "Quels symptômes du paludisme à surveiller ?\nQuels signes de la dengue sont préoccupants ?\nQuels symptômes de l'infection à Zika ?\nQuels symptômes d'une infection alimentaire ?\nQuels signes indiquent le choléra ?", "url": "https://questionsmedicales.fr/mesh/D014195?mesh_terms=Natural+Language+Processing&page=8#section-symptômes" }, { "@type": "MedicalWebPage", "name": "Prévention", "headline": "Prévention sur Voyage", "description": "Comment prévenir le paludisme en voyage ?\nQuelles mesures pour éviter la dengue ?\nComment se protéger contre le virus Zika ?\nQuelles précautions pour éviter les infections alimentaires ?\nComment prévenir le choléra ?", "url": "https://questionsmedicales.fr/mesh/D014195?mesh_terms=Natural+Language+Processing&page=8#section-prévention" }, { "@type": "MedicalWebPage", "name": "Traitements", "headline": "Traitements sur Voyage", "description": "Quel traitement pour le paludisme ?\nComment traiter la dengue ?\nQuel traitement pour l'infection à Zika ?\nComment traiter une infection alimentaire ?\nQuel traitement pour le choléra ?", "url": "https://questionsmedicales.fr/mesh/D014195?mesh_terms=Natural+Language+Processing&page=8#section-traitements" }, { "@type": "MedicalWebPage", "name": "Complications", "headline": "Complications sur Voyage", "description": "Quelles complications du paludisme ?\nQuelles complications de la dengue ?\nQuelles complications de l'infection à Zika ?\nQuelles complications des infections alimentaires ?\nQuelles complications du choléra ?", "url": "https://questionsmedicales.fr/mesh/D014195?mesh_terms=Natural+Language+Processing&page=8#section-complications" }, { "@type": "MedicalWebPage", "name": "Facteurs de risque", "headline": "Facteurs de risque sur Voyage", "description": "Quels sont les facteurs de risque du paludisme ?\nQuels facteurs augmentent le risque de dengue ?\nQuels facteurs de risque pour le virus Zika ?\nQuels facteurs de risque pour les infections alimentaires ?\nQuels facteurs de risque pour le choléra ?", "url": "https://questionsmedicales.fr/mesh/D014195?mesh_terms=Natural+Language+Processing&page=8#section-facteurs de risque" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Comment diagnostiquer le paludisme chez un voyageur ?", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Un diagnostic de paludisme se fait par un test sanguin pour détecter le parasite." } }, { "@type": "Question", "name": "Quels tests pour la dengue après un voyage ?", "position": 2, "acceptedAnswer": { "@type": "Answer", "text": "Un test sérologique ou PCR peut confirmer une infection par le virus de la dengue." } }, { "@type": "Question", "name": "Comment identifier une infection à Zika ?", "position": 3, "acceptedAnswer": { "@type": "Answer", "text": "Un test sanguin ou urinaire peut détecter le virus Zika après exposition." } }, { "@type": "Question", "name": "Quels signes indiquent une infection alimentaire ?", "position": 4, "acceptedAnswer": { "@type": "Answer", "text": "Des symptômes comme des vomissements, diarrhée et douleurs abdominales peuvent indiquer une infection." } }, { "@type": "Question", "name": "Comment diagnostiquer le choléra ?", "position": 5, "acceptedAnswer": { "@type": "Answer", "text": "Le choléra est diagnostiqué par l'isolement de Vibrio cholerae dans les selles." } }, { "@type": "Question", "name": "Quels symptômes du paludisme à surveiller ?", "position": 6, "acceptedAnswer": { "@type": "Answer", "text": "Fièvre, frissons, sueurs, maux de tête et douleurs musculaires sont des symptômes clés." } }, { "@type": "Question", "name": "Quels signes de la dengue sont préoccupants ?", "position": 7, "acceptedAnswer": { "@type": "Answer", "text": "Fièvre élevée, douleurs articulaires, éruptions cutanées et saignements peuvent survenir." } }, { "@type": "Question", "name": "Quels symptômes de l'infection à Zika ?", "position": 8, "acceptedAnswer": { "@type": "Answer", "text": "Fièvre, éruptions cutanées, douleurs articulaires et conjonctivite sont fréquents." } }, { "@type": "Question", "name": "Quels symptômes d'une infection alimentaire ?", "position": 9, "acceptedAnswer": { "@type": "Answer", "text": "Les symptômes incluent nausées, vomissements, diarrhée et douleurs abdominales." } }, { "@type": "Question", "name": "Quels signes indiquent le choléra ?", "position": 10, "acceptedAnswer": { "@type": "Answer", "text": "Diarrhée aqueuse sévère, déshydratation rapide et crampes abdominales sont typiques." } }, { "@type": "Question", "name": "Comment prévenir le paludisme en voyage ?", "position": 11, "acceptedAnswer": { "@type": "Answer", "text": "Utilisez des moustiquaires, des répulsifs et prenez des antipaludiques en prévention." } }, { "@type": "Question", "name": "Quelles mesures pour éviter la dengue ?", "position": 12, "acceptedAnswer": { "@type": "Answer", "text": "Évitez les piqûres de moustiques, portez des vêtements longs et utilisez des répulsifs." } }, { "@type": "Question", "name": "Comment se protéger contre le virus Zika ?", "position": 13, "acceptedAnswer": { "@type": "Answer", "text": "Évitez les moustiques, portez des vêtements protecteurs et utilisez des répulsifs." } }, { "@type": "Question", "name": "Quelles précautions pour éviter les infections alimentaires ?", "position": 14, "acceptedAnswer": { "@type": "Answer", "text": "Mangez des aliments bien cuits, évitez l'eau non traitée et lavez les fruits." } }, { "@type": "Question", "name": "Comment prévenir le choléra ?", "position": 15, "acceptedAnswer": { "@type": "Answer", "text": "Buvez de l'eau potable, lavez-vous les mains et évitez les aliments crus dans les zones à risque." } }, { "@type": "Question", "name": "Quel traitement pour le paludisme ?", "position": 16, "acceptedAnswer": { "@type": "Answer", "text": "Le traitement du paludisme inclut des antipaludiques comme la chloroquine ou l'artémisinine." } }, { "@type": "Question", "name": "Comment traiter la dengue ?", "position": 17, "acceptedAnswer": { "@type": "Answer", "text": "Il n'existe pas de traitement spécifique ; le repos et l'hydratation sont essentiels." } }, { "@type": "Question", "name": "Quel traitement pour l'infection à Zika ?", "position": 18, "acceptedAnswer": { "@type": "Answer", "text": "Le traitement est symptomatique, avec repos, hydratation et médicaments pour la douleur." } }, { "@type": "Question", "name": "Comment traiter une infection alimentaire ?", "position": 19, "acceptedAnswer": { "@type": "Answer", "text": "Le traitement inclut l'hydratation et, si nécessaire, des antibiotiques pour les cas graves." } }, { "@type": "Question", "name": "Quel traitement pour le choléra ?", "position": 20, "acceptedAnswer": { "@type": "Answer", "text": "Le choléra nécessite une réhydratation rapide et des antibiotiques dans les cas sévères." } }, { "@type": "Question", "name": "Quelles complications du paludisme ?", "position": 21, "acceptedAnswer": { "@type": "Answer", "text": "Les complications incluent l'anémie, l'insuffisance rénale et le coma dans les cas graves." } }, { "@type": "Question", "name": "Quelles complications de la dengue ?", "position": 22, "acceptedAnswer": { "@type": "Answer", "text": "La dengue peut entraîner des hémorragies, un choc et des défaillances organiques." } }, { "@type": "Question", "name": "Quelles complications de l'infection à Zika ?", "position": 23, "acceptedAnswer": { "@type": "Answer", "text": "Le Zika peut causer des malformations congénitales et des troubles neurologiques." } }, { "@type": "Question", "name": "Quelles complications des infections alimentaires ?", "position": 24, "acceptedAnswer": { "@type": "Answer", "text": "Des complications peuvent inclure la déshydratation sévère et des infections systémiques." } }, { "@type": "Question", "name": "Quelles complications du choléra ?", "position": 25, "acceptedAnswer": { "@type": "Answer", "text": "Le choléra peut entraîner une déshydratation sévère, un choc hypovolémique et la mort." } }, { "@type": "Question", "name": "Quels sont les facteurs de risque du paludisme ?", "position": 26, "acceptedAnswer": { "@type": "Answer", "text": "Les facteurs incluent le voyage dans des zones endémiques et l'absence de prophylaxie." } }, { "@type": "Question", "name": "Quels facteurs augmentent le risque de dengue ?", "position": 27, "acceptedAnswer": { "@type": "Answer", "text": "Vivre ou voyager dans des zones tropicales et la présence de moustiques Aedes sont des risques." } }, { "@type": "Question", "name": "Quels facteurs de risque pour le virus Zika ?", "position": 28, "acceptedAnswer": { "@type": "Answer", "text": "Voyager dans des zones infectées et le contact avec des moustiques sont des facteurs clés." } }, { "@type": "Question", "name": "Quels facteurs de risque pour les infections alimentaires ?", "position": 29, "acceptedAnswer": { "@type": "Answer", "text": "Manger dans des lieux non hygiéniques et consommer de l'eau contaminée augmentent le risque." } }, { "@type": "Question", "name": "Quels facteurs de risque pour le choléra ?", "position": 30, "acceptedAnswer": { "@type": "Answer", "text": "Voyager dans des zones à risque, consommer de l'eau non potable et des aliments crus sont des risques." } } ] } ] }

Sources (10000 au total)

Natural Language Processing for Automated Classification of Qualitative Data From Interviews of Patients With Cancer.

This study sought to explore the use of novel natural language processing (NLP) methods for classifying unstructured, qualitative textual data from interviews of patients with cancer to identify patie... We tested the ability of 4 NLP models to accurately classify text from interview transcripts as "symptom," "quality of life impact," and "other." Interview data sets from patients with hepatocellular ... NLP models accurately classified multiclass text from patient interviews. The Bidirectional Encoder Representations from Transformers model generally outperformed all other models at paragraph and sen... NLP models were accurate in predicting multiclass classification of text from interviews of patients with cancer, with most surpassing 0.9 ROC AUC at paragraph level. NLP may be a useful tool for scal...

The Use of Natural Language Processing Methods in Reddit to Investigate Opioid Use: Scoping Review.

The growing availability of big data spontaneously generated by social media platforms allows us to leverage natural language processing (NLP) methods as valuable tools to understand the opioid crisis... We aimed to understand how NLP has been applied to Reddit (Reddit Inc) data to study opioid use.... We systematically searched for peer-reviewed studies and conference abstracts in PubMed, Scopus, PsycINFO, ACL Anthology, IEEE Xplore, and Association for Computing Machinery data repositories up to J... In total, 30 studies were included, which were classified into 4 nonmutually exclusive overarching goal categories: methodological (n=6, 20% studies), infodemiology (n=22, 73% studies), infoveillance ... This scoping review identified a wide variety of NLP techniques and applications used to support surveillance and social media interventions addressing the opioid crisis. Despite the clear potential o...

Generalizability and portability of natural language processing system to extract individual social risk factors.

The objective of this study is to validate and report on portability and generalizability of a Natural Language Processing (NLP) method to extract individual social factors from clinical notes, which ... A rule-based deterministic state machine NLP model was developed to extract financial insecurity and housing instability using notes from one institution and was applied on all notes written during 6 ... More than 6 million notes were processed at the receiving site by the NLP model, which resulted in about 13,000 and 19,000 classified as positive for financial insecurity and housing instability, resp... Our study illustrated the need to accommodate institution-specific note-writing templates as well as clinical terminology of emergent diseases when applying NLP model for social factors. A state machi... Rule-based NLP model to extract social factors from clinical notes showed strong portability and generalizability across organizationally and geographically distinct institutions. With only relatively...

Long-term epilepsy outcome dynamics revealed by natural language processing of clinic notes.

Electronic medical records allow for retrospective clinical research with large patient cohorts. However, epilepsy outcomes are often contained in free text notes that are difficult to mine. We recent... We applied our previously validated NLP algorithms to extract seizure freedom, seizure frequency, and date of most recent seizure from outpatient visits at our epilepsy center from 2010 to 2022. We ex... Performance of our algorithms on classifying seizure freedom was comparable to that of human reviewers (algorithm F... Our findings demonstrate that epilepsy outcome measures can be extracted accurately from unstructured clinical note text using NLP. At our tertiary center, the disease course often followed a remittin...

Classifying Firearm Injury Intent in Electronic Hospital Records Using Natural Language Processing.

International Classification of Diseases-coded hospital discharge data do not accurately reflect whether firearm injuries were caused by assault, unintentional injury, self-harm, legal intervention, o... To assess the accuracy with which an ML model identified firearm injury intent.... A cross-sectional retrospective EHR review was conducted at 3 level I trauma centers, 2 from health care institutions in Boston, Massachusetts, and 1 from Seattle, Washington, between January 1, 2000,... Classification of firearm injury intent.... Intent classification accuracy by the NLP model was compared with ICD codes assigned by medical record coders in discharge data. The NLP model extracted intent-relevant features from narrative text th... The NLP model was evaluated in 381 patients presenting with firearm injury at the model development site (mean [SD] age, 39.2 [13.0] years; 348 [91.3%] men) and 304 patients at the external developmen... The findings of this study suggest that NLP ML can be used to improve the accuracy of firearm injury intent classification compared with ICD-coded discharge data, particularly for cases of accident an...

Classifying literature mentions of biological pathogens as experimentally studied using natural language processing.

Information pertaining to mechanisms, management and treatment of disease-causing pathogens including viruses and bacteria is readily available from research publications indexed in MEDLINE. However, ... In this work, we lay the foundations for the development of automatic methods for characterising mentions of pathogens in scientific literature, focusing on the task of identifying research that invol... We developed a pathogen mention characterisation literature data set -READBiomed-Pathogens- automatically using NCBI resources, which we make available. Resources such as the NCBI Taxonomy, MeSH and G... We show that our data set READBiomed-Pathogens can be used to explore natural language processing configurations for experimental pathogen mention characterisation. READBiomed-Pathogens includes citat... We studied the characterisation of experimentally studied pathogens in scientific literature, developing several natural language processing methods supported by an automatically developed data set. A... N/A....

Analysis of addiction craving onset through natural language processing of the online forum Reddit.

Alcohol cravings are considered a major factor in relapse among individuals with alcohol use disorder (AUD). This study aims to investigate the frequency and triggers of cravings in the daily lives of... For the analysis, posts from the online forum "stopdrinking" on the Reddit platform were used as the dataset from April 2017 to April 2022. The posts were filtered for craving content and processed us... Approximately 16% of the forum posts discuss cravings. The number of craving-related posts decreases exponentially with the number of days since the author's last alcoholic drink. The topic model conf... This exploratory approach is the first to analyze alcohol cravings in the daily lives of over 24,000 individuals, providing a foundation for further AI-based craving analyses. The analysis confirms co...

Public discourse and sentiment during Mpox outbreak: an analysis using natural language processing.

Mpox has been declared a Public Health Emergency of International Concern by the World Health Organization on July 23, 2022. Since early May 2022, Mpox has been continuously reported in several endemi... This was a detailed qualitative study using natural language processing on the user-generated comments from social media.... A detailed analysis using topic modeling and sentiment analysis on Reddit comments (n = 289,073) that were posted between June 1 and August 5, 2022, was conducted. While the topic modeling was used to... The results revealed several interesting and useful themes, such as Mpox symptoms, Mpox transmission, international travel, government interventions, and homophobia from the user-generated contents. T... Analyzing public discourse and sentiments toward health emergencies and disease outbreaks is highly important. The insights that could be leveraged from the user-generated comments from public forums ...

Comparison of Chest Radiograph Captions Based on Natural Language Processing vs Completed by Radiologists.

Artificial intelligence (AI) can interpret abnormal signs in chest radiography (CXR) and generate captions, but a prospective study is needed to examine its practical value.... To prospectively compare natural language processing (NLP)-generated CXR captions and the diagnostic findings of radiologists.... A multicenter diagnostic study was conducted. The training data set included CXR images and reports retrospectively collected from February 1, 2014, to February 28, 2018. The retrospective test data s... A bidirectional encoder representation from a transformers model was used to extract language entities and relationships from unstructured CXR reports to establish 23 labels of abnormal signs to train... Time to write reports based on different caption generation models.... The training data set consisted of 74 082 cases (39 254 [53.0%] women; mean [SD] age, 50.0 [17.1] years). In the retrospective (n = 8126; 4345 [53.5%] women; mean [SD] age, 47.9 [15.9] years) and pros... In this diagnostic study of NLP-generated CXR captions, prior information provided by NLP was associated with greater efficiency in the reporting process, while maintaining good consistency with the f...