Comment identifier un modèle économétrique approprié ?
Il faut analyser la nature des données et les relations entre les variables.
Modèles économétriquesAnalyse de données
#2
Quels tests sont utilisés pour valider un modèle ?
Des tests comme le test de normalité, le test de multicolinéarité et le test de spécification.
Tests statistiquesValidité du modèle
#3
Qu'est-ce qu'un modèle de régression ?
C'est un modèle qui établit une relation entre une variable dépendante et une ou plusieurs variables indépendantes.
RégressionAnalyse de régression
#4
Comment évaluer la performance d'un modèle ?
On utilise des indicateurs comme le R², l'erreur quadratique moyenne et le test de Fisher.
Évaluation de modèleR²
#5
Qu'est-ce qu'un modèle à variables instrumentales ?
C'est un modèle utilisé pour corriger les biais d'endogénéité en utilisant des variables externes.
Variables instrumentalesEndogénéité
Symptômes
5
#1
Quels sont les signes d'un modèle mal spécifié ?
Des résidus non aléatoires, des valeurs aberrantes et des relations non linéaires.
Modèle mal spécifiéRésidus
#2
Comment détecter l'hétéroscédasticité ?
En utilisant des tests comme le test de Breusch-Pagan ou en observant les résidus.
HétéroscédasticitéTests de Breusch-Pagan
#3
Quels effets peut avoir la multicolinéarité ?
Elle peut rendre les estimations des coefficients instables et difficiles à interpréter.
MulticolinéaritéEstimation des coefficients
#4
Qu'est-ce qu'un biais d'échantillonnage ?
C'est une erreur systématique due à un échantillon non représentatif de la population.
Biais d'échantillonnageÉchantillonnage
#5
Quels sont les signes d'une autocorrélation ?
Des résidus corrélés dans le temps, souvent détectés par le test de Durbin-Watson.
AutocorrélationTest de Durbin-Watson
Prévention
5
#1
Comment éviter les biais dans les modèles ?
En s'assurant que l'échantillon est représentatif et en utilisant des méthodes de validation.
BiaisValidation de modèle
#2
Quelles pratiques pour une bonne collecte de données ?
Utiliser des protocoles standardisés et s'assurer de la qualité et de la fiabilité des données.
Collecte de donnéesQualité des données
#3
Comment choisir les bonnes variables ?
En se basant sur la théorie, des études antérieures et des tests de significativité.
Sélection de variablesSignificativité
#4
Quelles sont les bonnes pratiques de modélisation ?
Utiliser des diagnostics appropriés, tester les hypothèses et valider le modèle sur des données nouvelles.
Pratiques de modélisationDiagnostics
#5
Comment éviter le surajustement ?
En utilisant des techniques de validation croisée et en limitant la complexité du modèle.
SurajustementValidation croisée
Traitements
5
#1
Comment corriger l'hétéroscédasticité ?
En utilisant des transformations de données ou des modèles de régression robustes.
HétéroscédasticitéRégression robuste
#2
Quelles méthodes pour traiter la multicolinéarité ?
On peut utiliser la sélection de variables, la régularisation ou l'analyse en composantes principales.
MulticolinéaritéAnalyse en composantes principales
#3
Comment améliorer un modèle économétrique ?
En ajoutant des variables pertinentes, en transformant les données ou en utilisant des modèles non linéaires.
Amélioration de modèleModèles non linéaires
#4
Qu'est-ce que la régularisation ?
C'est une technique pour prévenir le surajustement en ajoutant une pénalité aux coefficients.
RégularisationSurajustement
#5
Comment utiliser des modèles de séries temporelles ?
Pour analyser des données chronologiques et prévoir des tendances futures à l'aide de lissage.
Séries temporellesPrévision
Complications
5
#1
Quelles sont les conséquences d'un modèle mal spécifié ?
Des prévisions inexactes, des décisions erronées et une mauvaise interprétation des résultats.
Modèle mal spécifiéPrévisions inexactes
#2
Quels risques d'une autocorrélation non traitée ?
Elle peut conduire à des estimations biaisées et à des tests statistiques non fiables.
AutocorrélationEstimation biaisée
#3
Comment la multicolinéarité affecte-t-elle les résultats ?
Elle rend difficile l'évaluation de l'impact individuel des variables sur la variable dépendante.
MulticolinéaritéImpact des variables
#4
Quelles erreurs peuvent survenir dans l'interprétation des résultats ?
Des conclusions hâtives, des généralisations inappropriées et des politiques mal orientées.
Interprétation des résultatsErreurs d'interprétation
#5
Quels effets d'un échantillonnage biaisé ?
Il peut fausser les résultats et mener à des recommandations inappropriées.
Échantillonnage biaiséRecommandations
Facteurs de risque
5
#1
Quels facteurs influencent la sélection des variables ?
La théorie économique, la disponibilité des données et les objectifs de recherche.
Sélection de variablesThéorie économique
#2
Comment la taille de l'échantillon affecte-t-elle les résultats ?
Un échantillon trop petit peut entraîner des estimations instables et des biais.
Taille de l'échantillonEstimations instables
#3
Quels sont les risques d'une mauvaise collecte de données ?
Des données inexactes peuvent fausser les résultats et compromettre la validité du modèle.
Collecte de donnéesValidité du modèle
#4
Comment les variables omises affectent-elles le modèle ?
Elles peuvent introduire un biais et fausser les relations estimées entre les variables.
Variables omisesBiais
#5
Quels sont les impacts d'une mauvaise spécification du modèle ?
Des prévisions erronées et des décisions basées sur des analyses incorrectes.
Mauvaise spécificationPrévisions erronées
{
"@context": "https://schema.org",
"@graph": [
{
"@type": "MedicalWebPage",
"name": "Modèles économétriques : Questions médicales les plus fréquentes",
"headline": "Modèles économétriques : Comprendre les symptômes, diagnostics et traitements",
"description": "Guide complet et accessible sur les Modèles économétriques : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.",
"datePublished": "2024-05-22",
"dateModified": "2025-02-16",
"inLanguage": "fr",
"medicalAudience": [
{
"@type": "MedicalAudience",
"name": "Grand public",
"audienceType": "Patient",
"healthCondition": {
"@type": "MedicalCondition",
"name": "Modèles économétriques"
},
"suggestedMinAge": 18,
"suggestedGender": "unisex"
},
{
"@type": "MedicalAudience",
"name": "Médecins",
"audienceType": "Physician",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "France"
}
},
{
"@type": "MedicalAudience",
"name": "Chercheurs",
"audienceType": "Researcher",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "International"
}
}
],
"reviewedBy": {
"@type": "Person",
"name": "Dr Olivier Menir",
"jobTitle": "Expert en Médecine",
"description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale",
"url": "/static/pages/docteur-olivier-menir.html",
"alumniOf": {
"@type": "EducationalOrganization",
"name": "Université Paris Descartes"
}
},
"isPartOf": {
"@type": "MedicalWebPage",
"name": "Modèles économiques",
"url": "https://questionsmedicales.fr/mesh/D018803",
"about": {
"@type": "MedicalCondition",
"name": "Modèles économiques",
"code": {
"@type": "MedicalCode",
"code": "D018803",
"codingSystem": "MeSH"
},
"identifier": {
"@type": "PropertyValue",
"propertyID": "MeSH Tree",
"value": "N06.850.520.830.500.600"
}
}
},
"about": {
"@type": "MedicalCondition",
"name": "Modèles économétriques",
"alternateName": "Models, Econometric",
"code": {
"@type": "MedicalCode",
"code": "D017059",
"codingSystem": "MeSH"
}
},
"author": [
{
"@type": "Person",
"name": "James Heckman",
"url": "https://questionsmedicales.fr/author/James%20Heckman",
"affiliation": {
"@type": "Organization",
"name": "The University of Chicago, Department of Economics, 1126 E. 59 St., Chicago, IL 60637."
}
},
{
"@type": "Person",
"name": "Rodrigo Pinto",
"url": "https://questionsmedicales.fr/author/Rodrigo%20Pinto",
"affiliation": {
"@type": "Organization",
"name": "University of California at Los Angeles, Department of Economics, 315 Portola Plaza, Room 8385, Los Angeles, CA 90095."
}
},
{
"@type": "Person",
"name": "Tamás Krisztin",
"url": "https://questionsmedicales.fr/author/Tam%C3%A1s%20Krisztin",
"affiliation": {
"@type": "Organization",
"name": "International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria."
}
},
{
"@type": "Person",
"name": "Philipp Piribauer",
"url": "https://questionsmedicales.fr/author/Philipp%20Piribauer",
"affiliation": {
"@type": "Organization",
"name": "Austrian Institute of Economic Research (WIFO) Vienna Austria."
}
},
{
"@type": "Person",
"name": "Gagan Deep Sharma",
"url": "https://questionsmedicales.fr/author/Gagan%20Deep%20Sharma",
"affiliation": {
"@type": "Organization",
"name": "University School of Management Studies, Guru Gobind Singh Indraprastha University, New Delhi-110078, India."
}
}
],
"citation": [
{
"@type": "ScholarlyArticle",
"name": "Econometric model of iron ore through principal component analysis and multiple linear regression.",
"datePublished": "2023-05-08",
"url": "https://questionsmedicales.fr/article/37162083",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1590/0001-3765202320211422"
}
},
{
"@type": "ScholarlyArticle",
"name": "Analysis on the Influence of Industrial Structure on Energy Efficiency in China: Based on the Spatial Econometric Model.",
"datePublished": "2023-01-24",
"url": "https://questionsmedicales.fr/article/36767501",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.3390/ijerph20032134"
}
},
{
"@type": "ScholarlyArticle",
"name": "China's experience in developing green finance to reduce carbon emissions: from spatial econometric model evidence.",
"datePublished": "2022-09-28",
"url": "https://questionsmedicales.fr/article/36169832",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1007/s11356-022-23246-8"
}
},
{
"@type": "ScholarlyArticle",
"name": "Does Human Capital Matter for China's Green Growth?-Examination Based on Econometric Model and Machine Learning Methods.",
"datePublished": "2022-09-09",
"url": "https://questionsmedicales.fr/article/36141620",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.3390/ijerph191811347"
}
},
{
"@type": "ScholarlyArticle",
"name": "Role of scientific and technological innovations on industrial upgradation in China: A spatial econometric analysis.",
"datePublished": "2024-05-30",
"url": "https://questionsmedicales.fr/article/38814955",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1371/journal.pone.0304344"
}
}
],
"breadcrumb": {
"@type": "BreadcrumbList",
"itemListElement": [
{
"@type": "ListItem",
"position": 1,
"name": "questionsmedicales.fr",
"item": "https://questionsmedicales.fr"
},
{
"@type": "ListItem",
"position": 2,
"name": "Environnement et santé publique",
"item": "https://questionsmedicales.fr/mesh/D004778"
},
{
"@type": "ListItem",
"position": 3,
"name": "Santé publique",
"item": "https://questionsmedicales.fr/mesh/D011634"
},
{
"@type": "ListItem",
"position": 4,
"name": "Méthodes épidémiologiques",
"item": "https://questionsmedicales.fr/mesh/D004812"
},
{
"@type": "ListItem",
"position": 5,
"name": "Statistiques comme sujet",
"item": "https://questionsmedicales.fr/mesh/D013223"
},
{
"@type": "ListItem",
"position": 6,
"name": "Modèles statistiques",
"item": "https://questionsmedicales.fr/mesh/D015233"
},
{
"@type": "ListItem",
"position": 7,
"name": "Modèles économiques",
"item": "https://questionsmedicales.fr/mesh/D018803"
},
{
"@type": "ListItem",
"position": 8,
"name": "Modèles économétriques",
"item": "https://questionsmedicales.fr/mesh/D017059"
}
]
}
},
{
"@type": "MedicalWebPage",
"name": "Article complet : Modèles économétriques - Questions et réponses",
"headline": "Questions et réponses médicales fréquentes sur Modèles économétriques",
"description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.",
"datePublished": "2025-04-29",
"inLanguage": "fr",
"hasPart": [
{
"@type": "MedicalWebPage",
"name": "Diagnostic",
"headline": "Diagnostic sur Modèles économétriques",
"description": "Comment identifier un modèle économétrique approprié ?\nQuels tests sont utilisés pour valider un modèle ?\nQu'est-ce qu'un modèle de régression ?\nComment évaluer la performance d'un modèle ?\nQu'est-ce qu'un modèle à variables instrumentales ?",
"url": "https://questionsmedicales.fr/mesh/D017059#section-diagnostic"
},
{
"@type": "MedicalWebPage",
"name": "Symptômes",
"headline": "Symptômes sur Modèles économétriques",
"description": "Quels sont les signes d'un modèle mal spécifié ?\nComment détecter l'hétéroscédasticité ?\nQuels effets peut avoir la multicolinéarité ?\nQu'est-ce qu'un biais d'échantillonnage ?\nQuels sont les signes d'une autocorrélation ?",
"url": "https://questionsmedicales.fr/mesh/D017059#section-symptômes"
},
{
"@type": "MedicalWebPage",
"name": "Prévention",
"headline": "Prévention sur Modèles économétriques",
"description": "Comment éviter les biais dans les modèles ?\nQuelles pratiques pour une bonne collecte de données ?\nComment choisir les bonnes variables ?\nQuelles sont les bonnes pratiques de modélisation ?\nComment éviter le surajustement ?",
"url": "https://questionsmedicales.fr/mesh/D017059#section-prévention"
},
{
"@type": "MedicalWebPage",
"name": "Traitements",
"headline": "Traitements sur Modèles économétriques",
"description": "Comment corriger l'hétéroscédasticité ?\nQuelles méthodes pour traiter la multicolinéarité ?\nComment améliorer un modèle économétrique ?\nQu'est-ce que la régularisation ?\nComment utiliser des modèles de séries temporelles ?",
"url": "https://questionsmedicales.fr/mesh/D017059#section-traitements"
},
{
"@type": "MedicalWebPage",
"name": "Complications",
"headline": "Complications sur Modèles économétriques",
"description": "Quelles sont les conséquences d'un modèle mal spécifié ?\nQuels risques d'une autocorrélation non traitée ?\nComment la multicolinéarité affecte-t-elle les résultats ?\nQuelles erreurs peuvent survenir dans l'interprétation des résultats ?\nQuels effets d'un échantillonnage biaisé ?",
"url": "https://questionsmedicales.fr/mesh/D017059#section-complications"
},
{
"@type": "MedicalWebPage",
"name": "Facteurs de risque",
"headline": "Facteurs de risque sur Modèles économétriques",
"description": "Quels facteurs influencent la sélection des variables ?\nComment la taille de l'échantillon affecte-t-elle les résultats ?\nQuels sont les risques d'une mauvaise collecte de données ?\nComment les variables omises affectent-elles le modèle ?\nQuels sont les impacts d'une mauvaise spécification du modèle ?",
"url": "https://questionsmedicales.fr/mesh/D017059#section-facteurs de risque"
}
]
},
{
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "Comment identifier un modèle économétrique approprié ?",
"position": 1,
"acceptedAnswer": {
"@type": "Answer",
"text": "Il faut analyser la nature des données et les relations entre les variables."
}
},
{
"@type": "Question",
"name": "Quels tests sont utilisés pour valider un modèle ?",
"position": 2,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des tests comme le test de normalité, le test de multicolinéarité et le test de spécification."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un modèle de régression ?",
"position": 3,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est un modèle qui établit une relation entre une variable dépendante et une ou plusieurs variables indépendantes."
}
},
{
"@type": "Question",
"name": "Comment évaluer la performance d'un modèle ?",
"position": 4,
"acceptedAnswer": {
"@type": "Answer",
"text": "On utilise des indicateurs comme le R², l'erreur quadratique moyenne et le test de Fisher."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un modèle à variables instrumentales ?",
"position": 5,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est un modèle utilisé pour corriger les biais d'endogénéité en utilisant des variables externes."
}
},
{
"@type": "Question",
"name": "Quels sont les signes d'un modèle mal spécifié ?",
"position": 6,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des résidus non aléatoires, des valeurs aberrantes et des relations non linéaires."
}
},
{
"@type": "Question",
"name": "Comment détecter l'hétéroscédasticité ?",
"position": 7,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des tests comme le test de Breusch-Pagan ou en observant les résidus."
}
},
{
"@type": "Question",
"name": "Quels effets peut avoir la multicolinéarité ?",
"position": 8,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle peut rendre les estimations des coefficients instables et difficiles à interpréter."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un biais d'échantillonnage ?",
"position": 9,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est une erreur systématique due à un échantillon non représentatif de la population."
}
},
{
"@type": "Question",
"name": "Quels sont les signes d'une autocorrélation ?",
"position": 10,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des résidus corrélés dans le temps, souvent détectés par le test de Durbin-Watson."
}
},
{
"@type": "Question",
"name": "Comment éviter les biais dans les modèles ?",
"position": 11,
"acceptedAnswer": {
"@type": "Answer",
"text": "En s'assurant que l'échantillon est représentatif et en utilisant des méthodes de validation."
}
},
{
"@type": "Question",
"name": "Quelles pratiques pour une bonne collecte de données ?",
"position": 12,
"acceptedAnswer": {
"@type": "Answer",
"text": "Utiliser des protocoles standardisés et s'assurer de la qualité et de la fiabilité des données."
}
},
{
"@type": "Question",
"name": "Comment choisir les bonnes variables ?",
"position": 13,
"acceptedAnswer": {
"@type": "Answer",
"text": "En se basant sur la théorie, des études antérieures et des tests de significativité."
}
},
{
"@type": "Question",
"name": "Quelles sont les bonnes pratiques de modélisation ?",
"position": 14,
"acceptedAnswer": {
"@type": "Answer",
"text": "Utiliser des diagnostics appropriés, tester les hypothèses et valider le modèle sur des données nouvelles."
}
},
{
"@type": "Question",
"name": "Comment éviter le surajustement ?",
"position": 15,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des techniques de validation croisée et en limitant la complexité du modèle."
}
},
{
"@type": "Question",
"name": "Comment corriger l'hétéroscédasticité ?",
"position": 16,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des transformations de données ou des modèles de régression robustes."
}
},
{
"@type": "Question",
"name": "Quelles méthodes pour traiter la multicolinéarité ?",
"position": 17,
"acceptedAnswer": {
"@type": "Answer",
"text": "On peut utiliser la sélection de variables, la régularisation ou l'analyse en composantes principales."
}
},
{
"@type": "Question",
"name": "Comment améliorer un modèle économétrique ?",
"position": 18,
"acceptedAnswer": {
"@type": "Answer",
"text": "En ajoutant des variables pertinentes, en transformant les données ou en utilisant des modèles non linéaires."
}
},
{
"@type": "Question",
"name": "Qu'est-ce que la régularisation ?",
"position": 19,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est une technique pour prévenir le surajustement en ajoutant une pénalité aux coefficients."
}
},
{
"@type": "Question",
"name": "Comment utiliser des modèles de séries temporelles ?",
"position": 20,
"acceptedAnswer": {
"@type": "Answer",
"text": "Pour analyser des données chronologiques et prévoir des tendances futures à l'aide de lissage."
}
},
{
"@type": "Question",
"name": "Quelles sont les conséquences d'un modèle mal spécifié ?",
"position": 21,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des prévisions inexactes, des décisions erronées et une mauvaise interprétation des résultats."
}
},
{
"@type": "Question",
"name": "Quels risques d'une autocorrélation non traitée ?",
"position": 22,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle peut conduire à des estimations biaisées et à des tests statistiques non fiables."
}
},
{
"@type": "Question",
"name": "Comment la multicolinéarité affecte-t-elle les résultats ?",
"position": 23,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle rend difficile l'évaluation de l'impact individuel des variables sur la variable dépendante."
}
},
{
"@type": "Question",
"name": "Quelles erreurs peuvent survenir dans l'interprétation des résultats ?",
"position": 24,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des conclusions hâtives, des généralisations inappropriées et des politiques mal orientées."
}
},
{
"@type": "Question",
"name": "Quels effets d'un échantillonnage biaisé ?",
"position": 25,
"acceptedAnswer": {
"@type": "Answer",
"text": "Il peut fausser les résultats et mener à des recommandations inappropriées."
}
},
{
"@type": "Question",
"name": "Quels facteurs influencent la sélection des variables ?",
"position": 26,
"acceptedAnswer": {
"@type": "Answer",
"text": "La théorie économique, la disponibilité des données et les objectifs de recherche."
}
},
{
"@type": "Question",
"name": "Comment la taille de l'échantillon affecte-t-elle les résultats ?",
"position": 27,
"acceptedAnswer": {
"@type": "Answer",
"text": "Un échantillon trop petit peut entraîner des estimations instables et des biais."
}
},
{
"@type": "Question",
"name": "Quels sont les risques d'une mauvaise collecte de données ?",
"position": 28,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des données inexactes peuvent fausser les résultats et compromettre la validité du modèle."
}
},
{
"@type": "Question",
"name": "Comment les variables omises affectent-elles le modèle ?",
"position": 29,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles peuvent introduire un biais et fausser les relations estimées entre les variables."
}
},
{
"@type": "Question",
"name": "Quels sont les impacts d'une mauvaise spécification du modèle ?",
"position": 30,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des prévisions erronées et des décisions basées sur des analyses incorrectes."
}
}
]
}
]
}
Price of iron ore is affected by instabilities of microeconomic balance between supply and demand. Periods of equilibrium adjustment result in huge swings, growth or global recession. They also impact...
Compared with other developed countries, China's energy efficiency level is not optimal, but it has indeed made remarkable achievements in its long-term development, mainly due to efforts targeting th...
The objective of this study is to attempt to assess the effect of green finance in reducing carbon emissions in China, analyze the transformative role of policy impact in the development of green fina...
To tackle the increasingly severe environmental challenges, including climate change, we should pay more attention to green growth (GG), a path to realize sustainability. Human capital (HC) has been c...
China is in a phase of high-quality development, where scientific and technological innovations are serving as the primary driving force for its development strategy. This emphasis on innovations is e...
Green finance has the obvious impetus function to economic ecologization development. Through the test of the spatial agglomeration degree of China's green finance and ecological economic development ...
The adjustment of green finance and energy structure is gradually becoming a new engine that reduces environmental pollution in China. In this paper, the energy structure is introduced in the process ...
This study investigates the Health-Led Growth Hypothesis (HLGH) within OECD countries, examining how health expenditures influence economic growth and the role of different health financing systems in...
Utilizing a comprehensive analysis spanning 2000 to 2019 across 38 OECD countries, advanced econometric methodologies were employed. Both second-generation panel data estimators (Dynamic CCEMG, CS-ARD...
The findings confirm the positive impact of health expenditures on economic growth, supporting the HLGH. Significant disparities were observed in the ability of health expenditures to stimulate econom...
This study enriches the ongoing academic dialog by providing an exhaustive analysis of the relationship between health expenditures and economic growth. It offers valuable insights for policymakers on...
Healthcare resources are necessary for individuals to maintain their health. The Chinese government has implemented policies to optimize the allocation of healthcare resources and achieve the goal of ...
The study was conducted using 2009-2017 data to analyze health-resource agglomeration on institutions, beds, and workforce in China. An agglomeration index was applied to evaluate the degree of region...
From 2009 to 2017, all the agglomeration indexes of healthcare exhibited a downward trend except for the number of institutions in China. Population density (PD), government health expenditures (GHE),...
The agglomeration of healthcare resources was observed to remain at an ideal level in China from 2009 to 2017. According to the significant determinants, some corresponding targeted measures for the C...
Digital inclusive finance has an essential impact on improving the urban green economy efficiency by demonstrating environmental friendliness in agglomerating factors and promoting the flow of factors...