Comment identifier un modèle économétrique approprié ?
Il faut analyser la nature des données et les relations entre les variables.
Modèles économétriquesAnalyse de données
#2
Quels tests sont utilisés pour valider un modèle ?
Des tests comme le test de normalité, le test de multicolinéarité et le test de spécification.
Tests statistiquesValidité du modèle
#3
Qu'est-ce qu'un modèle de régression ?
C'est un modèle qui établit une relation entre une variable dépendante et une ou plusieurs variables indépendantes.
RégressionAnalyse de régression
#4
Comment évaluer la performance d'un modèle ?
On utilise des indicateurs comme le R², l'erreur quadratique moyenne et le test de Fisher.
Évaluation de modèleR²
#5
Qu'est-ce qu'un modèle à variables instrumentales ?
C'est un modèle utilisé pour corriger les biais d'endogénéité en utilisant des variables externes.
Variables instrumentalesEndogénéité
Symptômes
5
#1
Quels sont les signes d'un modèle mal spécifié ?
Des résidus non aléatoires, des valeurs aberrantes et des relations non linéaires.
Modèle mal spécifiéRésidus
#2
Comment détecter l'hétéroscédasticité ?
En utilisant des tests comme le test de Breusch-Pagan ou en observant les résidus.
HétéroscédasticitéTests de Breusch-Pagan
#3
Quels effets peut avoir la multicolinéarité ?
Elle peut rendre les estimations des coefficients instables et difficiles à interpréter.
MulticolinéaritéEstimation des coefficients
#4
Qu'est-ce qu'un biais d'échantillonnage ?
C'est une erreur systématique due à un échantillon non représentatif de la population.
Biais d'échantillonnageÉchantillonnage
#5
Quels sont les signes d'une autocorrélation ?
Des résidus corrélés dans le temps, souvent détectés par le test de Durbin-Watson.
AutocorrélationTest de Durbin-Watson
Prévention
5
#1
Comment éviter les biais dans les modèles ?
En s'assurant que l'échantillon est représentatif et en utilisant des méthodes de validation.
BiaisValidation de modèle
#2
Quelles pratiques pour une bonne collecte de données ?
Utiliser des protocoles standardisés et s'assurer de la qualité et de la fiabilité des données.
Collecte de donnéesQualité des données
#3
Comment choisir les bonnes variables ?
En se basant sur la théorie, des études antérieures et des tests de significativité.
Sélection de variablesSignificativité
#4
Quelles sont les bonnes pratiques de modélisation ?
Utiliser des diagnostics appropriés, tester les hypothèses et valider le modèle sur des données nouvelles.
Pratiques de modélisationDiagnostics
#5
Comment éviter le surajustement ?
En utilisant des techniques de validation croisée et en limitant la complexité du modèle.
SurajustementValidation croisée
Traitements
5
#1
Comment corriger l'hétéroscédasticité ?
En utilisant des transformations de données ou des modèles de régression robustes.
HétéroscédasticitéRégression robuste
#2
Quelles méthodes pour traiter la multicolinéarité ?
On peut utiliser la sélection de variables, la régularisation ou l'analyse en composantes principales.
MulticolinéaritéAnalyse en composantes principales
#3
Comment améliorer un modèle économétrique ?
En ajoutant des variables pertinentes, en transformant les données ou en utilisant des modèles non linéaires.
Amélioration de modèleModèles non linéaires
#4
Qu'est-ce que la régularisation ?
C'est une technique pour prévenir le surajustement en ajoutant une pénalité aux coefficients.
RégularisationSurajustement
#5
Comment utiliser des modèles de séries temporelles ?
Pour analyser des données chronologiques et prévoir des tendances futures à l'aide de lissage.
Séries temporellesPrévision
Complications
5
#1
Quelles sont les conséquences d'un modèle mal spécifié ?
Des prévisions inexactes, des décisions erronées et une mauvaise interprétation des résultats.
Modèle mal spécifiéPrévisions inexactes
#2
Quels risques d'une autocorrélation non traitée ?
Elle peut conduire à des estimations biaisées et à des tests statistiques non fiables.
AutocorrélationEstimation biaisée
#3
Comment la multicolinéarité affecte-t-elle les résultats ?
Elle rend difficile l'évaluation de l'impact individuel des variables sur la variable dépendante.
MulticolinéaritéImpact des variables
#4
Quelles erreurs peuvent survenir dans l'interprétation des résultats ?
Des conclusions hâtives, des généralisations inappropriées et des politiques mal orientées.
Interprétation des résultatsErreurs d'interprétation
#5
Quels effets d'un échantillonnage biaisé ?
Il peut fausser les résultats et mener à des recommandations inappropriées.
Échantillonnage biaiséRecommandations
Facteurs de risque
5
#1
Quels facteurs influencent la sélection des variables ?
La théorie économique, la disponibilité des données et les objectifs de recherche.
Sélection de variablesThéorie économique
#2
Comment la taille de l'échantillon affecte-t-elle les résultats ?
Un échantillon trop petit peut entraîner des estimations instables et des biais.
Taille de l'échantillonEstimations instables
#3
Quels sont les risques d'une mauvaise collecte de données ?
Des données inexactes peuvent fausser les résultats et compromettre la validité du modèle.
Collecte de donnéesValidité du modèle
#4
Comment les variables omises affectent-elles le modèle ?
Elles peuvent introduire un biais et fausser les relations estimées entre les variables.
Variables omisesBiais
#5
Quels sont les impacts d'une mauvaise spécification du modèle ?
Des prévisions erronées et des décisions basées sur des analyses incorrectes.
Mauvaise spécificationPrévisions erronées
{
"@context": "https://schema.org",
"@graph": [
{
"@type": "MedicalWebPage",
"name": "Modèles économétriques : Questions médicales les plus fréquentes",
"headline": "Modèles économétriques : Comprendre les symptômes, diagnostics et traitements",
"description": "Guide complet et accessible sur les Modèles économétriques : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.",
"datePublished": "2024-05-22",
"dateModified": "2025-02-16",
"inLanguage": "fr",
"medicalAudience": [
{
"@type": "MedicalAudience",
"name": "Grand public",
"audienceType": "Patient",
"healthCondition": {
"@type": "MedicalCondition",
"name": "Modèles économétriques"
},
"suggestedMinAge": 18,
"suggestedGender": "unisex"
},
{
"@type": "MedicalAudience",
"name": "Médecins",
"audienceType": "Physician",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "France"
}
},
{
"@type": "MedicalAudience",
"name": "Chercheurs",
"audienceType": "Researcher",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "International"
}
}
],
"reviewedBy": {
"@type": "Person",
"name": "Dr Olivier Menir",
"jobTitle": "Expert en Médecine",
"description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale",
"url": "/static/pages/docteur-olivier-menir.html",
"alumniOf": {
"@type": "EducationalOrganization",
"name": "Université Paris Descartes"
}
},
"isPartOf": {
"@type": "MedicalWebPage",
"name": "Modèles économiques",
"url": "https://questionsmedicales.fr/mesh/D018803",
"about": {
"@type": "MedicalCondition",
"name": "Modèles économiques",
"code": {
"@type": "MedicalCode",
"code": "D018803",
"codingSystem": "MeSH"
},
"identifier": {
"@type": "PropertyValue",
"propertyID": "MeSH Tree",
"value": "N06.850.520.830.500.600"
}
}
},
"about": {
"@type": "MedicalCondition",
"name": "Modèles économétriques",
"alternateName": "Models, Econometric",
"code": {
"@type": "MedicalCode",
"code": "D017059",
"codingSystem": "MeSH"
}
},
"author": [
{
"@type": "Person",
"name": "James Heckman",
"url": "https://questionsmedicales.fr/author/James%20Heckman",
"affiliation": {
"@type": "Organization",
"name": "The University of Chicago, Department of Economics, 1126 E. 59 St., Chicago, IL 60637."
}
},
{
"@type": "Person",
"name": "Rodrigo Pinto",
"url": "https://questionsmedicales.fr/author/Rodrigo%20Pinto",
"affiliation": {
"@type": "Organization",
"name": "University of California at Los Angeles, Department of Economics, 315 Portola Plaza, Room 8385, Los Angeles, CA 90095."
}
},
{
"@type": "Person",
"name": "Tamás Krisztin",
"url": "https://questionsmedicales.fr/author/Tam%C3%A1s%20Krisztin",
"affiliation": {
"@type": "Organization",
"name": "International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria."
}
},
{
"@type": "Person",
"name": "Philipp Piribauer",
"url": "https://questionsmedicales.fr/author/Philipp%20Piribauer",
"affiliation": {
"@type": "Organization",
"name": "Austrian Institute of Economic Research (WIFO) Vienna Austria."
}
},
{
"@type": "Person",
"name": "Gagan Deep Sharma",
"url": "https://questionsmedicales.fr/author/Gagan%20Deep%20Sharma",
"affiliation": {
"@type": "Organization",
"name": "University School of Management Studies, Guru Gobind Singh Indraprastha University, New Delhi-110078, India."
}
}
],
"citation": [
{
"@type": "ScholarlyArticle",
"name": "Statistical modeling of maximum temperature in Guinea.",
"datePublished": "2024-05-27",
"url": "https://questionsmedicales.fr/article/38808875",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1590/0001-3765202420230126"
}
},
{
"@type": "ScholarlyArticle",
"name": "Statistical modelling of vignette data in psychology.",
"datePublished": "2022-06-23",
"url": "https://questionsmedicales.fr/article/35735658",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1111/bjop.12577"
}
},
{
"@type": "ScholarlyArticle",
"name": "Anatomically Parameterized Statistical Shape Model: Explaining Morphometry Through Statistical Learning.",
"datePublished": "2022-08-19",
"url": "https://questionsmedicales.fr/article/35192459",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1109/TBME.2022.3152833"
}
},
{
"@type": "ScholarlyArticle",
"name": "Statistical modeling approaches for the comparison of dissolution profiles.",
"datePublished": "2022-11-20",
"url": "https://questionsmedicales.fr/article/36404126",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1002/pst.2274"
}
},
{
"@type": "ScholarlyArticle",
"name": "Statistical models of the genetic etiology of congenital heart disease.",
"datePublished": "2022-08-05",
"url": "https://questionsmedicales.fr/article/35939966",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1016/j.gde.2022.101967"
}
}
],
"breadcrumb": {
"@type": "BreadcrumbList",
"itemListElement": [
{
"@type": "ListItem",
"position": 1,
"name": "questionsmedicales.fr",
"item": "https://questionsmedicales.fr"
},
{
"@type": "ListItem",
"position": 2,
"name": "Environnement et santé publique",
"item": "https://questionsmedicales.fr/mesh/D004778"
},
{
"@type": "ListItem",
"position": 3,
"name": "Santé publique",
"item": "https://questionsmedicales.fr/mesh/D011634"
},
{
"@type": "ListItem",
"position": 4,
"name": "Méthodes épidémiologiques",
"item": "https://questionsmedicales.fr/mesh/D004812"
},
{
"@type": "ListItem",
"position": 5,
"name": "Statistiques comme sujet",
"item": "https://questionsmedicales.fr/mesh/D013223"
},
{
"@type": "ListItem",
"position": 6,
"name": "Modèles statistiques",
"item": "https://questionsmedicales.fr/mesh/D015233"
},
{
"@type": "ListItem",
"position": 7,
"name": "Modèles économiques",
"item": "https://questionsmedicales.fr/mesh/D018803"
},
{
"@type": "ListItem",
"position": 8,
"name": "Modèles économétriques",
"item": "https://questionsmedicales.fr/mesh/D017059"
}
]
}
},
{
"@type": "MedicalWebPage",
"name": "Article complet : Modèles économétriques - Questions et réponses",
"headline": "Questions et réponses médicales fréquentes sur Modèles économétriques",
"description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.",
"datePublished": "2025-05-03",
"inLanguage": "fr",
"hasPart": [
{
"@type": "MedicalWebPage",
"name": "Diagnostic",
"headline": "Diagnostic sur Modèles économétriques",
"description": "Comment identifier un modèle économétrique approprié ?\nQuels tests sont utilisés pour valider un modèle ?\nQu'est-ce qu'un modèle de régression ?\nComment évaluer la performance d'un modèle ?\nQu'est-ce qu'un modèle à variables instrumentales ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Models,+Statistical#section-diagnostic"
},
{
"@type": "MedicalWebPage",
"name": "Symptômes",
"headline": "Symptômes sur Modèles économétriques",
"description": "Quels sont les signes d'un modèle mal spécifié ?\nComment détecter l'hétéroscédasticité ?\nQuels effets peut avoir la multicolinéarité ?\nQu'est-ce qu'un biais d'échantillonnage ?\nQuels sont les signes d'une autocorrélation ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Models,+Statistical#section-symptômes"
},
{
"@type": "MedicalWebPage",
"name": "Prévention",
"headline": "Prévention sur Modèles économétriques",
"description": "Comment éviter les biais dans les modèles ?\nQuelles pratiques pour une bonne collecte de données ?\nComment choisir les bonnes variables ?\nQuelles sont les bonnes pratiques de modélisation ?\nComment éviter le surajustement ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Models,+Statistical#section-prévention"
},
{
"@type": "MedicalWebPage",
"name": "Traitements",
"headline": "Traitements sur Modèles économétriques",
"description": "Comment corriger l'hétéroscédasticité ?\nQuelles méthodes pour traiter la multicolinéarité ?\nComment améliorer un modèle économétrique ?\nQu'est-ce que la régularisation ?\nComment utiliser des modèles de séries temporelles ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Models,+Statistical#section-traitements"
},
{
"@type": "MedicalWebPage",
"name": "Complications",
"headline": "Complications sur Modèles économétriques",
"description": "Quelles sont les conséquences d'un modèle mal spécifié ?\nQuels risques d'une autocorrélation non traitée ?\nComment la multicolinéarité affecte-t-elle les résultats ?\nQuelles erreurs peuvent survenir dans l'interprétation des résultats ?\nQuels effets d'un échantillonnage biaisé ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Models,+Statistical#section-complications"
},
{
"@type": "MedicalWebPage",
"name": "Facteurs de risque",
"headline": "Facteurs de risque sur Modèles économétriques",
"description": "Quels facteurs influencent la sélection des variables ?\nComment la taille de l'échantillon affecte-t-elle les résultats ?\nQuels sont les risques d'une mauvaise collecte de données ?\nComment les variables omises affectent-elles le modèle ?\nQuels sont les impacts d'une mauvaise spécification du modèle ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Models,+Statistical#section-facteurs de risque"
}
]
},
{
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "Comment identifier un modèle économétrique approprié ?",
"position": 1,
"acceptedAnswer": {
"@type": "Answer",
"text": "Il faut analyser la nature des données et les relations entre les variables."
}
},
{
"@type": "Question",
"name": "Quels tests sont utilisés pour valider un modèle ?",
"position": 2,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des tests comme le test de normalité, le test de multicolinéarité et le test de spécification."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un modèle de régression ?",
"position": 3,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est un modèle qui établit une relation entre une variable dépendante et une ou plusieurs variables indépendantes."
}
},
{
"@type": "Question",
"name": "Comment évaluer la performance d'un modèle ?",
"position": 4,
"acceptedAnswer": {
"@type": "Answer",
"text": "On utilise des indicateurs comme le R², l'erreur quadratique moyenne et le test de Fisher."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un modèle à variables instrumentales ?",
"position": 5,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est un modèle utilisé pour corriger les biais d'endogénéité en utilisant des variables externes."
}
},
{
"@type": "Question",
"name": "Quels sont les signes d'un modèle mal spécifié ?",
"position": 6,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des résidus non aléatoires, des valeurs aberrantes et des relations non linéaires."
}
},
{
"@type": "Question",
"name": "Comment détecter l'hétéroscédasticité ?",
"position": 7,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des tests comme le test de Breusch-Pagan ou en observant les résidus."
}
},
{
"@type": "Question",
"name": "Quels effets peut avoir la multicolinéarité ?",
"position": 8,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle peut rendre les estimations des coefficients instables et difficiles à interpréter."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un biais d'échantillonnage ?",
"position": 9,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est une erreur systématique due à un échantillon non représentatif de la population."
}
},
{
"@type": "Question",
"name": "Quels sont les signes d'une autocorrélation ?",
"position": 10,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des résidus corrélés dans le temps, souvent détectés par le test de Durbin-Watson."
}
},
{
"@type": "Question",
"name": "Comment éviter les biais dans les modèles ?",
"position": 11,
"acceptedAnswer": {
"@type": "Answer",
"text": "En s'assurant que l'échantillon est représentatif et en utilisant des méthodes de validation."
}
},
{
"@type": "Question",
"name": "Quelles pratiques pour une bonne collecte de données ?",
"position": 12,
"acceptedAnswer": {
"@type": "Answer",
"text": "Utiliser des protocoles standardisés et s'assurer de la qualité et de la fiabilité des données."
}
},
{
"@type": "Question",
"name": "Comment choisir les bonnes variables ?",
"position": 13,
"acceptedAnswer": {
"@type": "Answer",
"text": "En se basant sur la théorie, des études antérieures et des tests de significativité."
}
},
{
"@type": "Question",
"name": "Quelles sont les bonnes pratiques de modélisation ?",
"position": 14,
"acceptedAnswer": {
"@type": "Answer",
"text": "Utiliser des diagnostics appropriés, tester les hypothèses et valider le modèle sur des données nouvelles."
}
},
{
"@type": "Question",
"name": "Comment éviter le surajustement ?",
"position": 15,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des techniques de validation croisée et en limitant la complexité du modèle."
}
},
{
"@type": "Question",
"name": "Comment corriger l'hétéroscédasticité ?",
"position": 16,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des transformations de données ou des modèles de régression robustes."
}
},
{
"@type": "Question",
"name": "Quelles méthodes pour traiter la multicolinéarité ?",
"position": 17,
"acceptedAnswer": {
"@type": "Answer",
"text": "On peut utiliser la sélection de variables, la régularisation ou l'analyse en composantes principales."
}
},
{
"@type": "Question",
"name": "Comment améliorer un modèle économétrique ?",
"position": 18,
"acceptedAnswer": {
"@type": "Answer",
"text": "En ajoutant des variables pertinentes, en transformant les données ou en utilisant des modèles non linéaires."
}
},
{
"@type": "Question",
"name": "Qu'est-ce que la régularisation ?",
"position": 19,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est une technique pour prévenir le surajustement en ajoutant une pénalité aux coefficients."
}
},
{
"@type": "Question",
"name": "Comment utiliser des modèles de séries temporelles ?",
"position": 20,
"acceptedAnswer": {
"@type": "Answer",
"text": "Pour analyser des données chronologiques et prévoir des tendances futures à l'aide de lissage."
}
},
{
"@type": "Question",
"name": "Quelles sont les conséquences d'un modèle mal spécifié ?",
"position": 21,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des prévisions inexactes, des décisions erronées et une mauvaise interprétation des résultats."
}
},
{
"@type": "Question",
"name": "Quels risques d'une autocorrélation non traitée ?",
"position": 22,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle peut conduire à des estimations biaisées et à des tests statistiques non fiables."
}
},
{
"@type": "Question",
"name": "Comment la multicolinéarité affecte-t-elle les résultats ?",
"position": 23,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle rend difficile l'évaluation de l'impact individuel des variables sur la variable dépendante."
}
},
{
"@type": "Question",
"name": "Quelles erreurs peuvent survenir dans l'interprétation des résultats ?",
"position": 24,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des conclusions hâtives, des généralisations inappropriées et des politiques mal orientées."
}
},
{
"@type": "Question",
"name": "Quels effets d'un échantillonnage biaisé ?",
"position": 25,
"acceptedAnswer": {
"@type": "Answer",
"text": "Il peut fausser les résultats et mener à des recommandations inappropriées."
}
},
{
"@type": "Question",
"name": "Quels facteurs influencent la sélection des variables ?",
"position": 26,
"acceptedAnswer": {
"@type": "Answer",
"text": "La théorie économique, la disponibilité des données et les objectifs de recherche."
}
},
{
"@type": "Question",
"name": "Comment la taille de l'échantillon affecte-t-elle les résultats ?",
"position": 27,
"acceptedAnswer": {
"@type": "Answer",
"text": "Un échantillon trop petit peut entraîner des estimations instables et des biais."
}
},
{
"@type": "Question",
"name": "Quels sont les risques d'une mauvaise collecte de données ?",
"position": 28,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des données inexactes peuvent fausser les résultats et compromettre la validité du modèle."
}
},
{
"@type": "Question",
"name": "Comment les variables omises affectent-elles le modèle ?",
"position": 29,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles peuvent introduire un biais et fausser les relations estimées entre les variables."
}
},
{
"@type": "Question",
"name": "Quels sont les impacts d'une mauvaise spécification du modèle ?",
"position": 30,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des prévisions erronées et des décisions basées sur des analyses incorrectes."
}
}
]
}
]
}
A statistical analysis of maximum temperature from twelve weather stations in parts of Guinea is provided. Using maximum likelihood estimation, maximum temperature data was fitted by the Generalized E...
Vignette methods are widely used in psychology and the social sciences to obtain responses to multi-dimensional scenarios or situations. Where quantitative data are collected this presents challenges ...
Statistical shape models (SSMs) are a popular tool to conduct morphological analysis of anatomical structures which is a crucial step in clinical practices. However, shape representations through SSMs...
The proposed anatomically parameterized SSM (ANAT[Formula: see text]) is based on learning a linear mapping between shape coefficients (latent space) and selected anatomical parameters (anatomical spa...
Anatomical measures of the synthetically generated shapes exhibited realistic statistics. The learned matrices corroborated well with the obtained statistical relationship, while the two SSMs achieved...
This study demonstrates the use of anatomical representation for creating anatomically parameterized SSMs and as a result, removes the limited clinical interpretability of standard SSMs....
The proposed models could help analyze differences in relevant bone morphometry between populations, and be integrated in patient-specific pre-surgery planning or in-surgery assessment....
Congenital heart disease (CHD) is a collection of anatomically and clinically heterogeneous structure anomalies of heart at birth. Finding genetic causes of CHD can not only shed light on developmenta...
The first statistical analysis of maximum rainfall in Zimbabwe is provided. The data are from 103 stations spread across the different climatic regions of Zimbabwe. More than 90% of the stations had a...
A recent surge of patent applications among public hospitals in China has aroused significant research interest. A country's healthcare innovation capacity can be measured by its number of patents. Th...
For the representative problem of prostate cancer grading, we sought to simultaneously model both the continuous nature of the case spectrum and the decision thresholds of individual pathologists, all...
Experts and pathology residents each rated a standardized set of prostate cancer histopathological images on the International Society of Urological Pathologists (ISUP) scale used in clinical practice...
The slides were rated by 36 physicians in total: 23 ISUP pathologists and 13 residents. As anticipated, the cases showed a full continuous range of diagnostic severity. Cases ranged along a logit scal...
We present a method that allows simultaneous quantification of both the confusability of a particular case and the skill with which raters can distinguish the cases....
The technique generalizes beyond the current example to other clinical situations in which a diagnostician must impose an ordinal rating on a biological spectrum....
In health research, several chronic diseases are susceptible to competing risks (CRs). Initially, statistical models (SM) were developed to estimate the cumulative incidence of an event in the presenc...
A dataset with 3826 retrospectively collected patients with extremity soft-tissue sarcoma (eSTS) and nine predictors is used to evaluate model-predictive performance in terms of discrimination and cal...
Based on the original eSTS data, 100 bootstrapped training datasets are drawn. Performance of the final models is assessed on validation data (left out samples) by employing as measures the Brier scor...
Overall, ML techniques are less practical as they require substantial implementation time (data preprocessing, hyperparameter tuning, computational intensity), whereas regression methods can perform w...
The brain is a highly complex system. Most of such complexity stems from the intermingled connections between its parts, which give rise to rich dynamics and to the emergence of high-level cognitive f...