Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder.
Adolescent
Adult
Animals
Child
Child, Preschool
Conduct Disorder
/ genetics
Female
Genes, X-Linked
HEK293 Cells
Humans
Infant, Newborn
Intellectual Disability
/ genetics
Male
Mental Retardation, X-Linked
/ genetics
Mice
Middle Aged
Mutation
Pedigree
Transcription Factors
/ genetics
Ubiquitin-Protein Ligases
/ genetics
Ubiquitination
X Chromosome Inactivation
Zebrafish
Zebrafish Proteins
/ genetics
Journal
Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835
Informations de publication
Date de publication:
11 2019
11 2019
Historique:
received:
23
11
2017
accepted:
28
02
2018
pubmed:
8
5
2018
medline:
6
5
2020
entrez:
6
5
2018
Statut:
ppublish
Résumé
RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.
Identifiants
pubmed: 29728705
doi: 10.1038/s41380-018-0065-x
pii: 10.1038/s41380-018-0065-x
doi:
Substances chimiques
Transcription Factors
0
Zebrafish Proteins
0
RLIM protein, human
EC 2.3.2.27
Rlim protein, mouse
EC 2.3.2.27
Ubiquitin-Protein Ligases
EC 2.3.2.27
rlim protein, zebrafish
EC 2.3.2.27
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1748-1768Références
Retaux S, Bachy I. A short history of LIM domains (1993-2002): from protein interaction to degradation. Mol Neurobiol. 2002;26:269–81.
doi: 10.1385/MN:26:2-3:269
pubmed: 12428760
pmcid: 12428760
Gontan C, Achame EM, Demmers J, Barakat TS, Rentmeester E, van IW, et al. RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature. 2012;485:386–90.
doi: 10.1038/nature11070
pubmed: 22596162
pmcid: 22596162
Hu H, Haas SA, Chelly J, Van Esch H, Raynaud M, de Brouwer AP, et al. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Mol Psychiatry. 2016;21:133–48.
doi: 10.1038/mp.2014.193
pubmed: 25644381
pmcid: 25644381
Tonne E, Holdhus R, Stansberg C, Stray-Pedersen A, Petersen K, Brunner HG, et al. Syndromic X-linked intellectual disability segregating with a missense variant in RLIM. Eur J Hum Genet. 2015;23:1652–6.
doi: 10.1038/ejhg.2015.30
pubmed: 25735484
pmcid: 25735484
Rodriguez Criado G. [New X linked mental retardation syndrome]. An De Pediatr. 2012;76:184–191.
doi: 10.1016/j.anpedi.2011.10.003
Gao R, Wang L, Cai H, Zhu J, Yu L. E3 ubiquitin ligase RLIM negatively regulates c-Myc transcriptional activity and restrains cell proliferation. PloS ONE. 2016;11:e0164086.
doi: 10.1371/journal.pone.0164086
pubmed: 27684546
pmcid: 27684546
Ostendorff HP, Bossenz M, Mincheva A, Copeland NG, Gilbert DJ, Jenkins NA, et al. Functional characterization of the gene encoding RLIM, the corepressor of LIM homeodomain factors. Genomics. 2000;69:120–30.
doi: 10.1006/geno.2000.6311
pubmed: 11013082
pmcid: 11013082
Bach I, Rodriguez-Esteban C, Carriere C, Bhushan A, Krones A, Rose DW, et al. RLIM inhibits functional activity of LIM homeodomain transcription factors via recruitment of the histone deacetylase complex. Nat Genet. 1999;22:394–9.
doi: 10.1038/11970
pubmed: 10431247
pmcid: 10431247
Ostendorff HP, Peirano RI, Peters MA, Schluter A, Bossenz M, Scheffner M, et al. Ubiquitination-dependent cofactor exchange on LIM homeodomain transcription factors. Nature. 2002;416:99–103.
doi: 10.1038/416099a
pubmed: 11882901
pmcid: 11882901
Hiratani I, Yamamoto N, Mochizuki T, Ohmori SY, Taira M. Selective degradation of excess Ldb1 by Rnf12/RLIM confers proper Ldb1 expression levels and Xlim-1/Ldb1 stoichiometry in Xenopus organizer functions. Development. 2003;130:4161–75.
doi: 10.1242/dev.00621
pubmed: 12874135
pmcid: 12874135
Zhang L, Huang H, Zhou F, Schimmel J, Pardo CG, Zhang T, et al. RNF12 controls embryonic stem cell fate and morphogenesis in zebrafish embryos by targeting Smad7 for degradation. Mol Cell. 2012;46:650–61.
doi: 10.1016/j.molcel.2012.04.003
pubmed: 22560923
pmcid: 22560923
Shin J, Wallingford MC, Gallant J, Marcho C, Jiao B, Byron M, et al. RLIM is dispensable for X-chromosome inactivation in the mouse embryonic epiblast. Nature. 2014;511:86–89.
doi: 10.1038/nature13286
pubmed: 24870238
pmcid: 24870238
Ostendorff HP, Tursun B, Cornils K, Schluter A, Drung A, Gungor C, et al. Dynamic expression of LIM cofactors in the developing mouse neural tube. Dev Dyn. 2006;235:786–91.
doi: 10.1002/dvdy.20669
pubmed: 16395690
pmcid: 16395690
Jonkers I, Barakat TS, Achame EM, Monkhorst K, Kenter A, Rentmeester E, et al. RNF12 is an X-encoded dose-dependent activator of X chromosome inactivation. Cell. 2009;139:999–1011.
doi: 10.1016/j.cell.2009.10.034
pubmed: 19945382
pmcid: 19945382
Barakat TS, Loos F, van Staveren S, Myronova E, Ghazvini M, Grootegoed JA, et al. The trans-activator RNF12 and cis-acting elements effectuate X chromosome inactivation independent of X-pairing. Mol Cell. 2014;53:965–78.
doi: 10.1016/j.molcel.2014.02.006
pubmed: 24613346
pmcid: 24613346
Shin J, Bossenz M, Chung Y, Ma H, Byron M, Taniguchi-Ishigaki N, et al. Maternal Rnf12/RLIM is required for imprinted X-chromosome inactivation in mice. Nature. 2010;467:977–81.
doi: 10.1038/nature09457
pubmed: 20962847
pmcid: 20962847
Gontan C, Jonkers I, Gribnau J. Long noncoding RNAs and X chromosome inactivation. Prog Mol Subcell Biol. 2011;51:43–64.
doi: 10.1007/978-3-642-16502-3_3
pubmed: 21287133
pmcid: 21287133
Her YR, Chung IK. Ubiquitin ligase RLIM modulates telomere length homeostasis through a proteolysis of TRF1. J Biol Chem. 2009;284:8557–66.
doi: 10.1074/jbc.M806702200
pubmed: 19164295
pmcid: 19164295
Chen X, Shen J, Li X, Wang X, Long M, Lin F, et al. Rlim, an E3 ubiquitin ligase, influences the stability of Stathmin protein in human osteosarcoma cells. Cell Signal. 2014;26:1532–8.
doi: 10.1016/j.cellsig.2014.03.018
pubmed: 24686088
pmcid: 24686088
Gao K, Wang C, Jin X, Xiao J, Zhang E, Yang X, et al. RNF12 promotes p53-dependent cell growth suppression and apoptosis by targeting MDM2 for destruction. Cancer Lett. 2016;375:133–41.
doi: 10.1016/j.canlet.2016.02.013
pubmed: 26926424
pmcid: 26926424
Huang Y, Yang Y, Gao R, Yang X, Yan X, Wang C, et al. RLIM interacts with Smurf2 and promotes TGF-beta induced U2OS cell migration. Biochem Biophys Res Commun. 2011;414:181–5.
doi: 10.1016/j.bbrc.2011.09.053
pubmed: 21945933
pmcid: 21945933
Johnsen SA, Gungor C, Prenzel T, Riethdorf S, Riethdorf L, Taniguchi-Ishigaki N, et al. Regulation of estrogen-dependent transcription by the LIM cofactors CLIM and RLIM in breast cancer. Cancer Res. 2009;69:128–36.
doi: 10.1158/0008-5472.CAN-08-1630
pubmed: 19117995
pmcid: 19117995
Jiao B, Taniguchi-Ishigaki N, Gungor C, Peters MA, Chen YW, Riethdorf S, et al. Functional activity of RLIM/Rnf12 is regulated by phosphorylation-dependent nucleocytoplasmic shuttling. Mol Biol Cell. 2013;24:3085–96.
doi: 10.1091/mbc.e13-05-0239
pubmed: 23904271
pmcid: 23904271
Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18:696–704.
doi: 10.1038/gim.2015.148
pubmed: 26633542
pmcid: 26633542
Weese D, Emde AK, Rausch T, Doring A, Reinert K. RazerS--fast read mapping with sensitivity control. Genome Res. 2009;19:1646–54.
doi: 10.1101/gr.088823.108
pubmed: 19592482
pmcid: 19592482
Emde AK, Schulz MH, Weese D, Sun R, Vingron M, Kalscheuer VM, et al. Detecting genomic indel variants with exact breakpoints in single- and paired-end sequencing data using SplazerS. Bioinformatics. 2012;28:619–27.
doi: 10.1093/bioinformatics/bts019
Kelly M, Williams R, Aojula A, O'Neill J, Trzinscka Z, Grover L, et al. Peptide aptamers: novel coatings for orthopaedic implants. Mater Sci Eng C Mater Biol Appl. 2015;54:84–93.
doi: 10.1016/j.msec.2015.04.021
pubmed: 26046271
pmcid: 26046271
des Portes V, Beldjord C, Chelly J, Hamel B, Kremer H, Smits A, et al. X-linked nonspecific mental retardation (MRX) linkage studies in 25 unrelated families: the European XLMR consortium. Am J Med Genet. 1999;85:263–5.
doi: 10.1002/(SICI)1096-8628(19990730)85:3<263::AID-AJMG15>3.0.CO;2-0
pubmed: 10398240
pmcid: 10398240
Frints SG, Borghgraef M, Froyen G, Marynen P, Fryns JP. Clinical study and haplotype analysis in two brothers with Partington syndrome. Am J Med Genet. 2002;112:361–8.
doi: 10.1002/ajmg.10630
pubmed: 12376938
pmcid: 12376938
Carrel L, Willard HF. An assay for X inactivation based on differential methylation at the fragile X locus, FMR1. Am J Med Genet. 1996;64:27–30.
doi: 10.1002/(SICI)1096-8628(19960712)64:1<27::AID-AJMG3>3.0.CO;2-O
pubmed: 8826444
pmcid: 8826444
Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet. 1992;51:1229–39.
pubmed: 1281384
pmcid: 1281384
Westerfield M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 3rd ed., vol. 385. Eugene, OR: University of Oregon Press; 1995.
Jao LE, Wente SR, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA. 2013;110:13904–9.
doi: 10.1073/pnas.1308335110
pubmed: 23918387
pmcid: 23918387
Donahoe PK, Longoni M, High FA. Polygenic causes of congenital diaphragmatic hernia produce common lung pathologies. Am J Pathol. 2016;186:2532–43.
doi: 10.1016/j.ajpath.2016.07.006
pubmed: 27565037
pmcid: 27565037
Yu L, Sawle AD, Wynn J, Aspelund G, Stolar CJ, Arkovitz MS, et al. Increased burden of de novo predicted deleterious variants in complex congenital diaphragmatic hernia. Hum Mol Genet. 2015;24:4764–73.
doi: 10.1093/hmg/ddv196
pubmed: 26034137
pmcid: 26034137
Longoni M, High FA, Qi H, Joy MP, Hila R, Coletti CM, et al. Genome-wide enrichment of damaging de novo variants in patients with isolated and complex congenital diaphragmatic hernia. Hum Genet. 2017;136:679–91.
doi: 10.1007/s00439-017-1774-y
pubmed: 28303347
pmcid: 28303347
Longoni M, High FA, Russell MK, Kashani A, Tracy AA, Coletti CM, et al. Molecular pathogenesis of congenital diaphragmatic hernia revealed by exome sequencing, developmental data, and bioinformatics. Proc Natl Acad Sci USA. 2014;111:12450–5.
doi: 10.1073/pnas.1412509111
pubmed: 25107291
pmcid: 25107291
Mullegama SV, Klein SD, Mulatinho MV, Senaratne TN, Singh K, Center UCG, et al. De novo loss-of-function variants in STAG2 are associated with developmental delay, microcephaly, and congenital anomalies. Am J Med Genet A. 2017;173:1319–27.
doi: 10.1002/ajmg.a.38207
pubmed: 28296084
pmcid: 28296084
Kumar R, Corbett MA, Van Bon BW, Gardner A, Woenig JA, Jolly LA, et al. Increased STAG2 dosage defines a novel cohesinopathy with intellectual disability and behavioral problems. Hum Mol Genet. 2015;24:7171–81.
doi: 10.1093/hmg/ddv414
pubmed: 26443594
pmcid: 26443594
Yingjun X, Wen T, Yujian L, Lingling X, Huimin H, Qun F, et al. Microduplication of chromosome Xq25 encompassing STAG2 gene in a boy with intellectual disability. Eur J Med Genet. 2015;58:116–21.
doi: 10.1016/j.ejmg.2014.10.002
pubmed: 25450604
pmcid: 25450604
Bone KM, Chernos JE, Perrier R, Innes AM, Bernier FP, McLeod R, et al. Mosaic trisomy 1q: a recurring chromosome anomaly that is a diagnostic challenge and is associated with a Fryns-like phenotype. Prenat Diagn. 2017;37:602–10.
doi: 10.1002/pd.5058
pubmed: 28437579
pmcid: 28437579
Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet. 2017;91:183–98.
doi: 10.1111/cge.12921
pubmed: 27861765
pmcid: 27861765
Bach I. Releasing the break on X chromosome inactivation: Rnf12/RLIM targets REX1 for degradation. Cell Res. 2012;22:1524–6.
doi: 10.1038/cr.2012.98
pubmed: 22785560
pmcid: 22785560
Upadhyay A, Joshi V, Amanullah A, Mishra R, Arora N, Prasad A, et al. E3 ubiquitin ligases neurobiological mechanisms: development to degeneration. Front Mol Neurosci. 2017;10:151.
doi: 10.3389/fnmol.2017.00151
pubmed: 28579943
pmcid: 28579943
Margolin DH, Kousi M, Chan YM, Lim ET, Schmahmann JD, Hadjivassiliou M, et al. Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. N Engl J Med. 2013;368:1992–2003.
doi: 10.1056/NEJMoa1215993
pubmed: 23656588
pmcid: 23656588
Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997;15:70–73.
doi: 10.1038/ng0197-70
pubmed: 8988171
pmcid: 8988171
Basel-Vanagaite L, Dallapiccola B, Ramirez-Solis R, Segref A, Thiele H, Edwards A, et al. Deficiency for the ubiquitin ligase UBE3B in a blepharophimosis-ptosis-intellectual-disability syndrome. Am J Hum Genet. 2012;91:998–1010.
doi: 10.1016/j.ajhg.2012.10.011
pubmed: 23200864
pmcid: 23200864
Nascimento RM, Otto PA, de Brouwer AP, Vianna-Morgante AM. UBE2A, which encodes a ubiquitin-conjugating enzyme, is mutated in a novel X-linked mental retardation syndrome. Am J Hum Genet. 2006;79:549–55.
doi: 10.1086/507047
pubmed: 16909393
pmcid: 16909393
Budny B, Badura-Stronka M, Materna-Kiryluk A, Tzschach A, Raynaud M, Latos-Bielenska A, et al. Novel missense mutations in the ubiquitination-related gene UBE2A cause a recognizable X-linked mental retardation syndrome. Clin Genet. 2010;77:541–51.
doi: 10.1111/j.1399-0004.2010.01429.x
pubmed: 20412111
pmcid: 20412111
Vandewalle J, Bauters M, Van Esch H, Belet S, Verbeeck J, Fieremans N, et al. The mitochondrial solute carrier SLC25A5 at Xq24 is a novel candidate gene for non-syndromic intellectual disability. Hum Genet. 2013;132:1177–85.
doi: 10.1007/s00439-013-1322-3
pubmed: 23783460
pmcid: 23783460
Haddad DM, Vilain S, Vos M, Esposito G, Matta S, Kalscheuer VM, et al. Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair parkin-dependent mitophagy. Mol Cell. 2013;50:831–43.
doi: 10.1016/j.molcel.2013.04.012
pubmed: 23685073
pmcid: 23685073
Flex E, Ciolfi A, Caputo V, Fodale V, Leoni C, Melis D, et al. Loss of function of the E3 ubiquitin-protein ligase UBE3B causes Kaufman oculocerebrofacial syndrome. J Med Genet. 2013;50:493–9.
doi: 10.1136/jmedgenet-2012-101405
pubmed: 23687348
pmcid: 23687348
Isrie M, Kalscheuer VM, Holvoet M, Fieremans N, Van Esch H, Devriendt K. HUWE1 mutation explains phenotypic severity in a case of familial idiopathic intellectual disability. Eur J Med Genet. 2013;56:379–82.
doi: 10.1016/j.ejmg.2013.05.005
pubmed: 23721686
pmcid: 23721686
Froyen G, Belet S, Martinez F, Santos-Reboucas CB, Declercq M, Verbeeck J, et al. Copy-number gains of HUWE1 due to replication- and recombination-based rearrangements. Am J Hum Genet. 2012;91:252–64.
doi: 10.1016/j.ajhg.2012.06.010
pubmed: 22840365
pmcid: 22840365
Froyen G, Corbett M, Vandewalle J, Jarvela I, Lawrence O, Meldrum C, et al. Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation. Am J Hum Genet. 2008;82:432–43.
doi: 10.1016/j.ajhg.2007.11.002
pubmed: 18252223
pmcid: 18252223
So J, Suckow V, Kijas Z, Kalscheuer V, Moser B, Winter J, et al. Mild phenotypes in a series of patients with Opitz GBBB syndrome with MID1 mutations. Am J Med Genet A. 2005;132A:1–7.
doi: 10.1002/ajmg.a.30407
pubmed: 15558842
pmcid: 15558842
Quaderi NA, Schweiger S, Gaudenz K, Franco B, Rugarli EI, Berger W, et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat Genet. 1997;17:285–91.
doi: 10.1038/ng1197-285
Trockenbacher A, Suckow V, Foerster J, Winter J, Krauss S, Ropers HH, et al. MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet. 2001;29:287–94.
doi: 10.1038/ng762
pubmed: 11685209
pmcid: 11685209
Schweiger S, Dorn S, Fuchs M, Kohler A, Matthes F, Muller EC, et al. The E3 ubiquitin ligase MID1 catalyzes ubiquitination and cleavage of Fu. J Biol Chem. 2014;289:31805–17.
doi: 10.1074/jbc.M113.541219
pubmed: 25278022
pmcid: 25278022
Zou Y, Liu Q, Chen B, Zhang X, Guo C, Zhou H, et al. Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am J Hum Genet. 2007;80:561–6.
doi: 10.1086/512489
pubmed: 17273978
pmcid: 17273978
Vulto-van Silfhout AT, Nakagawa T, Bahi-Buisson N, Haas SA, Hu H, Bienek M, et al. Variants in CUL4B are associated with cerebral malformations. Hum Mutat. 2015;36:106–17.
doi: 10.1002/humu.22718
pubmed: 25385192
pmcid: 25385192
Badura-Stronka M, Jamsheer A, Materna-Kiryluk A, Sowinska A, Kiryluk K, Budny B, et al. A novel nonsense mutation in CUL4B gene in three brothers with X-linked mental retardation syndrome. Clin Genet. 2010;77:141–4.
doi: 10.1111/j.1399-0004.2009.01331.x
pubmed: 20002452
pmcid: 20002452
Tarpey PS, Raymond FL, O'Meara S, Edkins S, Teague J, Butler A, et al. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am J Hum Genet. 2007;80:345–52.
doi: 10.1086/511134
pubmed: 17236139
pmcid: 17236139
Hwang CS, Sukalo M, Batygin O, Addor MC, Brunner H, Aytes AP, et al. Ubiquitin ligases of the N-end rule pathway: assessment of mutations in UBR1 that cause the Johanson-Blizzard syndrome. PLoS ONE. 2011;6:e24925.
doi: 10.1371/journal.pone.0024925
pubmed: 21931868
pmcid: 21931868
Sukalo M, Fiedler A, Guzman C, Spranger S, Addor MC, McHeik JN, et al. Mutations in the human UBR1 gene and the associated phenotypic spectrum. Hum Mutat. 2014;35:521–31.
doi: 10.1002/humu.22538
pubmed: 24599544
pmcid: 24599544
Zenker M, Mayerle J, Lerch MM, Tagariello A, Zerres K, Durie PR, et al. Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome). Nat Genet. 2005;37:1345–50.
doi: 10.1038/ng1681
pubmed: 16311597
pmcid: 16311597
Zhang J, Gambin T, Yuan B, Szafranski P, Rosenfeld JA, Balwi MA, et al. Erratum to: Haploinsufficiency of the E3 ubiquitin-protein ligase gene TRIP12 causes intellectual disability with or without autism spectrum disorders, speech delay, and dysmorphic features. Hum Genet. 2017;136:1009–11.
doi: 10.1007/s00439-017-1828-1
pubmed: 28660352
pmcid: 28660352
Zhang J, Gambin T, Yuan B, Szafranski P, Rosenfeld JA, Balwi MA, et al. Haploinsufficiency of the E3 ubiquitin-protein ligase gene TRIP12 causes intellectual disability with or without autism spectrum disorders, speech delay, and dysmorphic features. Hum Genet. 2017;136:377–86.
doi: 10.1007/s00439-017-1763-1
pubmed: 28251352
pmcid: 28251352
Bramswig NC, Ludecke HJ, Pettersson M, Albrecht B, Bernier RA, Cremer K, et al. Identification of new TRIP12 variants and detailed clinical evaluation of individuals with non-syndromic intellectual disability with or without autism. Hum Genet. 2017;136:179–92.
doi: 10.1007/s00439-016-1743-x
pubmed: 27848077
pmcid: 27848077
Alqwaifly M, Bohlega S. Ataxia and hypogonadotropic hypogonadism with intrafamilial variability caused by RNF216 mutation. Neurol Int. 2016;8:6444.
doi: 10.4081/ni.2016.6444
pubmed: 27441066
pmcid: 27441066
Ganos C, Hersheson J, Adams M, Bhatia KP, Houlden H. Syndromic associations and RNF216 mutations. Park Relat Disord. 2015;21:1389–90.
doi: 10.1016/j.parkreldis.2015.09.010
Santens P, Van Damme T, Steyaert W, Willaert A, Sablonniere B, De Paepe A, et al. RNF216 mutations as a novel cause of autosomal recessive Huntington-like disorder. Neurology. 2015;84:1760–6.
doi: 10.1212/WNL.0000000000001521
pubmed: 25841028
pmcid: 25841028
Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 2003;22:3411–20.
doi: 10.1093/emboj/cdg315
pubmed: 12840003
pmcid: 12840003
Son MY, Kwak JE, Kim YD, Cho YS. Proteomic and network analysis of proteins regulated by REX1 in human embryonic stem cells. Proteomics. 2015;15:2220–9.
doi: 10.1002/pmic.201400510
pubmed: 25736782
pmcid: 25736782
Hill CS. Inhibiting the inhibitor: the role of RNF12 in TGF-beta superfamily signaling. Mol Cell. 2012;46:558–9.
doi: 10.1016/j.molcel.2012.05.033
pubmed: 22681885
pmcid: 22681885
Stricker S, Mundlos S. Mechanisms of digit formation: human malformation syndromes tell the story. Dev Dyn. 2011;240:990–1004.
doi: 10.1002/dvdy.22565
pubmed: 21337664
pmcid: 21337664
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 2014;1:87–105.
doi: 10.1016/j.gendis.2014.07.005
pubmed: 25401122
pmcid: 25401122
Emmerton-Coughlin HM, Martin KK, Chiu JS, Zhao L, Scott LA, Regnault TR, et al. BMP4 and LGL1 are down regulated in an ovine model of congenital diaphragmatic hernia. Front Surg. 2014;1:44.
doi: 10.3389/fsurg.2014.00044
pubmed: 25593968
pmcid: 25593968
Papangeli I, Scambler PJ. Tbx1 genetically interacts with the transforming growth factor-beta/bone morphogenetic protein inhibitor Smad7 during great vessel remodeling. Circ Res. 2013;112:90–102.
doi: 10.1161/CIRCRESAHA.112.270223
pubmed: 23011393
pmcid: 23011393
Mesbah K, Rana MS, Francou A, van Duijvenboden K, Papaioannou VE, Moorman AF, et al. Identification of a Tbx1/Tbx2/Tbx3 genetic pathway governing pharyngeal and arterial pole morphogenesis. Hum Mol Genet. 2012;21:1217–29.
doi: 10.1093/hmg/ddr553
pubmed: 22116936
pmcid: 22116936
Weider M, Wegner M. SoxE factors: transcriptional regulators of neural differentiation and nervous system development. Semin Cell Dev Biol. 2017;63:35–42.
doi: 10.1016/j.semcdb.2016.08.013
pubmed: 27552919
pmcid: 27552919
Sha L, MacIntyre L, Machell JA, Kelly MP, Porteous DJ, Brandon NJ, et al. Transcriptional regulation of neurodevelopmental and metabolic pathways by NPAS3. Mol Psychiatry. 2012;17:267–79.
doi: 10.1038/mp.2011.73
pubmed: 21709683
pmcid: 21709683
Navarro P, Moffat M, Mullin NP, Chambers I. The X-inactivation trans-activator Rnf12 is negatively regulated by pluripotency factors in embryonic stem cells. Human Genet. 2011;130:255–64.
doi: 10.1007/s00439-011-0998-5
Marie PJ, Debiais F, Hay E. Regulation of human cranial osteoblast phenotype by FGF-2, FGFR-2 and BMP-2 signaling. Histol Histopathol. 2002;17:877–85.
pubmed: 12168799
pmcid: 12168799
Ishibashi M, Saitsu H, Komada M, Shiota K. Signaling cascade coordinating growth of dorsal and ventral tissues of the vertebrate brain, with special reference to the involvement of Sonic Hedgehog signaling. Anat Sci Int. 2005;80:30–36.
doi: 10.1111/j.1447-073x.2005.00096.x
pubmed: 15794128
pmcid: 15794128
Moen MJ, Adams HH, Brandsma JH, Dekkers DH, Akinci U, Karkampouna S, et al. An interaction network of mental disorder proteins in neural stem cells. Transl Psychiatry. 2017;7:e1082.
doi: 10.1038/tp.2017.52
pubmed: 28375211
pmcid: 28375211
Yu L, Arbez N, Nucifora LG, Sell GL, Delisi LE, Ross CA, et al. A mutation in NPAS3 segregates with mental illness in a small family. Mol Psychiatry. 2014;19:7–8.
doi: 10.1038/mp.2012.192
pubmed: 23337948
pmcid: 23337948
Nucifora LG, Wu YC, Lee BJ, Sha L, Margolis RL, Ross CA, et al. A mutation in NPAS3 that segregates with schizophrenia in a small family leads to protein aggregation. Mol Neuropsychiatry. 2016;2:133–44.
doi: 10.1159/000447358
pubmed: 27867938
pmcid: 27867938
Pickard BS, Christoforou A, Thomson PA, Fawkes A, Evans KL, Morris SW, et al. Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder. Mol Psychiatry. 2009;14:874–84.
doi: 10.1038/mp.2008.24
pubmed: 18317462
pmcid: 18317462
Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet. 2008;40:1056–8.
doi: 10.1038/ng.209
pubmed: 18711365
pmcid: 18711365
Lavedan C, Licamele L, Volpi S, Hamilton J, Heaton C, Mack K, et al. Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol Psychiatry. 2009;14:804–19.
doi: 10.1038/mp.2008.56
pubmed: 18521090
pmcid: 18521090
Erbel-Sieler C, Dudley C, Zhou Y, Wu X, Estill SJ, Han T, et al. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc Natl Acad Sci USA. 2004;101:13648–53.
doi: 10.1073/pnas.0405310101
pubmed: 15347806
pmcid: 15347806
Zhou S, Degan S, Potts EN, Foster WM, Sunday ME. NPAS3 is a trachealess homolog critical for lung development and homeostasis. Proc Natl Acad Sci USA. 2009;106:11691–6.
doi: 10.1073/pnas.0902426106
pubmed: 19581591
pmcid: 19581591
Witteveen JS, Willemsen MH, Dombroski TC, van Bakel NH, Nillesen WM, van Hulten JA, et al. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity. Nat Genet. 2016;48:877–87.
doi: 10.1038/ng.3619
pubmed: 27399968
pmcid: 27399968
Gabriele M, Vulto-van Silfhout AT, Germain PL, Vitriolo A, Kumar R, Douglas E, et al. YY1 haploinsufficiency causes an intellectual disability syndrome featuring transcriptional and chromatin dysfunction. Am J Hum Genet. 2017;100:907–25.
doi: 10.1016/j.ajhg.2017.05.006
pubmed: 28575647
pmcid: 28575647