Sex-dependent regulation of social reward by oxytocin: an inverted U hypothesis.


Journal

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
ISSN: 1740-634X
Titre abrégé: Neuropsychopharmacology
Pays: England
ID NLM: 8904907

Informations de publication

Date de publication:
01 2019
Historique:
received: 05 04 2018
accepted: 15 06 2018
revised: 10 06 2018
pubmed: 4 7 2018
medline: 12 2 2019
entrez: 4 7 2018
Statut: ppublish

Résumé

The rewarding properties of social interactions are essential for the expression of social behavior and the development of adaptive social relationships. Here, we review sex differences in social reward, and more specifically, how oxytocin (OT) acts in the mesolimbic dopamine system (MDS) to mediate the rewarding properties of social interactions in a sex-dependent manner. Evidence from rodents and humans suggests that same-sex social interactions may be more rewarding in females than in males. We propose that there is an inverted U relationship between OT dose, social reward, and neural activity within structures of the MDS in both males and females, and that this dose-response relationship is initiated at lower doses in females than males. As a result, depending on the dose of OT administered, OT could reduce social reward in females, while enhancing it in males. Sex differences in the neural mechanisms regulating social reward may contribute to sex differences in the incidence of a large number of psychiatric and neurodevelopmental disorders. This review addresses the potential significance of a sex-dependent inverted U dose-response function for OT's effects on social reward and in the development of gender-specific therapies for these disorders.

Identifiants

pubmed: 29968846
doi: 10.1038/s41386-018-0129-2
pii: 10.1038/s41386-018-0129-2
pmc: PMC6235847
doi:

Substances chimiques

Oxytocin 50-56-6

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

97-110

Subventions

Organisme : NIMH NIH HHS
ID : R21 MH109302
Pays : United States
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : MH109302
Pays : International
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : MH110212
Pays : International
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : MH084068
Pays : International
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : F31MH113367
Pays : International
Organisme : NIMH NIH HHS
ID : R01 MH110212
Pays : United States
Organisme : NIH HHS
ID : P51 OD011132
Pays : United States

Références

White NM. Reward or reinforcement: what’s the difference? Neurosci Biobehav Rev. 1989;13:181–6.
doi: 10.1016/S0149-7634(89)80028-4
Panksepp J, Yovell Y. Preclinical modeling of primal emotional affects (Seeking, Panic and Play): gateways to the development of new treatments for depression. Psychopathology. 2014;47:383–93. https://doi.org/10.1159/000366208 .
doi: 10.1159/000366208 pubmed: 25341411
Trezza V, Campolongo P, Vanderschuren LJ. Evaluating the rewarding nature of social interactions in laboratory animals. Dev Cogn Neurosci. 2011;1:444–58. https://doi.org/10.1016/j.dcn.2011.05.007 .
doi: 10.1016/j.dcn.2011.05.007 pubmed: 22436566
Young LJ, Wang Z. The neurobiology of pair bonding. Nat Neurosci. 2004;7:1048–54.
doi: 10.1038/nn1327
Gingrich B, Liu Y, Cascio C, Wang Z, Insel TR. Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster). Behav Neurosci. 2000;114:173–83.
doi: 10.1037/0735-7044.114.1.173
Gray CL, Norvelle A, Larkin T, Huhman KL. Dopamine in the nucleus accumbens modulates the memory of social defeat in Syrian hamsters (Mesocricetus auratus). Behav Brain Res. 2015;286:22–8. https://doi.org/10.1016/j.bbr.2015.02.030 .
doi: 10.1016/j.bbr.2015.02.030 pubmed: 25721736 pmcid: 4390511
Greenberg GD, Steinman MQ, Doig IE, Hao R, Trainor BC. Effects of social defeat on dopamine neurons in the ventral tegmental area in male and female California mice. Eur J Neurosci. 2015;42:3081–94. https://doi.org/10.1111/ejn.13099 .
doi: 10.1111/ejn.13099 pubmed: 26469289 pmcid: 4715680
Gil M, Nguyen NT, McDonald M, Albers HE. Social reward: interactions with social status, social communication, aggression, and associated neural activation in the ventral tegmental area. Eur J Neurosci. 2013;38:2308–18. https://doi.org/10.1111/ejn.12216 .
doi: 10.1111/ejn.12216 pubmed: 23607682
Douglas LA, Varlinskaya EI, Spear LP. Rewarding properties of social interactions in adolescent and adult male and female rats: impact of social versus isolate housing of subjects and partners. Dev Psychobiol. 2004;45:153–62. https://doi.org/10.1002/dev.20025 .
doi: 10.1002/dev.20025 pubmed: 15505797
Feng C, Hackett PD, DeMarco AC, Chen X, Stair S, Haroon E, et al. Oxytocin and vasopressin effects on the neural response to social cooperation are modulated by sex in humans. Brain Imaging Behav. 2015;9:754–64. https://doi.org/10.1007/s11682-014-9333-9 .
doi: 10.1007/s11682-014-9333-9 pubmed: 25416642
Novacek DM, Gooding DC, Pflum MJ. Hedonic capacity in the broader autism phenotype: should social anhedonia be considered a characteristic feature? Front Psychol. 2016;7:666 https://doi.org/10.3389/fpsyg.2016.00666 .
doi: 10.3389/fpsyg.2016.00666 pubmed: 27199879 pmcid: 4858588
Ramtekkar UP, Reiersen AM, Todorov AA, Todd RD. Sex and age differences in attention-deficit/hyperactivity disorder symptoms and diagnoses: implications for DSM-V and ICD-11. J Am Acad Child Adolesc Psychiatry. 2010;49:217–28 e211-213.
pubmed: 20410711 pmcid: 3101894
Stavropoulos KK, Carver LJ. Research review: social motivation and oxytocin in autism–implications for joint attention development and intervention. J Child Psychol Psychiatry. 2013;54:603–18. https://doi.org/10.1111/jcpp.12061 .
doi: 10.1111/jcpp.12061 pubmed: 23451765 pmcid: 3663901
Dichter GS, Felder JN, Green SR, Rittenberg AM, Sasson NJ, Bodfish JW. Reward circuitry function in autism spectrum disorders. Soc Cogn Affect Neurosci. 2012;7:160–72. https://doi.org/10.1093/scan/nsq095 .
doi: 10.1093/scan/nsq095 pubmed: 21148176
Phoenix CH, Goy RW, Gerall AA, Young WC. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology. 1959;65:369–82. https://doi.org/10.1210/endo-65-3-369 .
doi: 10.1210/endo-65-3-369 pubmed: 14432658
McCarthy MM, Pickett LA, VanRyzin JW, Kight KE. Surprising origins of sex differences in the brain. Horm Behav. 2015;76:3–10. https://doi.org/10.1016/j.yhbeh.2015.04.013 .
doi: 10.1016/j.yhbeh.2015.04.013 pubmed: 25917865 pmcid: 4620061
De Vries GJ. Minireview: sex differences in adult and developing brains: compensation, compensation, compensation. Endocrinology. 2004;145:1063–8. https://doi.org/10.1210/en.2003-1504 .
doi: 10.1210/en.2003-1504 pubmed: 14670982
Terranova JI, Song Z, Larkin TE 2nd, Hardcastle N, Norvelle A, Riaz A, et al. Serotonin and arginine-vasopressin mediate sex differences in the regulation of dominance and aggression by the social brain. Proc Natl Acad Sci USA. 2016;113:13233–8. https://doi.org/10.1073/pnas.1610446113 .
doi: 10.1073/pnas.1610446113 pubmed: 27807133
Bales KL, Carter CS. Sex differences and developmental effects of oxytocin on aggression and social behavior in prairie voles (Microtus ochrogaster). Horm Behav. 2003;44:178–84.
doi: 10.1016/S0018-506X(03)00154-5
Veenema AH, Bredewold R, De Vries GJ. Sex-specific modulation of juvenile social play by vasopressin. Psychoneuroendocrinology. 2013;38:2554–61. https://doi.org/10.1016/j.psyneuen.2013.06.002 .
doi: 10.1016/j.psyneuen.2013.06.002 pubmed: 23838102
Bredewold R, Smith CJ, Dumais KM, Veenema AH. Sex-specific modulation of juvenile social play behavior by vasopressin and oxytocin depends on social context. Front Behav Neurosci. 2014;8:216 https://doi.org/10.3389/fnbeh.2014.00216 .
doi: 10.3389/fnbeh.2014.00216 pubmed: 24982623 pmcid: 4058593
Telgkamp P, Combs N, Smith GT. Serotonin in a diencephalic nucleus controlling communication in an electric fish: sexual dimorphism and relationship to indicators of dominance. Dev Neurobiol. 2007;67:339–54. https://doi.org/10.1002/dneu.20356 .
doi: 10.1002/dneu.20356 pubmed: 17443792
Albers HE. The regulation of social recognition, social communication and aggression: vasopressin in the social behavior neural network. Horm Behav. 2012;61:283–92. https://doi.org/10.1016/j.yhbeh.2011.10.007 .
doi: 10.1016/j.yhbeh.2011.10.007 pubmed: 22079778
Panzica G, Melcangi RC. Structural and molecular brain sexual differences: a tool to understand sex differences in health and disease. Neurosci Biobehav Rev. 2016;67:2–8. https://doi.org/10.1016/j.neubiorev.2016.04.017 .
doi: 10.1016/j.neubiorev.2016.04.017 pubmed: 27113294
Cosgrove KP, Mazure CM, Staley JK. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry. 2007;62:847–55. https://doi.org/10.1016/j.biopsych.2007.03.001 .
doi: 10.1016/j.biopsych.2007.03.001 pubmed: 17544382 pmcid: 2711771
De Vries GJ, Buijs RM, Swaab DF. Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain–presence of a sex difference in the lateral septum. Brain Res. 1981;218:67–78.
doi: 10.1016/0006-8993(81)90989-6
Terranova JI, Ferris CF, Albers HE. Sex differences in the regulation of offensive aggression and dominance by arginine-vasopressin. Front Endocrinol. 2017;8:308 https://doi.org/10.3389/fendo.2017.00308 .
doi: 10.3389/fendo.2017.00308
Albers HE. Species, sex and individual differences in the vasotocin/vasopressin system: relationship to neurochemical signaling in the social behavior neural network. Front Neuroendocrinol. 2015;36:49–71. https://doi.org/10.1016/j.yfrne.2014.07.001 .
doi: 10.1016/j.yfrne.2014.07.001 pubmed: 25102443
Caldwell HK, Albers HE. Effect of photoperiod on vasopressin-induced aggression in Syrian hamsters. Horm Behav. 2004;46:444–9.
doi: 10.1016/j.yhbeh.2004.04.006
Ferris CF, Melloni RH Jr., Koppel G, Perry KW, Fuller RW, Delville Y. Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci. 1997;17:4331–40.
doi: 10.1523/JNEUROSCI.17-11-04331.1997
Gutzler SJ, Karom M, Erwin WD, Albers HE. Arginine-vasopressin and the regulation of aggression in female Syrian hamsters (Mesocricetus auratus). Eur J Neurosci. 2010;31:1655–63.
pubmed: 20525078
Caldwell HK. Oxytocin and vasopressin: powerful regulators of social behavior. Neuroscientist. 2017. https://doi.org/10.1177/1073858417708284 .
doi: 10.1177/1073858417708284
Carter CS, Grippo AJ, Pournajafi-Nazarloo H, Ruscio MG, Porges SW. Oxytocin, vasopressin and sociality. Prog Brain Res. 2008;170:331–6. https://doi.org/10.1016/S0079-6123(08)00427-5 .
doi: 10.1016/S0079-6123(08)00427-5 pubmed: 18655893
Young LJ, Wang Z. The neurobiology of pair bonding. Nat Neurosci. 2004;7:1048–54. https://doi.org/10.1038/nn1327 .
doi: 10.1038/nn1327 pubmed: 15452576
Groppe SE, Gossen A, Rademacher L, Hahn A, Westphal L, Grunder G, et al. Oxytocin influences processing of socially relevant cues in the ventral tegmental area of the human brain. Biol Psychiatry. 2013;74:172–9. https://doi.org/10.1016/j.biopsych.2012.12.023 .
doi: 10.1016/j.biopsych.2012.12.023 pubmed: 23419544
Acher R, Chauvet J. The neurohypophysial endocrine regulatory cascade: precursors, mediators, receptors, and effectors. Front Neuroendocrinol. 1995;16:237–89. https://doi.org/10.1006/frne.1995.1009 .
doi: 10.1006/frne.1995.1009 pubmed: 7556852
Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev. 2001;81:629–83.
doi: 10.1152/physrev.2001.81.2.629
Schorscher-Petcu A, Sotocinal S, Ciura S, Dupre A, Ritchie J, Sorge RE, et al. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J Neurosci. 2010;30:8274–84.
doi: 10.1523/JNEUROSCI.1594-10.2010
Song Z, Larkin TE, Malley MO, Albers HE. Oxytocin (OT) and arginine-vasopressin (AVP) act on OT receptors and not AVP V1a receptors to enhance social recognition in adult Syrian hamsters (Mesocricetus auratus). Horm Behav. 2016;81:20–7. https://doi.org/10.1016/j.yhbeh.2016.02.004 .
doi: 10.1016/j.yhbeh.2016.02.004 pubmed: 26975586
Song Z, McCann KE, McNeill JK, Larkin TE, Huhman KL, Albers HE. Oxytocin induces social communication by activating arginine-vasopressin V1a receptors and not oxytocin receptors. Psychoneuroendocrinology. 2014;50C:14–9.
doi: 10.1016/j.psyneuen.2014.08.005
Song Z, Albers HE. Cross-talk among oxytocin and arginine-vasopressin receptors: relevance for basic and clinical studies of the brain and periphery. Front Neuroendocrinol. 2017. https://doi.org/10.1016/j.yfrne.2017.10.004 .
doi: 10.1016/j.yfrne.2017.10.004
Hazell GG, Hindmarch CC, Pope GR, Roper JA, Lightman SL, Murphy D, et al. G protein-coupled receptors in the hypothalamic paraventricular and supraoptic nuclei–serpentine gateways to neuroendocrine homeostasis. Front Neuroendocrinol. 2012;33:45–66. https://doi.org/10.1016/j.yfrne.2011.07.002 .
doi: 10.1016/j.yfrne.2011.07.002 pubmed: 21802439 pmcid: 3336209
van den Burg EH, Neumann ID. Bridging the gap between GPCR activation and behaviour: oxytocin and prolactin signalling in the hypothalamus. J Mol Neurosci. 2011;43:200–8. https://doi.org/10.1007/s12031-010-9452-8 .
doi: 10.1007/s12031-010-9452-8 pubmed: 20865346
Busnelli M, Chini B. Molecular basis of oxytocin receptor signalling in the brain: what we know and what we need to know. Curr Top Behav Neurosci. 2017. https://doi.org/10.1007/7854_2017_6 .
doi: 10.1007/7854_2017_6
Gravati M, Busnelli M, Bulgheroni E, Reversi A, Spaiardi P, Parenti M, et al. Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor. J Neurochem. 2010;114:1424–35.
pubmed: 20557424
Busnelli M, Sauliere A, Manning M, Bouvier M, Gales C, Chini B. Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. J Biol Chem. 2012;287:3617–29. https://doi.org/10.1074/jbc.M111.277178 .
doi: 10.1074/jbc.M111.277178 pubmed: 22069312
Bangasser DA, Curtis A, Reyes BA, Bethea TT, Parastatidis I, Ischiropoulos H, et al. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol Psychiatry. 2010;15:877 https://doi.org/10.1038/mp.2010.66 . 896-904
doi: 10.1038/mp.2010.66 pubmed: 20548297 pmcid: 2935505
Caldwell HK. Oxytocin and sex differences in behavior. Curr Opin Behav Sci. 2018;23:13–28.
doi: 10.1016/j.cobeha.2018.02.002
Dumais KM, Veenema AH. Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior. Front Neuroendocrinol. 2016;40:1–23. https://doi.org/10.1016/j.yfrne.2015.04.003 .
doi: 10.1016/j.yfrne.2015.04.003 pubmed: 25951955
Qiao X, Yan Y, Wu R, Tai F, Hao P, Cao Y, et al. Sociality and oxytocin and vasopressin in the brain of male and female dominant and subordinate mandarin voles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014;200:149–59.
doi: 10.1007/s00359-013-0870-2
Haussler HU, Jirikowski GF, Caldwell JD. Sex differences among oxytocin-immunoreactive neuronal systems in the mouse hypothalamus. J Chem Neuroanat. 1990;3:271–6.
pubmed: 2204355
Rosen GJ, de Vries GJ, Goldman SL, Goldman BD, Forger NG. Distribution of oxytocin in the brain of a eusocial rodent. Neuroscience. 2008;155:809–17. https://doi.org/10.1016/j.neuroscience.2008.05.039 .
doi: 10.1016/j.neuroscience.2008.05.039 pubmed: 18582538 pmcid: 2614305
Wang Z, Moody K, Newman JD, Insel TR. Vasopressin and oxytocin immunoreactive neurons and fibers in the forebrain of male and female common marmosets (Callithrix jacchus). Synapse. 1997;27:14–25.
doi: 10.1002/(SICI)1098-2396(199709)27:1<14::AID-SYN2>3.0.CO;2-G
Wang Z, Zhou L, Hulihan TJ, Insel TR. Immunoreactivity of central vasopressin and oxytocin pathways in microtine rodents: a quantitative comparative study. J Comp Neurol. 1996;366:726–37. https://doi.org/10.1002/(SICI)1096-9861(19960318)366:4<726::AID-CNE11>3.0.CO;2-D .
doi: 10.1002/(SICI)1096-9861(19960318)366:4<726::AID-CNE11>3.0.CO;2-D pubmed: 8833119
Caffe AR, Van Ryen PC, Van der Woude TP, van Leeuwen FW. Vasopressin and oxytocin systems in the brain and upper spinal cord of Macaca fascicularis. J Comp Neurol. 1989;287:302–25.
doi: 10.1002/cne.902870304
Ishunina TA, Swaab DF. Vasopressin and oxytocin neurons of the human supraoptic and paraventricular nucleus: size changes in relation to age and sex. J Clin Endocrinol Metab. 1999;84:4637–44. https://doi.org/10.1210/jcem.84.12.6187 .
doi: 10.1210/jcem.84.12.6187 pubmed: 10599731
van Leeuwen FW, Caffe AR, De Vries GJ. Vasopressin cells in the bed nucleus of the stria terminalis of the rat: sex differences and the influence of androgens. Brain Res. 1985;325:391–4.
doi: 10.1016/0006-8993(85)90348-8
Wang Z. Species differences in the vasopressin-immunoreactive pathways in the bed nucleus of the stria terminalis and medial amygdaloid nucleus in prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus). Behav Neurosci. 1995;109:305–11.
doi: 10.1037/0735-7044.109.2.305
Delville Y, Koh ET, Ferris CF. Sexual differences in the magnocellular vasopressinergic system in golden hamsters. Brain Res Bull. 1994;33:535–40.
doi: 10.1016/0361-9230(94)90080-9
Steinman MQ, Laredo SA, Lopez EM, Manning CE, Hao RC, Doig IE, et al. Hypothalamic vasopressin systems are more sensitive to the long term effects of social defeat in males versus females. Psychoneuroendocrinology. 2015;51:122–34. https://doi.org/10.1016/j.psyneuen.2014.09.009 .
doi: 10.1016/j.psyneuen.2014.09.009 pubmed: 25306217
Albers HE, Rowland CM, Ferris CF. Arginine-vasopressin immunoreactivity is not altered by photoperiod or gonadal hormones in the Syrian hamster (Mesocricetus auratus). Brain Res. 1991;539:137–42.
doi: 10.1016/0006-8993(91)90696-S
Knobloch HS, Grinevich V. Evolution of oxytocin pathways in the brain of vertebrates. Front Behav Neurosci. 2014;8:31 https://doi.org/10.3389/fnbeh.2014.00031 .
doi: 10.3389/fnbeh.2014.00031 pubmed: 24592219 pmcid: 3924577
Ross HE, Young LJ. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol. 2009;30:534–47. https://doi.org/10.1016/j.yfrne.2009.05.004 .
doi: 10.1016/j.yfrne.2009.05.004 pubmed: 19481567 pmcid: 2748133
Chini B, Verhage M, Grinevich V. The action radius of oxytocin release in the mammalian CNS: from single vesicles to behavior. Trends Pharmacol Sci. 2017. https://doi.org/10.1016/j.tips.2017.08.005 .
doi: 10.1016/j.tips.2017.08.005 pubmed: 28899620
Buijs RM. Vasopressin and oxytocin - their role in neurotransmission. Pharmacol Ther. 1983;22:127–41.
doi: 10.1016/0163-7258(83)90056-6
Buijs RM, Swaab DF. Immuno-electron microscopical demonstration of vasopressin and oxytocin synapses in the limbic system of the rat. Cell Tissue Res. 1979;204:355–65.
doi: 10.1007/BF00233648
Buijs RM, Van Heerikhuize JJ. Vasopressin and oxytocin release in the brain–a synaptic event. Brain Res. 1982;252:71–6.
doi: 10.1016/0006-8993(82)90979-9
Leng G, Ludwig M. Neurotransmitters and peptides: whispered secrets and public announcements. J Physiol. 2008;586:5625–32. https://doi.org/10.1113/jphysiol.2008.159103 .
doi: 10.1113/jphysiol.2008.159103 pubmed: 18845614 pmcid: 2655398
Engelmann M, Wotjak CT, Ebner K, Landgraf R. Behavioural impact of intraseptally released vasopressin and oxytocin in rats. Exp Physiol. 2000;85:125S–30S.
doi: 10.1111/j.1469-445X.2000.tb00015.x
Castel M, Morris J, Belenky M. Non-synaptic and dendritic exocytosis from dense-cored vesicles in the suprachiasmatic nucleus. Neuroreport. 1996;7:543–7.
doi: 10.1097/00001756-199601310-00040
Donovan M, Liu Y, Wang Z. Anxiety-like behavior and neuropeptide receptor expression in male and female prairie voles: the effects of stress and social buffering. Behav Brain Res. 2018;342:70–8. https://doi.org/10.1016/j.bbr.2018.01.015 .
doi: 10.1016/j.bbr.2018.01.015 pubmed: 29355675
Dumais KM, Bredewold R, Mayer TE, Veenema AH. Sex differences in oxytocin receptor binding in forebrain regions: correlations with social interest in brain region- and sex- specific ways. Horm Behav. 2013;64:693–701. https://doi.org/10.1016/j.yhbeh.2013.08.012 .
doi: 10.1016/j.yhbeh.2013.08.012 pubmed: 24055336
Guoynes CD, Simmons TC, Downing GM, Jacob S, Solomon M, Bales KL. Chronic intranasal oxytocin has dose-dependent effects on central oxytocin and vasopressin systems in prairie voles (Microtus ochrogaster). Neuroscience. 2018;369:292–302. https://doi.org/10.1016/j.neuroscience.2017.11.037 .
doi: 10.1016/j.neuroscience.2017.11.037 pubmed: 29183825
Insel TR, Gelhard R, Shapiro LE. The comparative distribution of forebrain receptors for neurohypophyseal peptides in monogamous and polygamous mice. Neuroscience. 1991;43:623–30.
doi: 10.1016/0306-4522(91)90321-E
Tribollet E, Audigier S, Dubois-Dauphin M, Dreifuss JJ. Gonadal steroids regulate oxytocin receptors but not vasopressin receptors in the brain of male and female rats. An autoradiographical study. Brain Res. 1990;511:129–40.
doi: 10.1016/0006-8993(90)90232-Z
De Kloet ER, Voorhuis TAM, Elands J. Estradiol induces oxytocin binding sites in rat hypothalamic ventromedial nucleus. Eur J Pharmacol. 1986;118:185–6.
doi: 10.1016/0014-2999(85)90679-X
Bale TL, Dorsa DM, Johnston CA. Oxytocin receptor mRNA expression in the ventromedial hypothalamus during the estrous cycle. J Neurosci. 1995;15:5058–64.
doi: 10.1523/JNEUROSCI.15-07-05058.1995
Johnson AE, Coirini H, Ball GF, McEwen BS. Anatomical localization of the effects of 17ß-estradiol on oxytocin receptor binding in the ventromedial hypothalamic nucleus. Endocrinology. 1989;124:207–11.
doi: 10.1210/endo-124-1-207
Witt DM, Carter CS, Lnsel TR. Oxytocin receptor binding in female prairie voles: endogenous and exogenous oestradiol stimulation. J Neuroendocrinol. 1991;3:155–61.
doi: 10.1111/j.1365-2826.1991.tb00258.x
Bale TL, Dorsa DM. Sex differences in and effects of estrogen on oxytocin receptor messenger ribonucleic acid expression in the ventromedial hypothalamus. Endocrinology. 1995;136:27–32. https://doi.org/10.1210/endo.136.1.7828541 .
doi: 10.1210/endo.136.1.7828541 pubmed: 7828541
O’Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol. 2011;519:3599–39.
doi: 10.1002/cne.22735
Caldwell HK, Albers HE. Oxytocin, vasopressin, and the motivational forces that drive social behaviors. Curr Top Behav Neurosci. 2016;27:51–103. https://doi.org/10.1007/7854_2015_390 .
doi: 10.1007/7854_2015_390 pubmed: 26472550
Wei D, Lee D, Li D, Daglian J, Jung KM, Piomelli D. A role for the endocannabinoid 2-arachidonoyl-sn-glycerol for social and high-fat food reward in male mice. Psychopharmacology. 2016;233:1911–9. https://doi.org/10.1007/s00213-016-4222-0 .
doi: 10.1007/s00213-016-4222-0 pubmed: 26873082 pmcid: 5118226
Mikhailova MA, Bass CE, Grinevich VP, Chappell AM, Deal AL, Bonin KD, et al. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors. Neuroscience. 2016;333:54–64. https://doi.org/10.1016/j.neuroscience.2016.07.006 .
doi: 10.1016/j.neuroscience.2016.07.006 pubmed: 27421228 pmcid: 4992643
Kummer KK, El Rawas R, Kress M, Saria A, Zernig G. Social interaction and cocaine conditioning in mice increase spontaneous spike frequency in the nucleus accumbens or septal nuclei as revealed by multielectrode array recordings. Pharmacology. 2015;95:42–9. https://doi.org/10.1159/000370314 .
doi: 10.1159/000370314 pubmed: 25592253
Grotewold SK, Wall VL, Goodell DJ, Hayter C, Bland ST. Effects of cocaine combined with a social cue on conditioned place preference and nucleus accumbens monoamines after isolation rearing in rats. Psychopharmacology. 2014;231:3041–53. https://doi.org/10.1007/s00213-014-3470-0 .
doi: 10.1007/s00213-014-3470-0 pubmed: 24553577 pmcid: 4646085
Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, et al. Natural neural projection dynamics underlying social behavior. Cell. 2014;157:1535–51. https://doi.org/10.1016/j.cell.2014.05.017 .
doi: 10.1016/j.cell.2014.05.017 pubmed: 24949967 pmcid: 4123133
Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell. 2015;162:622–34. https://doi.org/10.1016/j.cell.2015.07.015 .
doi: 10.1016/j.cell.2015.07.015 pubmed: 26232228 pmcid: 4522312
Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007;30:194–202. https://doi.org/10.1016/j.tins.2007.03.006 .
doi: 10.1016/j.tins.2007.03.006 pubmed: 17408759
Ikemoto S. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev. 2007;56:27–78. https://doi.org/10.1016/j.brainresrev.2007.05.004 .
doi: 10.1016/j.brainresrev.2007.05.004 pubmed: 17574681 pmcid: 2134972
El Rawas R, Klement S, Kummer KK, Fritz M, Dechant G, Saria A, et al. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction. Front Behav Neurosci. 2012;6:63 https://doi.org/10.3389/fnbeh.2012.00063 .
doi: 10.3389/fnbeh.2012.00063 pubmed: 23015784 pmcid: 3449336
Dolen G, Darvishzadeh A, Huang KW, Malenka RC. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature. 2013;501:179–84. https://doi.org/10.1038/nature12518 .
doi: 10.1038/nature12518 pubmed: 24025838 pmcid: 4091761
Song Z, Borland JM, Larkin TE, O’Malley M, Albers HE. Activation of oxytocin receptors, but not arginine-vasopressin V1a receptors, in the ventral tegmental area of male Syrian hamsters is essential for the reward-like properties of social interactions. Psychoneuroendocrinology. 2016;74:164–72. https://doi.org/10.1016/j.psyneuen.2016.09.001 .
doi: 10.1016/j.psyneuen.2016.09.001 pubmed: 27632574
Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, et al. Gating of social reward by oxytocin in the ventral tegmental area. Science. 2017;357:1406–11. https://doi.org/10.1126/science.aan4994 .
doi: 10.1126/science.aan4994 pubmed: 28963257 pmcid: 6214365
Melis MR, Melis T, Cocco C, Succu S, Sanna F, Pillolla G, et al. Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats. Eur J Neurosci. 2007;26:1026–35. https://doi.org/10.1111/j.1460-9568.2007.05721.x .
doi: 10.1111/j.1460-9568.2007.05721.x pubmed: 17672853
Ross HE, Cole CD, Smith Y, Neumann ID, Landgraf R, Murphy AZ, et al. Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience. 2009;162:892–903. https://doi.org/10.1016/j.neuroscience.2009.05.055 .
doi: 10.1016/j.neuroscience.2009.05.055 pubmed: 19482070 pmcid: 2744157
Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron. 2012;73:553–66.
doi: 10.1016/j.neuron.2011.11.030
Peris J, MacFadyen K, Smith JA, de Kloet AD, Wang L, Krause EG. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J Comp Neurol. 2017;525:1094–108. https://doi.org/10.1002/cne.24116 .
doi: 10.1002/cne.24116 pubmed: 27615433
Gillies GE, Virdee K, McArthur S, Dalley JW. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: a molecular, cellular and behavioral analysis. Neuroscience. 2014;282:69–85. https://doi.org/10.1016/j.neuroscience.2014.05.033 .
doi: 10.1016/j.neuroscience.2014.05.033 pubmed: 24943715 pmcid: 4245713
McArthur S, McHale E, Gillies GE. The size and distribution of midbrain dopaminergic populations are permanently altered by perinatal glucocorticoid exposure in a sex- region- and time-specific manner. Neuropsychopharmacology. 2007;32:1462–76. https://doi.org/10.1038/sj.npp.1301277 .
doi: 10.1038/sj.npp.1301277 pubmed: 17164817
Kritzer MF, Creutz LM. Region and sex differences in constituent dopamine neurons and immunoreactivity for intracellular estrogen and androgen receptors in mesocortical projections in rats. J Neurosci. 2008;28:9525–35. https://doi.org/10.1523/JNEUROSCI.2637-08.2008 .
doi: 10.1523/JNEUROSCI.2637-08.2008 pubmed: 18799684 pmcid: 2613180
Walker QD, Rooney MB, Wightman RM, Kuhn CM. Dopamine release and uptake are greater in female than male rat striatum as measured by fast cyclic voltammetry. Neuroscience. 2000;95:1061–70.
doi: 10.1016/S0306-4522(99)00500-X
Virdee K, McArthur S, Brischoux F, Caprioli D, Ungless MA, Robbins TW, et al. Antenatal glucocorticoid treatment induces adaptations in adult midbrain dopamine neurons, which underpin sexually dimorphic behavioral resilience. Neuropsychopharmacology. 2014;39:339–50. https://doi.org/10.1038/npp.2013.196 .
doi: 10.1038/npp.2013.196 pubmed: 23929547
Walker QD, Ray R, Kuhn CM. Sex differences in neurochemical effects of dopaminergic drugs in rat striatum. Neuropsychopharmacology. 2006;31:1193–202. https://doi.org/10.1038/sj.npp.1300915 .
doi: 10.1038/sj.npp.1300915 pubmed: 16237396
Castner SA, Becker JB. Sex differences in the effect of amphetamine on immediate early gene expression in the rat dorsal striatum. Brain Res. 1996;712:245–57.
doi: 10.1016/0006-8993(95)01429-2
Becker JB, Hu M. Sex differences in drug abuse. Front Neuroendocrinol. 2008;29:36–47. https://doi.org/10.1016/j.yfrne.2007.07.003 .
doi: 10.1016/j.yfrne.2007.07.003 pubmed: 17904621
Mozley LH, Gur RC, Mozley PD, Gur RE. Striatal dopamine transporters and cognitive functioning in healthy men and women. Am J Psychiatry. 2001;158:1492–9. https://doi.org/10.1176/appi.ajp.158.9.1492 .
doi: 10.1176/appi.ajp.158.9.1492 pubmed: 11532737
Laakso A, Vilkman H, Bergman J, Haaparanta M, Solin O, Syvalahti E, et al. Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects. Biol Psychiatry. 2002;52:759–63.
doi: 10.1016/S0006-3223(02)01369-0
Soutschek A, Beharelle AR, Burke CJ, Schreiber R, Weber SC, Karipidis II, ten Velden J, Weber B, Haker H, Kalenscher T, Tobler PN. The dopaminergic reward system underpins gender differences in social preferences. Nat Human Behav. 2017;1:819–27.
doi: 10.1038/s41562-017-0226-y
Becker JB, Cha JH. Estrous cycle-dependent variation in amphetamine-induced behaviors and striatal dopamine release assessed with microdialysis. Behav Brain Res. 1989;35:117–25.
doi: 10.1016/S0166-4328(89)80112-3
White TL, Justice AJ, de Wit H. Differential subjective effects of D-amphetamine by gender, hormone levels and menstrual cycle phase. Pharmacol Biochem Behav. 2002;73:729–41.
doi: 10.1016/S0091-3057(02)00818-3
Robinson TE, Camp DM, Becker JB. Gonadectomy attenuates turning behavior produced by electrical stimulation of the nigrostriatal dopamine system in female but not male rats. Neurosci Lett. 1981;23:203–8.
doi: 10.1016/0304-3940(81)90041-0
Becker JB, Beer ME. The influence of estrogen on nigrostriatal dopamine activity: behavioral and neurochemical evidence for both pre- and postsynaptic components. Behav Brain Res. 1986;19:27–33.
doi: 10.1016/0166-4328(86)90044-6
Forgie ML, Stewart J. Six differences in the locomotor-activating effects of amphetamine: role of circulating testosterone in adulthood. Physiol Behav. 1994;55:639–44.
doi: 10.1016/0031-9384(94)90038-8
Meisel RL, Joppa MA. Conditioned place preference in female hamsters following aggressive or sexual encounters. Physiol Behav. 1994;56:1115–8.
doi: 10.1016/0031-9384(94)90352-2
Borland JM, Frantz KJ, Aiani LM, Grantham KN, Song Z, Albers HE. A novel operant task to assess social reward and motivation in rodents. J Neurosci Methods. 2017;287:80–8. https://doi.org/10.1016/j.jneumeth.2017.06.003 .
doi: 10.1016/j.jneumeth.2017.06.003 pubmed: 28587895
Heth G, Todrank J, Johnston RE. Kin recognition in golden hamsters: evidence for phenotype matching. Anim Behav. 1998;56:409–17. https://doi.org/10.1006/anbe.1998.0747 .
doi: 10.1006/anbe.1998.0747 pubmed: 9787032
Johnston RE, Peng A. Memory for individuals: hamsters (Mesocricetus auratus) require contact to develop multicomponent representations (concepts) of others. J Comp Psychol. 2008;122:121–31. https://doi.org/10.1037/0735-7036.122.2.121 .
doi: 10.1037/0735-7036.122.2.121 pubmed: 18489228
Payne AP, Swanson HH. Agonistic behaviour between pairs of hamsters of the same and opposite sex in a neutral observation area. Behaviour. 1970;36:259–69.
doi: 10.1163/156853970X00402
Drickamer LC, Vandenbergh JG. Predictors of social dominance in the adult female golden hamster (Mesocricetus auratus). Anim Behav. 1973;21:564–70.
doi: 10.1016/S0003-3472(73)80017-X
Drickamer LC, Vandenbergh JG, Colby DR. Predictors of dominance in the male golden hamster (Mesocricetus auratus). Anim Behav. 1973;21:557–63.
doi: 10.1016/S0003-3472(73)80016-8
Borland JM, Grantham KN, Aiani LM, Frantz KJ, Albers HE. Role of oxytocin in the ventral tegmental area in social reinforcement. Psychoneuroendocrinology. 2018;95:128–37. https://doi.org/10.1016/j.psyneuen.2018.05.028 .
doi: 10.1016/j.psyneuen.2018.05.028 pubmed: 29852406
Weiss VG, Hofford RS, Yates JR, Jennings FC, Bardo MT. Sex differences in monoamines following amphetamine and social reward in adolescent rats. Exp Clin Psychopharmacol. 2015;23:197–205. https://doi.org/10.1037/pha0000026 .
doi: 10.1037/pha0000026 pubmed: 26237317 pmcid: 4523899
Raz S, Berger BD. Social isolation increases morphine intake: behavioral and psychopharmacological aspects. Behav Pharmacol. 2010;21:39–46. https://doi.org/10.1097/FBP.0b013e32833470bd .
doi: 10.1097/FBP.0b013e32833470bd pubmed: 19949320
Thiel KJ, Sanabria F, Pentkowski NS, Neisewander JL. Anti-craving effects of environmental enrichment. Int J Neuropsychopharmacol. 2009;12:1151–6. https://doi.org/10.1017/S1461145709990472 .
doi: 10.1017/S1461145709990472 pubmed: 19691875 pmcid: 2832121
Bregolin T, Pinheiro BS, El Rawas R, Zernig G. Preventive strength of dyadic social interaction against reacquisition/reexpression of cocaine conditioned place preference. Front Behav Neurosci. 2017;11:225 https://doi.org/10.3389/fnbeh.2017.00225 .
doi: 10.3389/fnbeh.2017.00225 pubmed: 29167636 pmcid: 5682322
Chauvet C, Lardeux V, Goldberg SR, Jaber M, Solinas M. Environmental enrichment reduces cocaine seeking and reinstatement induced by cues and stress but not by cocaine. Neuropsychopharmacology. 2009;34:2767–78. https://doi.org/10.1038/npp.2009.127 .
doi: 10.1038/npp.2009.127 pubmed: 19741591 pmcid: 3178884
Westenbroek C, Perry AN, Jagannathan L, Becker JB. Effect of social housing and oxytocin on the motivation to self-administer methamphetamine in female rats. Physiol Behav. 2017. https://doi.org/10.1016/j.physbeh.2017.10.020 .
doi: 10.1016/j.physbeh.2017.10.020 pubmed: 29055749
Bozarth MA, Murray A, Wise RA. Influence of housing conditions on the acquisition of intravenous heroin and cocaine self-administration in rats. Pharmacol Biochem Behav. 1989;33:903–7.
doi: 10.1016/0091-3057(89)90490-5
Carson DS, Guastella AJ, Taylor ER, McGregor IS. A brief history of oxytocin and its role in modulating psychostimulant effects. J Psychopharmacol. 2013;27:231–47. https://doi.org/10.1177/0269881112473788 .
doi: 10.1177/0269881112473788 pubmed: 23348754
Leong KC, Zhou L, Ghee SM, See RE, Reichel CM. Oxytocin decreases cocaine taking, cocaine seeking, and locomotor activity in female rats. Exp Clin Psychopharmacol. 2016;24:55–64. https://doi.org/10.1037/pha0000058 .
doi: 10.1037/pha0000058 pubmed: 26523890 pmcid: 4821810
Cox BM, Young AB, See RE, Reichel CM. Sex differences in methamphetamine seeking in rats: impact of oxytocin. Psychoneuroendocrinology. 2013;38:2343–53. https://doi.org/10.1016/j.psyneuen.2013.05.005 .
doi: 10.1016/j.psyneuen.2013.05.005 pubmed: 23764194 pmcid: 3775911
Becker JB. Sex differences in addiction. Dialog Clin Neurosci. 2016;18:395–402.
Flores RJ, Pipkin JA, Uribe KP, Perez A, O’Dell LE. Estradiol promotes the rewarding effects of nicotine in female rats. Behav Brain Res. 2016;307:258–63. https://doi.org/10.1016/j.bbr.2016.04.004 .
doi: 10.1016/j.bbr.2016.04.004 pubmed: 27059334 pmcid: 4883677
Dobkin PL, De CM, Paraherakis A, Gill K. The role of functional social support in treatment retention and outcomes among outpatient adult substance abusers. Addiction. 2002;97:347–56.
doi: 10.1046/j.1360-0443.2002.00083.x
Havassy BE, Wasserman DA, Hall SM. Social relationships and abstinence from cocaine in an American treatment sample. Addiction. 1995;90:699–710.
doi: 10.1111/j.1360-0443.1995.tb02208.x
Maldonado R, Robledo P, Chover AJ, Caine SB, Koob GF. D1 dopamine receptors in the nucleus accumbens modulate cocaine self-administration in the rat. Pharmacol Biochem Behav. 1993;45:239–42.
doi: 10.1016/0091-3057(93)90112-7
Doherty JM, Cooke BM, Frantz KJ. A role for the prefrontal cortex in heroin-seeking after forced abstinence by adult male rats but not adolescents. Neuropsychopharmacology. 2013;38:446–54. https://doi.org/10.1038/npp.2012.200 .
doi: 10.1038/npp.2012.200 pubmed: 23072838
Uhl GR, Drgonova J, Hall FS. Curious cases: altered dose-response relationships in addiction genetics. Pharmacol Ther. 2014;141:335–46. https://doi.org/10.1016/j.pharmthera.2013.10.013 .
doi: 10.1016/j.pharmthera.2013.10.013 pubmed: 24189489
Bardo MT, Neisewander JL, Kelly TH. Individual differences and social influences on the neurobehavioral pharmacology of abused drugs. Pharmacol Rev. 2013;65:255–90. https://doi.org/10.1124/pr.111.005124 .
doi: 10.1124/pr.111.005124 pubmed: 23343975 pmcid: 3565917
Zernig G, Pinheiro BS. Dyadic social interaction inhibits cocaine-conditioned place preference and the associated activation of the accumbens corridor. Behav Pharmacol. 2015;26:580–94. https://doi.org/10.1097/FBP.0000000000000167 .
doi: 10.1097/FBP.0000000000000167 pubmed: 26221832 pmcid: 4523229
Matthews TJ, Abdelbaky P, Pfaff DW. Social and sexual motivation in the mouse. Behav Neurosci. 2005;119:1628–39. https://doi.org/10.1037/0735-7044.119.6.1628 .
doi: 10.1037/0735-7044.119.6.1628 pubmed: 16420165
Liberzon I, Trujillo KA, Akil H, Young EA. Motivational properties of oxytocin in the conditioned place preference paradigm. Neuropsychopharmacology. 1997;17:353–9. https://doi.org/10.1016/S0893-133X(97)00070-5 .
doi: 10.1016/S0893-133X(97)00070-5 pubmed: 9397423
Donhoffner ME, Goings SP, Atabaki K, Wood, RI. Intracerebroventricular oxytocin self-administration in female rats. J Neuroendocrinol. 2016;28. https://doi.org/10.1111/jne.12416 .
Kent K, Arientyl V, Khachatryan MM, Wood RI. Oyxtocin induces a conditioned social preference in female mice. J Neuroendocrinol. 2013;25:803–10.
doi: 10.1111/jne.12075
Kosaki Y, Watanabe S. Conditioned social preference, but not place preference, produced by intranasal oxytocin in female mice. Behav. Neurosci. 2016;130:182–95.
doi: 10.1037/bne0000139
Li T, Chen X, Mascaro J, Haroon E, Rilling JK. Intranasal oxytocin, but not vasopressin, augments neural responses to toddlers in human fathers. Horm Behav. 2017;93:193–202. https://doi.org/10.1016/j.yhbeh.2017.01.006 .
doi: 10.1016/j.yhbeh.2017.01.006 pubmed: 28161387 pmcid: 5565399
Scheele D, Plota J, Stoffel-Wagner B, Maier W, Hurlemann R. Hormonal contraceptives suppress oxytocin-induced brain reward responses to the partner’s face. Soc Cogn Affect Neurosci. 2016;11:767–74. https://doi.org/10.1093/scan/nsv157 .
doi: 10.1093/scan/nsv157 pubmed: 26722017
Scheele D, Wille A, Kendrick KM, Stoffel-Wagner B, Becker B, Gunturkun O, et al. Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proc Natl Acad Sci USA. 2013;110:20308–13. https://doi.org/10.1073/pnas.1314190110 .
doi: 10.1073/pnas.1314190110 pubmed: 24277856
Weisman O, Zagoory-Sharon O, Feldman, R. Oxytocin administration to parent enhances infant physiological and behavioral readiness for social engagement. Biol Psychiatry. https://doi.org/10.1016/j.biopsych.2012.06.011.
doi: 10.1016/j.biopsych.2012.06.011
Gregory R, Cheng H, Rupp HA, Sengelaub DR, Heiman JR. Oxytocin increases VTA activation to infant and sexual stimuli in nulliparous and postpartum women. Horm Behav. 2015;69:82–8. https://doi.org/10.1016/j.yhbeh.2014.12.009 .
doi: 10.1016/j.yhbeh.2014.12.009 pubmed: 25562711 pmcid: 4418634
Hecht EE, Robins DL, Gautam P, King TZ. Intranasal oxytocin reduces social perception in women: neural activation and individual variation. Neuroimage. 2017;147:314–29. https://doi.org/10.1016/j.neuroimage.2016.12.046 .
doi: 10.1016/j.neuroimage.2016.12.046 pubmed: 27989775
Poldrack RA. Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron. 2011;72:692–7. https://doi.org/10.1016/j.neuron.2011.11.001 .
doi: 10.1016/j.neuron.2011.11.001 pubmed: 22153367 pmcid: 3240863
Feng C, Lori A, Waldman ID, Binder EB, Haroon E, Rilling JK. A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans. Genes Brain Behav. 2015;14:516–25. https://doi.org/10.1111/gbb.12234 .
doi: 10.1111/gbb.12234 pubmed: 26178189 pmcid: 4560652
Altemus M, Jacobson KR, Debellis M, Kling M, Pigott T, Murphy DL, et al. Normal CSF oxytocin and NPY levels in OCD. Biol Psychiatry. 1999;45:931–3.
doi: 10.1016/S0006-3223(98)00263-7
Cardoso C, Ellenbogen MA, Orlando MA, Bacon SL, Joober R. Intranasal oxytocin attenuates the cortisol response to physical stress: a dose-response study. Psychoneuroendocrinology. 2013;38:399–407. https://doi.org/10.1016/j.psyneuen.2012.07.013 .
doi: 10.1016/j.psyneuen.2012.07.013 pubmed: 22889586
Cardoso C, Orlando MA, Brown CA, Ellenbogen MA. Oxytocin and enhancement of the positive valence of social affiliation memories: an autobiographical memory study. Soc Neurosci. 2014;9:186–95. https://doi.org/10.1080/17470919.2013.873079 .
doi: 10.1080/17470919.2013.873079 pubmed: 24387003
Chen X, Gautam P, Haroon E, Rilling JK. Within vs. between-subject effects of intranasal oxytocin on the neural response to cooperative and non-cooperative social interactions. Psychoneuroendocrinology. 2017;78:22–30. https://doi.org/10.1016/j.psyneuen.2017.01.006 .
doi: 10.1016/j.psyneuen.2017.01.006 pubmed: 28142074 pmcid: 5362337
Rilling JK, Chen X, Chen X, Haroon E. Intranasal oxytocin modulates neural functional connectivity during human social interaction. Am J Primatol. 2018. In press.
Kreuder AK, Scheele D, Wassermann L, Wollseifer M, Stoffel-Wagner B, Lee MR, et al. How the brain codes intimacy: the neurobiological substrates of romantic touch. Hum Brain Mapp. 2017;38:4525–34. https://doi.org/10.1002/hbm.23679 .
doi: 10.1002/hbm.23679 pubmed: 28580708
Popik P, Vetulani J, van Ree JM. Low doses of oxytocin facilitate social recognition in rats. Psychopharmacology. 1992;106:71–4. PubMed:2018 Feb 10. doi: 10.1002/ajp.22740. [Epub ahead of print].
doi: 10.1007/BF02253591
Boccia MM, Kopf SR, Baratti CM. Effects of a single administration of oxytocin or vasopressin and their interactions with two selective receptor antagonists on memory storage in mice. Neurobiol Learn Mem. 1998;69:136–46. https://doi.org/10.1006/nlme.1997.3817 .
doi: 10.1006/nlme.1997.3817 pubmed: 9619993
Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord. 2012;4:19 https://doi.org/10.1186/1866-1955-4-19 .
doi: 10.1186/1866-1955-4-19 pubmed: 22958744 pmcid: 3464940
Cover KK, Maeng LY, Lebron-Milad K, Milad MR. Mechanisms of estradiol in fear circuitry: implications for sex differences in psychopathology. Transl Psychiatry. 2014;4:e422 https://doi.org/10.1038/tp.2014.67 .
doi: 10.1038/tp.2014.67 pubmed: 25093600 pmcid: 4150242
Gobinath AR, Choleris E, Galea LA. Sex, hormones, and genotype interact to influence psychiatric disease, treatment, and behavioral research. J Neurosci Res. 2017;95:50–64. https://doi.org/10.1002/jnr.23872 .
doi: 10.1002/jnr.23872 pubmed: 27870452
Ferri SL, Abel T, Brodkin ES. Sex differences in autism spectrum disorder: a review. Curr Psychiatry Rep. 2018;20:9 https://doi.org/10.1007/s11920-018-0874-2 .
doi: 10.1007/s11920-018-0874-2 pubmed: 29504047
Bangasser DA, Valentino RJ. Sex differences in stress-related psychiatric disorders: neurobiological perspectives. Front Neuroendocrinol. 2014;35:303–19. https://doi.org/10.1016/j.yfrne.2014.03.008 .
doi: 10.1016/j.yfrne.2014.03.008 pubmed: 24726661 pmcid: 4087049
McGregor IS, Bowen MT. Breaking the loop: oxytocin as a potential treatment for drug addiction. Horm Behav. 2012;61:331–9. https://doi.org/10.1016/j.yhbeh.2011.12.001 .
doi: 10.1016/j.yhbeh.2011.12.001 pubmed: 22198308
Rich ME, Caldwell HK. A role for oxytocin in the etiology and treatment of schizophrenia. Front Endocrinol. 2015;6:90 https://doi.org/10.3389/fendo.2015.00090 .
doi: 10.3389/fendo.2015.00090
Sippel LM, Allington CE, Pietrzak RH, Harpaz-Rotem I, Mayes LC, Olff M. Oxytocin and stress-related disorders: neurobiological mechanisms and treatment opportunities. Chronic Stress. 2017. 1. https://doi.org/10.1177/2470547016687996 .
doi: 10.1177/2470547016687996
Benner S, Yamasue H. Clinical potential of oxytocin in autism spectrum disorder: current issues and future perspectives. Behav Pharmacol. 2018;29:1–2. https://doi.org/10.1097/FBP.0000000000000341 .
doi: 10.1097/FBP.0000000000000341 pubmed: 28857771
Gottschalk MG, Domschke K. Oxytocin and anxiety disorders. Curr Top Behav Neurosci. 2017. https://doi.org/10.1007/7854_2017_25 .
doi: 10.1007/7854_2017_25
Leng G, Ludwig M. Intranasal oxytocin: myths and delusions. Biol Psychiatry. 2016;79:243–50. https://doi.org/10.1016/j.biopsych.2015.05.003 .
doi: 10.1016/j.biopsych.2015.05.003 pubmed: 26049207
Baumgartner T, Heinrichs M, Vonlanthen A, Fischbacher U, Fehr E. Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron. 2008;58:639–50. https://doi.org/10.1016/j.neuron.2008.04.009 .
doi: 10.1016/j.neuron.2008.04.009 pubmed: 18498743

Auteurs

Johnathan M Borland (JM)

Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.
Neuroscience Institute, Georgia State University, Atlanta, GA, USA.

James K Rilling (JK)

Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.
Anthropology, Emory University, Atlanta, GA, USA.
Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
Center for Translational and Social Neuroscience, Emory University, Atlanta, GA, USA.

Kyle J Frantz (KJ)

Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.
Neuroscience Institute, Georgia State University, Atlanta, GA, USA.

H Elliott Albers (HE)

Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA. biohea@gsu.edu.
Neuroscience Institute, Georgia State University, Atlanta, GA, USA. biohea@gsu.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH