Cardiomyocyte-specific deficiency of HSPB1 worsens cardiac dysfunction by activating NFκB-mediated leucocyte recruitment after myocardial infarction.
Animals
Cells, Cultured
Chemotaxis, Leukocyte
Cytokines
/ metabolism
Disease Models, Animal
HSP27 Heat-Shock Proteins
/ deficiency
Heart Rupture, Post-Infarction
/ immunology
Heat-Shock Proteins
/ deficiency
Leukocytes
/ immunology
Mice, Inbred C57BL
Mice, Knockout
Molecular Chaperones
/ genetics
Myocardial Infarction
/ immunology
Myocardial Reperfusion Injury
/ immunology
Myocytes, Cardiac
/ immunology
NF-kappa B
/ metabolism
Neovascularization, Physiologic
Rats, Sprague-Dawley
Signal Transduction
Ventricular Remodeling
Wound Healing
Journal
Cardiovascular research
ISSN: 1755-3245
Titre abrégé: Cardiovasc Res
Pays: England
ID NLM: 0077427
Informations de publication
Date de publication:
01 01 2019
01 01 2019
Historique:
received:
05
03
2018
accepted:
28
06
2018
pubmed:
10
7
2018
medline:
30
1
2020
entrez:
9
7
2018
Statut:
ppublish
Résumé
Inadequate healing after myocardial infarction (MI) leads to heart failure and fatal ventricular rupture, while optimal healing requires timely induction and resolution of inflammation. This study tested the hypothesis that heat shock protein B1 (HSPB1), which limits myocardial inflammation during endotoxemia, modulates wound healing after MI. To test this hypothesis, cardiomyocyte-specific HSPB1 knockout (Hspb1-/-) mice were generated using the Cre-LoxP recombination system. MI was induced by ligation of the left anterior descending coronary artery in Hspb1-/- and wild-type (WT) littermates. HSPB1 was up-regulated in cardiomyocytes of WT animals in response to MI, and deficiency of cardiomyocyte HSPB1 increased MI-induced cardiac rupture and mortality within 21 days after MI. Serial echocardiography showed more aggravated remodelling and cardiac dysfunction in Hspb1-/- mice than in WT mice at 1, 3, and 7 days after MI. Decreased collagen deposition and angiogenesis, as well as increased MMP2 and MMP9 activity, were also observed in Hspb1-/- mice compared with WT controls after MI, using immunofluorescence, polarized light microscopy, and zymographic analyses. Notably, Hspb1-/- hearts exhibited enhanced and prolonged leucocyte infiltration, enhanced expression of inflammatory cytokines, and enhanced TLR4/MyD88/NFκB activation compared with WT controls after MI. In-depth molecular analyses in both mice and primary cardiomyocytes demonstrated that cardiomyocyte-specific knockout of HSPB1 increased nuclear factor-κB (NFκB) activation, which promoted the expression of proinflammatory mediators. This led to increased leucocyte recruitment, thereby to excessive inflammation, ultimately resulting in adverse remodelling, cardiac dysfunction, and cardiac rupture following MI. These data suggest that HSPB1 acts as a negative regulator of NFκB-mediated leucocyte recruitment and the subsequent inflammation in cardiomyocytes. Cardiomyocyte HSPB1 is required for wound healing after MI and could be a target for myocardial repair in MI patients.
Identifiants
pubmed: 29982352
pii: 5047821
doi: 10.1093/cvr/cvy163
pmc: PMC6657285
doi:
Substances chimiques
Cytokines
0
HSP27 Heat-Shock Proteins
0
Heat-Shock Proteins
0
Hsbp1 protein, mouse
0
Hspb1 protein, rat
0
Molecular Chaperones
0
NF-kappa B
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
154-167Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM083016
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM119197
Pays : United States
Références
Circ Res. 1998 Jul 27;83(2):117-32
pubmed: 9686751
Nat Rev Drug Discov. 2006 Jul;5(7):549-63
pubmed: 16773072
J Biol Chem. 2012 Aug 10;287(33):27480-9
pubmed: 22753411
Transplantation. 2014 Jul 15;98(1):29-38
pubmed: 24879379
Nat Med. 2011 May;17(5):581-8
pubmed: 21516086
Basic Res Cardiol. 2004 Nov;99(6):392-4
pubmed: 15309411
Circ Res. 2013 Feb 15;112(4):675-88
pubmed: 23261783
Cardiol Rev. 2009 Nov-Dec;17(6):293-9
pubmed: 19829180
Cardiovasc Res. 2011 Jan 1;89(1):129-38
pubmed: 20797985
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19725-30
pubmed: 22106299
Circ Heart Fail. 2014 Jan;7(1):161-71
pubmed: 24300243
Shock. 2009 Jul;32(1):108-17
pubmed: 19106822
Circulation. 2012 Sep 11;126(11 Suppl 1):S222-30
pubmed: 22965987
Microcirculation. 2017 Jan;24(1):
pubmed: 27542099
J Mol Cell Cardiol. 2015 May;82:1-12
pubmed: 25736854
Sci Rep. 2016 Sep 20;6:33636
pubmed: 27644317
Circ Heart Fail. 2015 Sep;8(5):970-9
pubmed: 26136458
Pharmacol Ther. 2012 May;134(2):156-79
pubmed: 22260952
Nat Rev Cardiol. 2014 May;11(5):255-65
pubmed: 24663091
Circ Res. 2016 Jun 24;119(1):91-112
pubmed: 27340270
Curr Pharm Des. 2014;20(12):1971-9
pubmed: 23844733
Circulation. 2006 Mar 7;113(9):1196-202
pubmed: 16505171
Circ Res. 2006 Mar 17;98(5):617-25
pubmed: 16484616
J Clin Invest. 1994 Oct;94(4):1629-36
pubmed: 7929839
Int Heart J. 2014;55(4):379
pubmed: 24942779
Circ Res. 2009 Nov 6;105(10):973-83
pubmed: 19797174
J Mol Cell Cardiol. 2007 Nov;43(5):535-44
pubmed: 17689559
Cardiovasc Res. 2013 Sep 1;99(4):674-84
pubmed: 23729663
J Clin Invest. 1999 Aug;104(3):271-80
pubmed: 10430608
Eur J Heart Fail. 2009 Feb;11(2):119-29
pubmed: 19168509
Circulation. 2004 Dec 7;110(23):3544-52
pubmed: 15569832
Eur J Heart Fail. 2007 Aug;9(8):762-9
pubmed: 17481944
Trends Cardiovasc Med. 2011 Feb;21(2):37-41
pubmed: 22578238
Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1337-44
pubmed: 16632551
Circulation. 1979 Dec;60(7):1532-8
pubmed: 498481
Int Heart J. 2014;55(2):101-5
pubmed: 24632952
Oxid Med Cell Longev. 2016;2016:2586706
pubmed: 27110324
Circulation. 2017 Mar 7;135(10):e146-e603
pubmed: 28122885
Circ Res. 2013 Dec 6;113(12):1331-44
pubmed: 24081879