Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis.


Journal

Plant biotechnology journal
ISSN: 1467-7652
Titre abrégé: Plant Biotechnol J
Pays: England
ID NLM: 101201889

Informations de publication

Date de publication:
03 2019
Historique:
received: 21 12 2017
revised: 11 07 2018
accepted: 13 08 2018
pubmed: 19 8 2018
medline: 21 5 2019
entrez: 19 8 2018
Statut: ppublish

Résumé

Interfamily transfer of plant pattern recognition receptors (PRRs) represents a promising biotechnological approach to engineer broad-spectrum, and potentially durable, disease resistance in crops. It is however unclear whether new recognition specificities to given pathogen-associated molecular patterns (PAMPs) affect the interaction of the recipient plant with beneficial microbes. To test this in a direct reductionist approach, we transferred the Brassicaceae-specific PRR ELONGATION FACTOR-THERMO UNSTABLE RECEPTOR (EFR), conferring recognition of the bacterial EF-Tu protein, from Arabidopsis thaliana to the legume Medicago truncatula. Constitutive EFR expression led to EFR accumulation and activation of immune responses upon treatment with the EF-Tu-derived elf18 peptide in leaves and roots. The interaction of M. truncatula with the bacterial symbiont Sinorhizobium meliloti is characterized by the formation of root nodules that fix atmospheric nitrogen. Although nodule numbers were slightly reduced at an early stage of the infection in EFR-Medicago when compared to control lines, nodulation was similar in all lines at later stages. Furthermore, nodule colonization by rhizobia, and nitrogen fixation were not compromised by EFR expression. Importantly, the M. truncatula lines expressing EFR were substantially more resistant to the root bacterial pathogen Ralstonia solanacearum. Our data suggest that the transfer of EFR to M. truncatula does not impede root nodule symbiosis, but has a positive impact on disease resistance against a bacterial pathogen. In addition, our results indicate that Rhizobium can either avoid PAMP recognition during the infection process, or is able to actively suppress immune signaling.

Identifiants

pubmed: 30120864
doi: 10.1111/pbi.12999
pmc: PMC6381793
doi:

Substances chimiques

Arabidopsis Proteins 0
EFR protein, Arabidopsis 0
Receptors, Pattern Recognition 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

569-579

Subventions

Organisme : Norwich Research Park
Pays : International
Organisme : BBSRC Institute Strategic Program
ID : BB/J004553/1
Pays : International
Organisme : Gatsby Charitable Foundation
Pays : International
Organisme : Laboratoire d'Excellence (LABEX) TULIP
ID : ANR-10-LABX-41
Pays : International

Informations de copyright

© 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

Références

Mol Plant Microbe Interact. 2017 Jul;30(7):515-516
pubmed: 28398839
Annu Rev Plant Biol. 2009;60:379-406
pubmed: 19400727
Cell. 2015 Oct 22;163(3):607-19
pubmed: 26456113
Curr Opin Plant Biol. 2017 Aug;38:42-49
pubmed: 28472757
Mol Plant Microbe Interact. 2007 Feb;20(2):159-67
pubmed: 17313167
Plant Cell Environ. 2019 Jan;42(1):41-51
pubmed: 29808564
Curr Opin Microbiol. 2015 Feb;23:14-22
pubmed: 25461568
Annu Rev Phytopathol. 2017 Aug 4;55:565-589
pubmed: 28645232
Annu Rev Genet. 2008;42:413-41
pubmed: 18983260
PLoS Genet. 2015 Jun 04;11(6):e1005280
pubmed: 26042417
Mol Cells. 2017 Jan;40(1):17-23
pubmed: 28152300
Proteomics. 2005 Jan;5(1):153-67
pubmed: 15619296
Plant Physiol. 2007 Feb;143(2):825-37
pubmed: 17220366
Science. 2013 Aug 16;341(6147):746-51
pubmed: 23950531
Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15244-9
pubmed: 26401024
New Phytol. 2015 Apr;206(2):606-13
pubmed: 25760815
PLoS Pathog. 2012;8(5):e1002707
pubmed: 22615567
Mol Plant Microbe Interact. 2017 Jan;30(1):5-15
pubmed: 27925500
Nat Plants. 2015 Oct 05;1:15140
pubmed: 27251392
Plant Biotechnol J. 2014 Aug;12(6):663-73
pubmed: 24612254
Nat Biotechnol. 2010 Apr;28(4):365-9
pubmed: 20231819
New Phytol. 2016 Oct;212(1):176-91
pubmed: 27245091
J Bacteriol. 2008 Jul;190(14):5101-10
pubmed: 18487326
Mol Plant Microbe Interact. 2003 Jan;16(1):53-64
pubmed: 12580282
New Phytol. 2013 Mar;197(4):1250-61
pubmed: 23278348
New Phytol. 2014 Sep;203(4):1305-14
pubmed: 24916161
J Integr Plant Biol. 2015 Jul;57(7):641-52
pubmed: 25358295
PLoS Pathog. 2015 Jan 21;11(1):e1004602
pubmed: 25607985
Nucleic Acids Res. 1985 Aug 26;13(16):5965-76
pubmed: 2994020
Science. 2007 Jan 5;315(5808):101-4
pubmed: 17110535
Methods Mol Biol. 2006;343:115-27
pubmed: 16988338
Front Plant Sci. 2015 Jul 01;6:491
pubmed: 26191069
Mol Plant Pathol. 2012 Aug;13(6):614-29
pubmed: 22672649
Plant Physiol. 2010 Feb;152(2):541-52
pubmed: 19933387
Proteomics. 2004 Oct;4(10):3177-86
pubmed: 15378709
Science. 2013 Sep 20;341(6152):1384-7
pubmed: 24009356
Plant Physiol. 2006 Jan;140(1):221-34
pubmed: 16377745
Nat Commun. 2010 Apr 12;1:10
pubmed: 20975672
Annu Rev Plant Biol. 2017 Apr 28;68:535-561
pubmed: 28142283
Biochem J. 2015 Sep 15;470(3):263-74
pubmed: 26341483
Curr Biol. 2008 Jul 22;18(14):1078-83
pubmed: 18639458
Nat Plants. 2015 Mar 30;1(4):15034
pubmed: 27247034
Plant Cell. 2014 Dec;26(12):4680-701
pubmed: 25527707
Nature. 2017 Mar 15;543(7645):328-336
pubmed: 28300100
Nature. 2006 Jun 29;441(7097):1153-6
pubmed: 16810257
Nature. 2015 Jul 16;523(7560):308-12
pubmed: 26153863
Mol Plant Pathol. 2016 Oct;17(8):1298-313
pubmed: 27170435
Mol Microbiol. 2005 Sep;57(5):1304-17
pubmed: 16102002
New Phytol. 2011 Dec;192(4):976-87
pubmed: 21902695
J Exp Bot. 2015 Apr;66(7):1977-85
pubmed: 25682610
J Bacteriol. 2007 Mar;189(5):2133-8
pubmed: 17158676
J Exp Bot. 2012 Jan;63(1):393-401
pubmed: 21934117
Annu Rev Genet. 2011;45:119-44
pubmed: 21838550
Plant J. 1999 May;18(3):265-76
pubmed: 10377992
Plant Cell. 2004 Dec;16(12):3496-507
pubmed: 15548740
Cell. 2006 May 19;125(4):749-60
pubmed: 16713565
PLoS Pathog. 2015 Mar 30;11(3):e1004809
pubmed: 25821973
Trends Plant Sci. 2015 Mar;20(3):186-94
pubmed: 25543258
Sci Adv. 2015 Jul 24;1(6):e1500245
pubmed: 26601222
Mol Plant Microbe Interact. 2016 May;29(5):374-84
pubmed: 26926999
J Biol Chem. 2016 Sep 30;291(40):20946-20961
pubmed: 27502279
Annu Rev Plant Biol. 2013;64:781-805
pubmed: 23451778
Annu Rev Genet. 2016 Nov 23;50:211-234
pubmed: 27648643
Front Microbiol. 2017 May 30;8:973
pubmed: 28611764
Trends Microbiol. 2004 Dec;12(12):555-61
pubmed: 15539115
J Exp Bot. 2016 Apr;67(8):2483-94
pubmed: 26931172
New Phytol. 2018 Jul;219(1):310-323
pubmed: 29668080
Mol Plant Microbe Interact. 2017 Jan;30(1):28-34
pubmed: 27918247
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):704-9
pubmed: 18184805
Plant J. 2018 Jan;93(1):166-180
pubmed: 29024173
Annu Rev Phytopathol. 2017 Aug 4;55:257-286
pubmed: 28617654
BMC Plant Biol. 2013 Oct 11;13:157
pubmed: 24119289
Genome Biol. 2013 Feb 20;14(2):R17
pubmed: 23425606
Nature. 2003 Oct 9;425(6958):585-92
pubmed: 14534578

Auteurs

Sebastian Pfeilmeier (S)

The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.
John Innes Centre, Norwich Research Park, Norwich, UK.

Jeoffrey George (J)

The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.

Arry Morel (A)

INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR441, Castanet-Tolosan, France.
CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR2594, Castanet-Tolosan, France.

Sonali Roy (S)

John Innes Centre, Norwich Research Park, Norwich, UK.

Matthew Smoker (M)

The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.

Lena Stransfeld (L)

The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.
Institute of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.

J Allan Downie (JA)

John Innes Centre, Norwich Research Park, Norwich, UK.

Nemo Peeters (N)

INRA, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR441, Castanet-Tolosan, France.
CNRS, Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR2594, Castanet-Tolosan, France.

Jacob G Malone (JG)

John Innes Centre, Norwich Research Park, Norwich, UK.
School of Biological Sciences, University of East Anglia, Norwich, UK.

Cyril Zipfel (C)

The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.
Institute of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger

Classifications MeSH