Localized recombination drives diversification of killing spectra for phage-derived syringacins.


Journal

The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086

Informations de publication

Date de publication:
02 2019
Historique:
received: 12 01 2018
accepted: 06 07 2018
revised: 16 05 2018
pubmed: 2 9 2018
medline: 12 7 2019
entrez: 2 9 2018
Statut: ppublish

Résumé

To better understand the potential for antagonistic interactions between members of the same bacterial species, we have surveyed bacteriocin killing activity across a diverse suite of strains of the phytopathogen Pseudomonas syringae. Our data demonstrate that killing activity from phage-derived bacteriocins of P. syringae (R-type syringacins) is widespread. Despite a high overall diversity of bacteriocin activity, strains can broadly be classified into five main killing types and two main sensitivity types. Furthermore, we show that killing activity switches frequently between strains and that switches correlate with localized recombination of two genes that together encode the proteins that specify bacteriocin targeting. Lastly, we demonstrate that phage-derived bacteriocin killing activity can be swapped between strains simply through expression of these two genes in trans. Overall, our study characterizes extensive diversity of killing activity for phage-derived bacteriocins of P. syringae across strains and highlights the power of localized recombination to alter phenotypes that mediate strain interactions during evolution of natural populations and communities.

Identifiants

pubmed: 30171255
doi: 10.1038/s41396-018-0261-3
pii: 10.1038/s41396-018-0261-3
pmc: PMC6331570
doi:

Substances chimiques

Bacteriocins 0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

237-249

Références

Am Nat. 2011 Dec;178(6):E162-73
pubmed: 22089878
Genome Biol Evol. 2017 Apr 1;9(4):932-944
pubmed: 28369338
Proc Natl Acad Sci U S A. 1989 Jul;86(14):5492-6
pubmed: 2664785
Can J Microbiol. 1972 Jun;18(6):705-13
pubmed: 4556096
Annu Rev Microbiol. 2002;56:117-37
pubmed: 12142491
Ecol Evol. 2012 Oct;2(10):2521-6
pubmed: 23145336
Microbiology. 2004 Jul;150(Pt 7):2161-2169
pubmed: 15256559
Cell Rep. 2014 Jan 30;6(2):293-300
pubmed: 24412364
Nat Rev Microbiol. 2013 Feb;11(2):95-105
pubmed: 23268227
J Bacteriol. 2010 Apr;192(7):1921-8
pubmed: 20118263
Science. 2015 Nov 6;350(6261):663-6
pubmed: 26542567
Infect Immun. 1999 Feb;67(2):717-25
pubmed: 9916082
Annu Rev Virol. 2017 Sep 29;4(1):453-467
pubmed: 28961412
mBio. 2015 Aug 11;6(4):e00452
pubmed: 26265717
Mol Plant Pathol. 2017 Jan;18(1):152-168
pubmed: 27798954
Mol Microbiol. 2018 Apr;108(1):6-15
pubmed: 29405518
Mol Microbiol. 2006 Oct;62(1):26-44
pubmed: 16942603
Trends Microbiol. 2015 Oct;23(10):606-617
pubmed: 26422463
Adv Exp Med Biol. 2012;726:93-114
pubmed: 22297511
mBio. 2015 Mar 24;6(2):
pubmed: 25805733
Am Nat. 2011 Apr;177(4):440-51
pubmed: 21460566
Appl Environ Microbiol. 2002 Mar;68(3):1403-7
pubmed: 11872493
Appl Environ Microbiol. 2005 Jul;71(7):3581-8
pubmed: 16000765
Trends Genet. 2016 Apr;32(4):189-200
pubmed: 26916078
Nat Immunol. 2015 Apr;16(4):426-33
pubmed: 25729922
Trends Microbiol. 2015 Oct;23(10):587-590
pubmed: 26433692
Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3
pubmed: 18792934
Bioinformatics. 2003 Aug 12;19(12):1572-4
pubmed: 12912839
Genome Biol. 2019 Jan 3;20(1):3
pubmed: 30606234
Curr Biol. 2009 Sep 29;19(18):1586-90
pubmed: 19747826
Nat Ecol Evol. 2017 Nov;1(11):1606-1615
pubmed: 29038487
Mol Plant Microbe Interact. 2012 Jul;25(7):877-88
pubmed: 22414441
J Vis Exp. 2017 Jan 14;(119):
pubmed: 28117830
J Bacteriol. 1993 Mar;175(5):1257-63
pubmed: 8444788
Front Microbiol. 2014 May 26;5:241
pubmed: 24904554
PLoS One. 2014 Sep 03;9(9):e105547
pubmed: 25184292
Nat Rev Microbiol. 2014 Jul;12(7):465-78
pubmed: 24861036
Can J Microbiol. 1978 Jan;24(1):14-8
pubmed: 754872
Appl Environ Microbiol. 2008 Jun;74(12):3868-76
pubmed: 18441117

Auteurs

David A Baltrus (DA)

School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA. baltrus@email.arizona.edu.
School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA. baltrus@email.arizona.edu.

Meara Clark (M)

School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.

Caitlin Smith (C)

School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.

Kevin L Hockett (KL)

Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA.
The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Host Specificity Bacteriophages Genomics Algorithms Escherichia coli
Animals Enterococcus faecalis Levodopa Bacteriophages Gastrointestinal Microbiome
Shiga-Toxigenic Escherichia coli O Antigens Bacteriophages Genome, Viral Host Specificity

Classifications MeSH