Improved Automatic Morphology-Based Classification of Parkinson's Disease and Progressive Supranuclear Palsy.
Adult
Aged
Brain
/ diagnostic imaging
Diagnosis, Computer-Assisted
/ methods
Diagnosis, Differential
Female
Humans
Image Interpretation, Computer-Assisted
/ methods
Magnetic Resonance Imaging
/ methods
Male
Mental Status and Dementia Tests
Middle Aged
Parkinson Disease
/ diagnostic imaging
Severity of Illness Index
Support Vector Machine
Supranuclear Palsy, Progressive
/ diagnostic imaging
Computer-assisted image Analysis
Magnetic resonance imaging
Parkinson’s disease
Progressive supranuclear palsy
T1 image sequences
Journal
Clinical neuroradiology
ISSN: 1869-1447
Titre abrégé: Clin Neuroradiol
Pays: Germany
ID NLM: 101526693
Informations de publication
Date de publication:
Dec 2019
Dec 2019
Historique:
received:
04
04
2018
accepted:
25
08
2018
pubmed:
16
9
2018
medline:
21
4
2020
entrez:
16
9
2018
Statut:
ppublish
Résumé
The overlapping symptoms of Parkinson's disease (PD) and progressive supranuclear palsy-Richardson's syndrome (PSP-RS) often make a correct clinical diagnosis difficult. The volume of subcortical brain structures derived from high-resolution T1-weighted magnetic resonance imaging (MRI) datasets is frequently used for individual level classification of PD and PSP-RS patients. The aim of this study was to evaluate the benefit of including additional morphological features beyond the simple regional volume, as well as clinical features, and morphological features of cortical structures for an automatic classification of PD and PSP-RS patients. A total of 98 high-resolution T1-weighted MRI datasets from 76 PD patients, and 22 PSP-RS patients were available for this study. Using an atlas-based approach, the volume, surface area, and surface-area-to-volume ratio (SA:V) of 21 subcortical and 48 cortical brain regions were calculated and used as features for a support vector machine classification after application of a RELIEF feature selection method. The comparison of the classification results suggests that including all three morphological parameters (volume, surface area and SA:V) can considerably improve classification accuracy compared to using volume or surface area alone. Likewise, including clinical patient features in addition to morphological parameters also considerably increases the classification accuracy. In contrast to this, integrating morphological features of other cortical structures did not lead to improved classification accuracy. Using this optimal set-up, an accuracy of 98% was achieved with only one falsely classified PD and one falsely classified PSP-RS patient. The results of this study suggest that clinical features as well as more advanced morphological features should be used for future computer-aided diagnosis systems to differentiate PD and PSP-RS patients based on morphological parameters.
Identifiants
pubmed: 30218110
doi: 10.1007/s00062-018-0727-8
pii: 10.1007/s00062-018-0727-8
doi:
Types de publication
Evaluation Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
605-614Commentaires et corrections
Type : CommentIn
Références
Hum Brain Mapp. 2011 Nov;32(11):1905-15
pubmed: 21246668
J Neurosci Methods. 2014 Jan 30;222:230-7
pubmed: 24286700
Neurology. 1996 Jul;47(1):1-9
pubmed: 8710059
Comput Methods Programs Biomed. 2010 Jun;98(3):278-84
pubmed: 19818524
Radiology. 2008 Jan;246(1):214-21
pubmed: 17991785
Arq Neuropsiquiatr. 2010 Jun;68(3):333-8
pubmed: 20602031
Mov Disord. 2014 Feb;29(2):266-9
pubmed: 24323617
Front Behav Neurosci. 2012 Dec 13;6:88
pubmed: 23248593
BMC Neurol. 2012 Oct 02;12:116
pubmed: 23031506
PLoS One. 2014 Dec 02;9(12):e114167
pubmed: 25463618
Brain. 2010 Nov;133(11):3423-33
pubmed: 20736190
Neuroradiology. 2017 May;59(5):431-443
pubmed: 28386688
J Neurol. 2013 Aug;260(8):2094-101
pubmed: 23670309
J Neurol. 1997 Jan;244(1):2-8
pubmed: 9007738
Lancet Neurol. 2010 Feb;9(2):149-58
pubmed: 20061183
AJNR Am J Neuroradiol. 2017 May;38(5):966-972
pubmed: 28364007
Acad Radiol. 2009 Jan;16(1):61-70
pubmed: 19064213
Lancet Neurol. 2006 Jan;5(1):75-86
pubmed: 16361025
Comput Math Methods Med. 2013;2013:571289
pubmed: 23573171
Neuroimage. 2011 Mar 15;55(2):462-7
pubmed: 21184830
Neurology. 2016 Mar 29;86(13):1242-9
pubmed: 26935895
Int J Med Inform. 2016 Jun;90:13-21
pubmed: 27103193
Neuroimage. 2004 Oct;23(2):663-9
pubmed: 15488416
Parkinsonism Relat Disord. 2017 Dec;45:50-56
pubmed: 29037499
PLoS One. 2016 Feb 26;11(2):e0148852
pubmed: 26919667
Mov Disord. 2015 Oct;30(12):1591-601
pubmed: 26474316
Neuroradiology. 1996 Apr;38(3):199-206
pubmed: 8741186
Methods Inf Med. 2013;52(2):128-36
pubmed: 23450335
Brain. 2002 Apr;125(Pt 4):861-70
pubmed: 11912118
Front Aging Neurosci. 2016 Jan 19;7:250
pubmed: 26834623
Lancet Neurol. 2017 Jul;16(7):552-563
pubmed: 28653647
Br Med Bull. 2008;86:109-27
pubmed: 18398010
Philos Trans R Soc Lond B Biol Sci. 2001 Aug 29;356(1412):1293-322
pubmed: 11545704
Brain. 2009 Jan;132(Pt 1):156-71
pubmed: 19029129
Mov Disord. 2012 Mar;27(3):421-7
pubmed: 22290788
Neuroimage. 2004 Jan;21(1):229-35
pubmed: 14741660
J Med Syst. 2015 Nov;39(11):179
pubmed: 26420585
Brain. 2016 Feb;139(Pt 2):495-508
pubmed: 26705348
Neurobiol Aging. 2009 Mar;30(3):432-40
pubmed: 17869384
Parkinsonism Relat Disord. 2011 Mar;17(3):172-6
pubmed: 21236720
Mov Disord. 2008 Nov 15;23(15):2194-201
pubmed: 18932271
Front Comput Neurosci. 2015 Nov 05;9:137
pubmed: 26594165