The interaction between AtMT2b and AtVDAC3 affects the mitochondrial membrane potential and reactive oxygen species generation under NaCl stress in Arabidopsis.
Arabidopsis
/ metabolism
Arabidopsis Proteins
/ metabolism
Gene Knockdown Techniques
Hydrogen Peroxide
/ metabolism
Membrane Potential, Mitochondrial
Metallothionein
/ metabolism
Plants, Genetically Modified
Reactive Oxygen Species
/ metabolism
Real-Time Polymerase Chain Reaction
Salt Stress
Two-Hybrid System Techniques
Voltage-Dependent Anion Channels
/ metabolism
Gene expression
Metallothionein
Mitochondria
Protein interaction
Salt tolerance
Voltage-dependent anion channel
Journal
Planta
ISSN: 1432-2048
Titre abrégé: Planta
Pays: Germany
ID NLM: 1250576
Informations de publication
Date de publication:
Feb 2019
Feb 2019
Historique:
received:
14
05
2018
accepted:
13
09
2018
pubmed:
19
9
2018
medline:
12
3
2019
entrez:
19
9
2018
Statut:
ppublish
Résumé
AtMT2b interacts with AtVDAC3 in mitochondria in Arabidopsis. The overexpression of the AtMT2b and AtVDAC3 T-DNA insertion mutant confers tolerance to NaCl stress in Arabidopsis. Both AtMT2b and AtVDAC3 are involved in the regulation of the mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) under NaCl stress. Metallothioneins (MTs) are small, cysteine rich, metal-binding proteins that perform multiple functions, such as heavy metal detoxification and reactive oxygen species (ROS) scavenging. MTs have been reported to be involved in mitochondrial function in mammals. However, whether a direct relationship exists between MTs and mitochondrial proteins remains unclear. In the present study, we used yeast two-hybrid and bimolecular fluorescence complementation assays to demonstrate that AtMT2b, which is a type 2 MT in Arabidopsis, interacts with the outer mitochondrial membrane voltage-dependent anion channel AtVDAC3. AtMT2b bound AtVDAC3, leading to its co-localization in mitochondria. AtMT2b transgenic seedlings exhibited increased tolerance to salt stress, and the atvdac3 mutant showed a similar phenotype. The mitochondrial membrane potential (MMP) was maintained, and ROS generation was reduced following AtMT2b overexpression and AtVDAC3 knockout under NaCl stress. Both AtMT2b and AtVDAC3 were shown to be involved in MMP regulation and ROS production under NaCl stress but showed opposite effects. We conclude that AtMT2b might negatively interact with AtVDAC3 in mitochondria, and both proteins are involved in the regulation of MMP and ROS under NaCl stress.
Identifiants
pubmed: 30225672
doi: 10.1007/s00425-018-3010-y
pii: 10.1007/s00425-018-3010-y
doi:
Substances chimiques
Arabidopsis Proteins
0
MT2b protein, Arabidopsis
0
Reactive Oxygen Species
0
VDAC3 protein, Arabidopsis
0
Voltage-Dependent Anion Channels
0
Metallothionein
9038-94-2
Hydrogen Peroxide
BBX060AN9V
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
417-429Subventions
Organisme : Changjiang Scholars and Innovative Research Team in University (PCSIRT)
ID : IRT_17R99
Organisme : Fundamental Research Funds for the Central Universities
ID : 2572014DA06
Références
Plant J. 1998 Dec;16(6):735-43
pubmed: 10069079
FEBS Lett. 1999 Oct 8;459(2):149-53
pubmed: 10518009
Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2317-22
pubmed: 11226237
J Toxicol Environ Health A. 2001 Jun 8;63(3):221-35
pubmed: 11405417
J Pharmacol Exp Ther. 2001 Aug;298(2):461-8
pubmed: 11454906
Life Sci. 2001 Sep 21;69(18):2137-46
pubmed: 11669457
J Biol Chem. 2003 Feb 21;278(8):5557-63
pubmed: 12482755
Biochim Biophys Acta. 2003 Jan 3;1625(1):43-51
pubmed: 12527425
Oncogene. 2004 Feb 12;23(6):1239-47
pubmed: 14647451
Plant Physiol. 2004 Jan;134(1):182-93
pubmed: 14657408
J Biol Chem. 2004 Apr 23;279(17):17197-204
pubmed: 14963044
J Inorg Biochem. 2004 Apr;98(4):664-6
pubmed: 15041247
Biochem Biophys Res Commun. 2005 Jul 8;332(3):853-8
pubmed: 15913554
Biol Pharm Bull. 2006 Oct;29(10):2016-20
pubmed: 17015943
Plant Physiol Biochem. 2006 Jul-Sep;44(7-9):483-93
pubmed: 17023166
J Am Coll Cardiol. 2006 Oct 17;48(8):1688-97
pubmed: 17045908
Diabetes. 2007 Sep;56(9):2201-12
pubmed: 17575086
Nat Protoc. 2007;2(7):1565-72
pubmed: 17585298
Biochim Biophys Acta. 2007 Oct;1768(10):2510-5
pubmed: 17617374
Arch Biochem Biophys. 2007 Nov 1;467(1):31-40
pubmed: 17889825
J Bioenerg Biomembr. 2008 Jun;40(3):163-70
pubmed: 18654841
Plant Cell Rep. 2009 Jan;28(1):41-51
pubmed: 18953543
J Exp Bot. 2009;60(1):339-49
pubmed: 19033550
Mol Cells. 2009 Mar 31;27(3):321-7
pubmed: 19326079
Int J Mol Sci. 2009 May 26;10(6):2476-86
pubmed: 19582214
Plant Cell Rep. 2009 Sep;28(9):1301-8
pubmed: 19585120
Curr Protein Pept Sci. 2010 Jun;11(4):292-309
pubmed: 20408794
Toxicol In Vitro. 2010 Sep;24(6):1584-91
pubmed: 20600803
Plant Cell. 2011 Mar;23(3):1093-106
pubmed: 21406623
J Exp Bot. 2011 Oct;62(14):4773-85
pubmed: 21705391
J Membr Biol. 2011 Nov;244(2):67-80
pubmed: 22057934
Plant Mol Biol. 2012 Mar;78(4-5):431-46
pubmed: 22294207
FEBS Lett. 2012 Mar 23;586(6):693-8
pubmed: 22449965
Hepatology. 2013 Jan;57(1):93-102
pubmed: 22814966
Protoplasma. 2013 Aug;250(4):875-84
pubmed: 23247919
Toxicology. 2013 Mar 8;305:20-9
pubmed: 23333424
Int J Mol Sci. 2013 Jan 04;14(1):701-13
pubmed: 23344040
Apoptosis. 2013 Aug;18(8):917-24
pubmed: 23568336
Anal Biochem. 1990 May 15;187(1):129-32
pubmed: 2372108
Proteomics. 2014 Jun;14(11):1343-56
pubmed: 24616286
PLoS One. 2014 Sep 05;9(9):e106941
pubmed: 25192453
FEBS Lett. 2015 May 8;589(11):1207-13
pubmed: 25862497
Plant Physiol. 2016 Mar;170(3):1611-23
pubmed: 26697896
Biophys J. 1997 May;72(5):1954-62
pubmed: 9129800
J Biol Chem. 1997 Jul 25;272(30):18966-73
pubmed: 9228078
Biophys J. 1998 May;74(5):2365-73
pubmed: 9591663
J Surg Res. 1998 Feb 15;75(1):30-4
pubmed: 9614853
J Surg Res. 1998 Nov;80(1):16-21
pubmed: 9790809