Deoxynivalenol decreased intestinal immune function related to NF-κB and TOR signalling in juvenile grass carp (Ctenopharyngodon idella).


Journal

Fish & shellfish immunology
ISSN: 1095-9947
Titre abrégé: Fish Shellfish Immunol
Pays: England
ID NLM: 9505220

Informations de publication

Date de publication:
Jan 2019
Historique:
received: 28 06 2018
revised: 04 10 2018
accepted: 15 10 2018
pubmed: 20 10 2018
medline: 23 3 2019
entrez: 20 10 2018
Statut: ppublish

Résumé

Deoxynivalenol (DON) is one of the most common mycotoxins in animal feed worldwide and causes significant threats to the animal production. The intestine is an important mucosal immune organ in teleost, and it is also the first target for feed-borne toxicants in animal. However, studies concerning the effect of DON on fish intestine are scarce. This study explored the effects of DON on intestinal immune function in juvenile grass carp (Ctenopharyngodon idella). A total of 1440 juvenile grass carp (12.17 ± 0.01 g) were fed six diets containing graded levels of DON (27, 318, 636, 922, 1243 and 1515 μg/kg diet) for 60 days. After the growth trial, fish were challenged with Aeromonas hydrophila. The results were analysed by the Duncan's multiple-range test (P < 0.05), indicating that compared with the control group (27 μg/kg diet), dietary DON levels up to 318 μg/kg diet: (1) decreased lysozyme (LZ) and acid phosphatase (ACP) activities, as well as complement 3 (C3), C4 and immunoglobulin M (IgM) content in the proximal intestine (PI), middle intestine (MI) and distal intestine (DI) of juvenile grass carp (P < 0.05); (2) down-regulated the mRNA levels of anti-microbial substance: liver expressed antimicrobial peptide (LEAP) -2A, LEAP-2B, hepcidin, β-defensin-1 and mucin2 in the PI, MI and DI of juvenile grass carp (P < 0.05); (3) up-regulated the mRNA levels of pro-inflammatory cytokines [interleukin 1β (IL-1β), tumour necrosis factor α (TNF-α), interferon γ2 (INF-γ2), IL-6 (only in PI), IL-8, IL-12p35, IL-12p40, IL-15 and IL-17D] in the PI, MI and DI of juvenile grass carp (P < 0.05), which might be partly related to nuclear factor kappa B (NF-κB) signalling [IκB kinase β (IKKβ) and IKKγ/inhibitor of κBα (IκBα)/NF-κB (p65 and c-Rel)]; and (4) down-regulated the mRNA levels of anti-inflammatory cytokines [IL-10, IL-11, IL-4/13A (not IL-4/13B), transforming growth factor β1 (TGF-β1) (not TGF-β2)] in the PI, MI and DI of juvenile grass carp (P < 0.05), which might be partly related to target of rapamycin (TOR) signalling [TOR/ribosomal protein S6 kinases 1 (S6K1) and eIF4E-binding proteins (4E-BP)]. All data indicated that DON could impair the intestinal immune function, and its potential regulation mechanisms were partly associated with NF-κB and TOR signalling pathways. Finally, based on the enteritis morbidity, and the LZ and ACP activities as well as IgM content in the PI, the reasonable dose of DON for grass carp were estimated to be 251.66, 305.83, 252.34 and 309.94 μg/kg diet, respectively.

Identifiants

pubmed: 30339843
pii: S1050-4648(18)30672-7
doi: 10.1016/j.fsi.2018.10.039
pii:
doi:

Substances chimiques

Fish Proteins 0
NF-kappa B 0
Trichothecenes 0
TOR Serine-Threonine Kinases EC 2.7.11.1
deoxynivalenol JT37HYP23V

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

470-484

Informations de copyright

Copyright © 2018. Published by Elsevier Ltd.

Auteurs

Chen Huang (C)

Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.

Lin Feng (L)

Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.

Wei-Dan Jiang (WD)

Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.

Pei Wu (P)

Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.

Yang Liu (Y)

Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.

Yun-Yun Zeng (YY)

Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.

Jun Jiang (J)

Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.

Sheng-Yao Kuang (SY)

Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China.

Ling Tang (L)

Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China.

Xiao-Qiu Zhou (XQ)

Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China. Electronic address: xqzhouqq@tom.com.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH