Big data and targeted machine learning in action to assist medical decision in the ICU.
Journal
Anaesthesia, critical care & pain medicine
ISSN: 2352-5568
Titre abrégé: Anaesth Crit Care Pain Med
Pays: France
ID NLM: 101652401
Informations de publication
Date de publication:
08 2019
08 2019
Historique:
received:
31
05
2018
revised:
31
07
2018
accepted:
04
09
2018
pubmed:
20
10
2018
medline:
31
7
2020
entrez:
20
10
2018
Statut:
ppublish
Résumé
Historically, personalised medicine has been synonymous with pharmacogenomics and oncology. We argue for a new framework for personalised medicine analytics that capitalises on more detailed patient-level data and leverages recent advances in causal inference and machine learning tailored towards decision support applicable to critically ill patients. We discuss how advances in data technology and statistics are providing new opportunities for asking more targeted questions regarding patient treatment, and how this can be applied in the intensive care unit to better predict patient-centred outcomes, help in the discovery of new treatment regimens associated with improved outcomes, and ultimately how these rules can be learned in real-time for the patient.
Identifiants
pubmed: 30339893
pii: S2352-5568(18)30216-9
doi: 10.1016/j.accpm.2018.09.008
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
377-384Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM117622
Pays : United States
Organisme : NINR NIH HHS
ID : R01 NR013912
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
Copyright © 2018 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.