Visualizing Secretory Cargo Transport in Budding Yeast.


Journal

Current protocols in cell biology
ISSN: 1934-2616
Titre abrégé: Curr Protoc Cell Biol
Pays: United States
ID NLM: 101287856

Informations de publication

Date de publication:
06 2019
Historique:
pubmed: 11 11 2018
medline: 7 5 2020
entrez: 11 11 2018
Statut: ppublish

Résumé

Budding yeast is an excellent model organism for studying the dynamics of the Golgi apparatus. To characterize Golgi function, it is important to visualize secretory cargo as it traverses the secretory pathway. We describe a recently developed approach that generates fluorescent protein aggregates in the lumen of the yeast endoplasmic reticulum and allows the fluorescent cargo to be solubilized for transport through the Golgi by addition of a small-molecule ligand. We further describe how to generate a yeast strain expressing the regulatable secretory cargo, and we provide protocols for visualizing the cargo by 4D confocal microscopy and immunoblotting. © 2018 by John Wiley & Sons, Inc.

Identifiants

pubmed: 30414385
doi: 10.1002/cpcb.80
pmc: PMC6506369
mid: NIHMS992640
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

e80

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM104010
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA014599
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007183
Pays : United States

Informations de copyright

© 2018 John Wiley & Sons, Inc.

Références

Nat Cell Biol. 2002 Oct;4(10):750-6
pubmed: 12360285
Yeast. 1994 Dec;10(13):1793-808
pubmed: 7747518
Annu Rev Cell Dev Biol. 2016 Oct 6;32:197-222
pubmed: 27298089
Cell Logist. 2016 Jun 24;6(3):e1204848
pubmed: 27738551
Microb Cell Fact. 2014 Aug 28;13(1):125
pubmed: 25164324
J Chem Inf Model. 2008 May;48(5):1118-30
pubmed: 18412331
Nature. 2006 Jun 22;441(7096):1002-6
pubmed: 16699524
Methods Cell Biol. 2013;118:179-94
pubmed: 24295307
Science. 2000 Feb 4;287(5454):826-30
pubmed: 10657290
Methods Mol Biol. 2016;1496:1-11
pubmed: 27631997
Methods Enzymol. 2002;350:87-96
pubmed: 12073338
Methods Enzymol. 1991;194:281-301
pubmed: 2005793
Nature. 2006 Jun 22;441(7096):1007-10
pubmed: 16699523
CSH Protoc. 2006 Jun 01;2006(1):
pubmed: 22485571
Annu Rev Biochem. 1985;54:631-64
pubmed: 3896128
Mol Biosyst. 2015 Nov;11(11):3129-36
pubmed: 26381459
PLoS Biol. 2018 Aug 7;16(8):e2005140
pubmed: 30086131
Nat Methods. 2015 Mar;12(3):244-50, 3 p following 250
pubmed: 25599551
BMC Biotechnol. 2009 Apr 03;9:32
pubmed: 19344508
Trends Biochem Sci. 1989 Aug;14(8):347-50
pubmed: 2529676
J Mol Microbiol Biotechnol. 2001 Apr;3(2):207-14
pubmed: 11321575
Eur J Biochem. 1999 Mar;260(2):461-9
pubmed: 10095782
Yeast. 1999 Oct;15(14):1541-53
pubmed: 10514571
Methods Mol Biol. 2011;699:355-70
pubmed: 21116992
Nat Methods. 2008 Nov;5(11):955-7
pubmed: 18953349
Mol Biol Cell. 2007 Dec;18(12):4932-44
pubmed: 17881724
Cell. 2013 Feb 28;152(5):1134-45
pubmed: 23452858
Genetics. 2013 Feb;193(2):383-410
pubmed: 23396477
J Cell Biol. 1996 Jul;134(2):269-78
pubmed: 8707814
Yeast. 1990 Nov-Dec;6(6):483-90
pubmed: 2080665
Mol Biol Cell. 1998 Sep;9(9):2667-80
pubmed: 9725919

Auteurs

Jason C Casler (JC)

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois.

Benjamin S Glick (BS)

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois.

Articles similaires

Adenosine Triphosphate Adenosine Diphosphate Mitochondrial ADP, ATP Translocases Binding Sites Mitochondria
Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Plasmodesmata Endoplasmic Reticulum Arabidopsis Cytokinesis Arabidopsis Proteins
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins

Classifications MeSH