Thiosocius teredinicola gen. nov., sp. nov., a sulfur-oxidizing chemolithoautotrophic endosymbiont cultivated from the gills of the giant shipworm, Kuphus polythalamius.
Animals
Bacterial Typing Techniques
Base Composition
Bivalvia
/ microbiology
Chemoautotrophic Growth
DNA, Bacterial
/ genetics
Fatty Acids
/ chemistry
Gammaproteobacteria
/ classification
Geologic Sediments
/ microbiology
Gills
/ microbiology
Oxidation-Reduction
Philippines
Phylogeny
RNA, Ribosomal, 16S
/ genetics
Sequence Analysis, DNA
Sulfur
/ metabolism
Thiosulfates
Bivalve
Kuphus polythalamia
Thioautotrophic symbiont
chemolithoautotrophic symbiosis
giant shipworm
sulfur-oxidizing chemosymbiosis
Journal
International journal of systematic and evolutionary microbiology
ISSN: 1466-5034
Titre abrégé: Int J Syst Evol Microbiol
Pays: England
ID NLM: 100899600
Informations de publication
Date de publication:
Mar 2019
Mar 2019
Historique:
pubmed:
13
12
2018
medline:
3
5
2019
entrez:
13
12
2018
Statut:
ppublish
Résumé
A chemolithoautotrophic sulfur-oxidizing, diazotrophic, facultatively heterotrophic, endosymbiotic bacterium, designated as strain 2141T, was isolated from the gills of the giant shipworm Kuphus polythalamius (Teredinidae: Bivalvia). Based on its 16S rRNA sequence, the endosymbiont falls within a clade that includes the as-yet-uncultivated thioautotrophic symbionts of a marine ciliate and hydrothermal vent gastropods, uncultivated marine sediment bacteria, and a free-living sulfur-oxidizing bacterium ODIII6, all of which belong to the Gammaproteobacteria. The endosymbiont is Gram-negative, rod-shaped and has a single polar flagellum when grown in culture. This bacterium can be grown chemolithoautotrophically on a chemically defined medium supplemented with either hydrogen sulfide, thiosulfate, tetrathionate or elemental sulfur. The closed-circular genome has a DNA G+C content of 60.1 mol% and is 4.79 Mbp in size with a large nitrogenase cluster spanning nearly 40 kbp. The diazotrophic capability was confirmed by growing the strain on chemolithoautotrophic thiosulfate-based medium without a combined source of fixed nitrogen. The bacterium is also capable of heterotrophic growth on organic acids such as acetate and propionate. The pH, temperature and salinity optima for chemolithoautotrophic growth on thiosulfate were found to be 8.5, 34 °C and 0.2 M NaCl, respectively. To our knowledge, this is the first report of pure culture of a thioautotrophic animal symbiont. The type strain of Thiosocius teredinicola is PMS-2141T.STBD.0c.01a
Identifiants
pubmed: 30540238
doi: 10.1099/ijsem.0.003143
pmc: PMC7705117
doi:
Substances chimiques
DNA, Bacterial
0
Fatty Acids
0
RNA, Ribosomal, 16S
0
Thiosulfates
0
Sulfur
70FD1KFU70
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
638-644Subventions
Organisme : FIC NIH HHS
ID : U01 TW008163
Pays : United States
Organisme : FIC NIH HHS
ID : U19 TW008163
Pays : United States
Références
Proc Natl Acad Sci U S A. 2017 May 2;114(18):E3652-E3658
pubmed: 28416684
Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):346-351
pubmed: 24505072
Appl Environ Microbiol. 2006 Mar;72(3):2014-21
pubmed: 16517650
Science. 1983 Sep 30;221(4618):1401-3
pubmed: 17759016
Bioinformatics. 2004 Feb 12;20(3):407-15
pubmed: 14960467
Appl Environ Microbiol. 2008 Jun;74(12):3895-8
pubmed: 18408062
Proc Natl Acad Sci U S A. 2012 May 8;109(19):E1173-82
pubmed: 22517752
Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2261-2269
pubmed: 12508896
Nature. 2006 May 18;441(7091):345-8
pubmed: 16710420
Nat Rev Microbiol. 2008 Oct;6(10):725-40
pubmed: 18794911
Microb Ecol. 1992 Nov;24(3):313-29
pubmed: 24193210
Int J Syst Evol Microbiol. 2015 Aug;65(8):2522-2530
pubmed: 25944805
Science. 2007 Sep 14;317(5844):1563-6
pubmed: 17872448
Appl Environ Microbiol. 2003 Nov;69(11):6785-92
pubmed: 14602641
Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):E5096-104
pubmed: 25385629
Nat Microbiol. 2016 Oct 24;2:16195
pubmed: 27775707
Stand Genomic Sci. 2010 Oct 27;3(2):163-73
pubmed: 21304746
Nat Microbiol. 2016 Oct 24;2:16193
pubmed: 27775698
Int J Syst Evol Microbiol. 2007 Jan;57(Pt 1):81-91
pubmed: 17220447
J Bacteriol. 2014 Jun;196(12):2210-5
pubmed: 24706738
Biol Bull. 2018 Dec;235(3):167-177
pubmed: 30624120
Mol Phylogenet Evol. 2011 Nov;61(2):245-54
pubmed: 21684342
Curr Biol. 2007 May 15;17(10):881-6
pubmed: 17493812
ISME J. 2014 Jan;8(1):40-51
pubmed: 23924784
Appl Environ Microbiol. 2006 Feb;72(2):1388-93
pubmed: 16461691